Recitation 3 Chapter 20

Problem 3. A uniform electric field of magnitude E = 250 V/m is directed in the positive x direction ($\hat{\mathbf{i}}$). A $q = +12.0 \ \mu\text{C}$ charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy ΔU of the charge-field system? (b) Through what potential difference ΔV does the charge move?

Problem 8. Given two $q_0 = 2.00 \ \mu\text{C}$ charges as shown in Figure P20.8 and a positive test charge of $q = 1.28 \cdot 10^{-18}$ C at the origin, (a) what is the net force exerted by the two q_0 charges on the test charge q? (b) What is the electric field at the origin due to the two q_0 charges? (c) What is the electrical potential at the origin due to the two q_0 charges?

Problem 19. A light, unstressed spring has a length d. Two identical particles, each with charge q, are connected to the opposite ends of the spring. The particles are held stationary a distance d apart and are then released at the same time. The spring has a bit of internal kinetic friction, so the oscillation is damped. The particles eventually stop vibrating when the distance between them is 3d. Find the increase in internal energy ΔE_i that appears in the spring during the oscillations. Assume that the system of the spring and the two charges is isolated.

Problem 20. In 1911, Ernest Rutherford and his assistants Hans Geiger and Ernest Mardsen conducted an experiment in which they scattered alpha particles from thin sheets of gold. An alpha particle, having a charge of $q_{\alpha} = +2e$ and a mass of $m = 6.64 \cdot 10^{-27}$ kg is a product of certain radioactive decays. The results of the experiment lead Rutherford to the idea that most of the mass of an atom is in a very small nucleus, whith electrons in orbit around it, in his planetary model of the atom. Assume that an alpha particle, initially very far from a gold nucleus, is fired with a velocity $v = 2.00 \cdot 10^7$ m/s directly toward the nucleus (charge Q = +79e). How close does the alpha particle get to the nucleus before turning around? Asume that the gold nucleus remains stationary.

Problem 21. The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 10.0 V and b = -7.00 V/m. Determine (a) the potential at x = 0, 3.00 m, and 6.00 m; and (b) the magnitude and direction of the electric field at x = 0, 3.00 m, and 6.00 m.

Problem 22. The electric potential insize a charged spherical conductor of radius R is given by $V_i = k_e Q/R$, and the outside potential is given by $V_o = k_e Q/r$. Using $E_r = -dV/dx$, determine the electric field (a) inside and (b) outside this charge distribution.

Problem 24. Consider a ring of radius R with the total charge Q spread uniformly over its perimeter. What is the potential difference between the point at the center of the ring and a point on its axis a distance d = 2R from the center?