Homework 9

Chapter 23
Problem 2. An $N=25$ turn circular coil of wire has diameter $d=1.00 \mathrm{~m}$. It is placed with it's axis along the direction of the Earth's magnetic field of $B=50.0 \mu \mathrm{~T}$, and then in $t=0.200 \mathrm{~s}$ it is flipped 180°. An average emf of what magnitude is generated in the coil?

Problem 6. A coil of $N=15$ turns and radius $R=10.0 \mathrm{~cm}$ surrounds a long solenoid of radius $r=2.00 \mathrm{~cm}$ and $n=1.00 \cdot 10^{3}$ turns $/ \mathrm{m}$ (Fig. P23.6). The current in the solenoid changes as $I=(5.00 \mathrm{~A}) \sin (120 t)$. Find the induced emf in the 15 turn coil as a function of time.

Problem 12. Consider the arrangement shown in Figure P23.12. Assume that $R=6.00 \Omega, l=1.20 \mathrm{~m}$, and a uniform $B=2.50 \mathrm{~T}$ magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor.

