Homework 7

Chapter 22
Problem 6. A proton moves with a velocity of $\mathbf{v}=(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{m} / \mathrm{s}$ in a region in which the magnetic field is $\mathbf{B}=$ $(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathrm{T}$. What is the magnitude of the magnetic force this charge experiences?

$$
\begin{align*}
\mathbf{F} & =q \mathbf{v} \times \mathbf{B}=q\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & -4 & 1 \\
1 & 2 & -3
\end{array}\right|=q[\hat{\mathbf{i}}(12-2)-\hat{\mathbf{j}}(-6-1)+\hat{\mathbf{k}}(4-(-4))]=q(10 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}) \tag{1}\\
|\mathbf{F}| & =q \sqrt{10^{2}+7^{2}+8^{2}}=2.34 \cdot 10^{-18} \mathrm{~N} \tag{2}
\end{align*}
$$

Problem 8. An electron moves in a circular path perpendicular to a constant magnetic field of magnitude $B=1.00 \mathrm{mT}$. The angular momentum of the electron about the center of the circle is $L=4.00 \cdot 10^{-25} \mathrm{Js}$. Determine (a) the radius of the circular path and (b) the speed of the electron.

Angular momentum is defined as

$$
\begin{equation*}
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \mathbf{v}, \tag{3}
\end{equation*}
$$

which for circular orbits reduces to

$$
\begin{equation*}
L=m r v, \tag{4}
\end{equation*}
$$

because \mathbf{r} and \mathbf{v} are perpendicular.
We also have

$$
\begin{align*}
F_{c} & =q v B=m \frac{v^{2}}{r} \tag{5}\\
q B r & =m v, \tag{6}
\end{align*}
$$

which combined with the angular momentum formula give two equations with two unknowns.
Solving for the unknowns

$$
\begin{align*}
L & =q B r^{2} \tag{7}\\
r & =\sqrt{\frac{L}{q B}}=0.0500 \mathrm{~m} \tag{8}\\
v & =\frac{L}{m r}=8.78 \mathrm{Mm} / \mathrm{s} \tag{9}
\end{align*}
$$

Problem 16. A wire $l=2.80 \mathrm{~m}$ in length carries a current of $I=5.00 \mathrm{~A}$ in a region where a uniform magnetic field has a magnitude of $B=0.390 \mathrm{~T}$. Calculate the magnitude of the magnetic force on the wire assuming that the angle between the magnetic field and the current is (a) $\theta_{a}=60.0^{\circ}$, (b) $\theta_{b}=90.0^{\circ}$, and (c) $\theta_{c}=120^{\circ}$.
Using our formula for the force on a wire due to a uniform field we have

$$
\begin{align*}
& \mathbf{F}=I \mathbf{l} \times \mathbf{B} \tag{10}\\
& F=I l B \sin \theta, \tag{11}
\end{align*}
$$

so just pluggging in

$$
\begin{align*}
& F_{a}=I l B \sin \theta_{a}=4.73 \mathrm{~N} \tag{12}\\
& F_{b}=I l B \sin \theta_{b}=5.46 \mathrm{~N} \tag{13}\\
& F_{c}=I l B \sin \theta_{c}=4.73 \mathrm{~N} . \tag{14}
\end{align*}
$$

