Homework 7

Chapter 22
Problem 6. A proton moves with a velocity of $\mathbf{v}=(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{m} / \mathrm{s}$ in a region in which the magnetic field is $\mathbf{B}=$ $(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathrm{T}$. What is the magnitude of the magnetic force this charge experiences?

Problem 8. An electron moves in a circular path perpendicular to a constant magnetic field of magnitude $B=1.00 \mathrm{mT}$. The angular momentum of the electron about the center of the circle is $L=4.00 \cdot 10^{-25} \mathrm{Js}$. Determine (a) the radius of the circular path and (b) the speed of the electron.

Problem 16. A wire $l=2.80 \mathrm{~m}$ in length carries a current of $I=5.00 \mathrm{~A}$ in a region where a uniform magnetic field has a magnitude of $B=0.390 \mathrm{~T}$. Calculate the magnitude of the magnetic force on the wire assuming that the angle between the magnetic field and the current is (a) $\theta_{a}=60.0^{\circ}$, (b) $\theta_{b}=90.0^{\circ}$, and (c) $\theta_{c}=120^{\circ}$.

