Homework 5

Chapter 21
Problem 25. A battery has an emf of $\epsilon=15.0 \mathrm{~V}$. The terminal voltage of the battery is $V_{t}=11.6 \mathrm{~V}$ when it is delivering $P=20.0 \mathrm{~W}$ of power to an external load resistor R. (a) What is the value of R ? (b) What is the internal resistance r of the battery?

(a) Using the power absorbed by R

$$
\begin{align*}
& P=I V_{t}=\frac{V_{t}^{2}}{R} \tag{1}\\
& R=\frac{V_{t}^{2}}{P}=\frac{(11.6 \mathrm{~V})^{2}}{20.0 \mathrm{~W}}=6.75 \Omega \tag{2}
\end{align*}
$$

(b) The current through the entire ciruit is given by

$$
\begin{equation*}
I=\frac{V_{t}}{R}=\frac{P}{V_{t}}=1.72 \mathrm{~A} \tag{3}
\end{equation*}
$$

So the internal resistance is given by

$$
\begin{align*}
\epsilon-V_{t} & =I r \tag{4}\\
r & =\frac{\epsilon-V_{t}}{I}=\frac{3.4 \mathrm{~V}}{1.72 \mathrm{~A}}=1.97 \Omega \tag{5}
\end{align*}
$$

Problem 29. Consider the circuit shown in Figure P21.29. Find (a) the current in the $R_{1}=20 \Omega$ resistor and (b) the potential difference between points a and b.

Label the voltage $V=25.0 \mathrm{~V}$ and the resistances (clockwise from b) $R_{1}=20.0 \Omega, R_{2}=5.00 \Omega, R_{3}=10.0 \Omega, R_{4}=10.0 \Omega$, and $R_{5}=5.00 \Omega$.
Computing some equivalent resistance of R_{1} and R_{2} in series we have

$$
\begin{equation*}
R_{s}=R_{1}+R_{2}=25.0 \Omega \tag{6}
\end{equation*}
$$

Computing the equivalent resistance of R_{s}, R_{4}, and R_{5} in parallel we have

$$
\begin{equation*}
R_{p}=\left(\frac{1}{R_{4}}+\frac{1}{R_{5}}+\frac{1}{R_{s}}\right)^{-1}=2.94 \Omega \tag{7}
\end{equation*}
$$

And the equivalent resistance of the entire setup is

$$
\begin{equation*}
R_{e}=R_{p}+R_{3}=12.94 \Omega \tag{8}
\end{equation*}
$$

The total current is then (from Ohm's law)

$$
\begin{equation*}
I_{e}=\frac{V}{R_{e}}=1.93 \mathrm{~A} \tag{9}
\end{equation*}
$$

And the voltage from a to b is

$$
\begin{equation*}
V_{a b}=I_{e} R_{p}=5.68 \mathrm{~V} \tag{10}
\end{equation*}
$$

Which is what they were looking for in (b).
The current through the branch with R_{1} and R_{2} is then

$$
\begin{equation*}
I_{s}=\frac{V_{a b}}{R_{s}}=227 \mathrm{~mA} \tag{11}
\end{equation*}
$$

Which is what they were looking for in (a).
Problem 31. Calculate the power delivered to each resistor in the circuit shown in Figure P21.31.

Label the voltage $V=18.0 \mathrm{~V}$ and the resistors (starting in the upper left) $R_{1}=2.00 \Omega, R_{2}=3.00 \Omega, R_{3}=1.00 \Omega$, and $R_{4}=4.00 \Omega$.
To find the total current through the circuit, we compute its equivalent resistance. First for the two resistors in parallel

$$
\begin{equation*}
R_{p}=\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)-1=0.750 \Omega \tag{12}
\end{equation*}
$$

And then for the complete circuit

$$
\begin{equation*}
R_{c}=R_{1}+R_{p}+R_{4}=6.75 \Omega \tag{13}
\end{equation*}
$$

Using Ohm's law to calculate the total current $I_{c}=I_{1}=I_{4}$ we have

$$
\begin{equation*}
I_{c}=\frac{V}{R_{c}}=18 / 6.75=2.67 \mathrm{~A} \tag{14}
\end{equation*}
$$

And the powers dissipated through R_{1} and R_{4} are

$$
\begin{align*}
& P_{1}=I_{1} V_{1}=I_{c}^{2} R_{1}=14.2 \mathrm{~W} \tag{15}\\
& P_{4}=I_{c}^{2} R_{4}=28.4 \mathrm{~W} \tag{16}
\end{align*}
$$

The voltage across R_{p} is given by

$$
\begin{equation*}
V_{p}=I_{c} R_{p}=2 \mathrm{~V} \tag{17}
\end{equation*}
$$

And the powers dissipated through R_{2} and R_{3} are

$$
\begin{align*}
& P_{2}=I_{2} V_{2}=\frac{V_{p}^{2}}{R_{2}}=1.33 \mathrm{~W} \tag{18}\\
& P_{3}=\frac{V_{p}^{2}}{R_{3}}=4 \mathrm{~W} \tag{19}
\end{align*}
$$

