Homework 1

Chapter 19
Problem 7. Two identical conducting small spheres are placed with their centers $r=0.300 \mathrm{~m}$ apart. One is given a charge of $q_{1}=12.0 \mathrm{nC}$ and the other a charge of $q_{2}=-18.0 \mathrm{nC}$. (a) Find the electric force exerted by one sphere on the other. (b) Next, the spheres are connected by a conducting wire. Find the electric force between the two after they have come to equilibrium.
(a)

And the force is towards the other sphere for each sphere because opposites attract.
(b)

The total charge on the both spheres is $Q=q_{1}+q_{2}=-6.0 \mathrm{nC}$. The spheres are identical, so at equilibrium, there will be $Q / 2=-3.0 \mathrm{nC}$ on each sphere. The repulsive (since now they have the same charge sign) force between them is given by

$$
\begin{equation*}
F=k_{e} \frac{(Q / 2)^{2}}{r^{2}}=8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(\frac{-3.0 \cdot 10^{-9} \mathrm{C}}{0.300 \mathrm{~m}}\right)^{2}=8.99 \cdot 10^{-7} \mathrm{~N} \tag{2}
\end{equation*}
$$

Problem 13. Three point charges are arranged as shown in Figure P19.13.
(a) Find the vector electric field \mathbf{E} that q_{2} and q_{3} together create at the origin. (b) Find the vector force \mathbf{F} on q_{1}.

(a)
$\mathbf{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i}=k_{e}\left[\frac{q_{2}}{x_{2}^{2}}(-\hat{\mathbf{i}})+\frac{q_{3}}{y_{3}^{2}} \hat{\mathbf{j}}\right]=8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(\frac{-6.00 \hat{\mathbf{i}}}{0.300^{2}}-\frac{3.00 \hat{\mathbf{j}}}{0.100^{2}}\right) \cdot 10^{-9} C / m^{2}=(-0.599 \hat{\mathbf{i}}-2.70 \hat{\mathbf{j}}) \mathrm{kN} / \mathrm{C}$
(b)

$$
\begin{equation*}
\mathbf{F}=q_{1} \mathbf{E}=(-3.00 \hat{\mathbf{i}}-13.5 \hat{\mathbf{j}}) \mu \mathrm{N} \tag{4}
\end{equation*}
$$

Problem 16. Consider the electric dipole shown in Figure P19.16. Show that the electric field at a distant point on the $+x$ axis is $E_{x} \approx 4 k_{e} q a / x^{3}$.

Let us assume the point in question has a positive x value (just reverse the sign if $x<0$).

$$
\begin{equation*}
\mathbf{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i}=k_{e}\left[\frac{q}{(x-a)^{2}} \hat{\mathbf{i}}+\frac{-q}{(x+a)^{2}} \hat{\mathbf{i}}\right] \tag{5}
\end{equation*}
$$

For $|x| \gg|c|$,

$$
\begin{equation*}
(x+c)^{n}=x^{n}\left(1+\frac{c}{x}\right)^{n}=x^{n}\left[1+n \frac{c}{x}+\frac{n(n-1)}{2} \cdot\left(\frac{c}{x}\right)^{2}+\ldots\right] \approx x^{n}\left(1+n \frac{c}{x}\right) \tag{6}
\end{equation*}
$$

because $(c / x)^{2}$ is very, very small. (We are Taylor expanding $(x+c)^{n}$ as a function of c / x aout $c / x=0$, and keeping only the first two terms.) In our case, $n=-2$ and $c=\mp a$

$$
\begin{equation*}
\mathbf{E}=k_{e}\left[\frac{q}{x^{2}}\left(1-2 \frac{-a}{x}\right)+\frac{-q}{x^{2}}\left(1-2 \frac{a}{x}\right)\right] \hat{\mathbf{i}}=k_{e} \frac{q}{x^{2}}\left(1+2 \frac{a}{x}-1+2 \frac{a}{x}\right) \hat{\mathbf{i}}=\frac{4 k_{e} q a}{x^{3}} \hat{\mathbf{i}} \tag{7}
\end{equation*}
$$

