
Recitation 2
Chapter 19

Problem 35. A solid sphere of radius R = 40.0 cm has a total charge of q = 26.0 µC uniformly distributed throughout its volume.
Calculate the magnitude E of the electric field (a) ra = 0 cm, (b) rb = 10.0 cm, (c) rc = 40.0 cm, and (d) rd = 60.0 cm from the center of
the sphere.

The charge distribution is symmetric under rotations and reflections about the center of the sphere , so the electric field must also be
symmetric under rotations and reflections about the center of the sphere. So the electric field can only be a function of the radius E(r)
(if it was a f’n of the angle, it wouldn’t be symmetric under rotations), and it must be only in the radial direction E(r) = E(r)r̂ (if it had
non-radial components, it wouldn’t be symmetric under reflections).

Because we have these insights from symmetry, we can use Gauss’s Law to solve for E(r)I
E(r) ·dA =

qin

ε0
(1)

E(r)
I

r̂ ·dA =
qin

ε0
(2)

because r is a constant over our surface of integration, E(r) must also be constant, so we pull it out of the integral. We also note that r̂ is
going to be perpendicular to our surface at every point on it, so

E(r)
I

dA = E(r)A =
qin

ε0
(3)

E(r)4πr2 =
qin

ε0
(4)

E(r) =
qin

4πε0r2 (5)

(If this is confusing, you can look at the first bit of the Gauss’s law section 19.9 page 624 in the book for their derivation, and Example
19.9 on page 627 for their take on this problem.)

For r ≤ R (points A, B, and C) we have

qin = q
4/3 ·πr3

4/3 ·πR3 = q
( r

R

)3
(6)

so

E≤(r) =
qr3/R3

4πε0r2 =
qr

4πε0R3 (7)

Ea = 0 because r = 0 (8)

Eb =
26.0 ·10−6 C ·0.100 m

4π ·8.854 ·10−12 C2/N·m2 · (0.400 m)3
= 3.65 ·105 N/C (9)

And for r ≥ R (points C and D) we have qin = q, so

E≥(r) =
q

4πε0r2 (10)

Ec = 1.46 ·106 N/C (11)

Ed = 6.49 ·105 N/C (12)

Problem 38. Consider a thin spherical shell of radius R = 14.0 cm with a total charge of q = 32.0 µC distributed uniformly on its
surface. Find the electric field (a) r = 10.0 cm and (b) r = 20.0 cm from the center of the charge distribution.

Again, the problem is symmetric under rotations and reflections about the center, so following the same reasoning as in Problem 35
we can use Equation 5.

(a) Inside the shell there is no charge (qin = 0), so Ea = 0.
(b) Outside the shell we can use Equation 10

Eb =
q

4πε0r2
b

=
32 ·10−6 C

4π ·8.853 ·10−12 C2/N·m2 · (0.200 m)2
= 7.19 ·106 N/C (13)

Problem 40. An insulating solid sphere of radius a has a uniform volume charge density ρ and carries a total positive charge Q. A
spherical gaussian surface of radius r, which shares a common center with the insulating sphere, is inflated starting from r = 0. (a)
Find an expression for the electric flux ΦE passing through the surface of the gaussian sphere as a function of r for r < a. (b) Find an
expression for the electric flux ΦE for r > a. (c) Plot ΦE (r).
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(a)

ΦE =
qin

ε0
=

Q ·4/3 ·πr3

ε0 ·4/3 ·πR3 =
Qr3

ε0R3 (14)

(b)

ΦE =
qin

ε0
=

Q
ε0

(15)

(c) Cubic increase followed continuously by a flat line.

Problem 57. Two identical metallic blocks resting on a frictionless horizontal surface are connected by a light metallic spring having
the spring constant k = 100 N/m and an unstretched length of L0 = 0.300 m as shown in Figure P19.57a. A total charge of Q is slowly
placed on the system, causing the spring to stretch to an equilibrium length of L1 = 0.400 m as shown in Figure P19.57b. Determine the
value of Q, assuming that all charge resides in the blocks and modeling the blocks as point charges.

Looking at the right hand block (it doesn’t matter which one you pick), we see that the only relevant forces are the attractive spring
force, and the repulsive electrostatic force. Because the blocks are at equilibrium, these forces must cancel, so

Es = k(L1−L0) = EE = ke
(Q/2)2

L2
1

= ke

(
Q

2L1

)2

(16)

Q = 2L1
√

k(L1−L0)/ke (17)

= 2 ·0.400 m ·
√

100 N/m ·0.100 m/8.99 ·109 N·m2/C2 = 2.67 ·10−5 C (18)

Problem 59. Two small spheres of mass m are suspended from strings of length l that are connected at a common point. One sphere
has charge Q, and the other has charge 2Q. The strings make angles θ1 and θ2 with the vertical. (a) How are θ1 and theta2 related? (b)
Assume that θ1 and θ2 are small. Show that the distance r between the spheres is given by

r ≈
(

4keQ2l
mg

)1/3

(19)

(a) Assuming that the charges are not rotating about each other, the forces on each charge must cancel. The forces on each sphere
are gravity Fg = mg, electrostatic FE = ke2Q2/r2, and tension T . The tension will automatically handle canceling forces in the radial
direction, so we need only consider the tangential direction. Let us assume that FE is purely in the horizontal direction (see (Note)).
Summing the tangential forces on the first sphere

0 = FE cosθ1−Fg sinθ1 (20)

tanθ1 =
FE

Fg
(21)

And on the second sphere tanθ2 = FE
Fg

so θ1 = θ2 = θ.
(b)

r = 2l sinθ≈ 2l tanθ = 2l
FE

Fg
= 2l

ke2Q2/r2

mg
(22)

r ≈
(

4lkeQ2

mg

)1/3

(23)

(Note) Why FE is horizontal.
Let q be the charge on the first mass and Q be the charge on the second. The force of 1 on 2 is given by F12 = keqQr̂12/r2. This

is identical to the force of 1 on 2 that we would get if we had put Q on 1 and q on 2 (let us say “the electric force does not care about
which mass has which charge”). The only difference between the two masses is the charge, and the only effect of that difference (the
electrostatic force) does not care about the difference, so the final situation must be symmetric (θ1 = θ2 [no calculation required :p] and
r is horizontal). Because FE ∝ r̂12 it must also be horizontal.

Problem 62. Two infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.62. The sheet on the left
has a uniform surface charge density σ, and the one on the right has a uniform charge density −σ. Calculate the electric field at points
(a) to the left of, (b) in between, and (c) to the right of the two sheets.

Let î be the direction to the right perpendicular to the sheets. Because the problem has is symmetric to translations in the plane of
the sheets and reflections through planes perpendicular to the sheets, the electric field must be of the form E(r) = E(x)î.

Using Gauss’s law to find the electric field due to a single plate, we imagine a cylinder that extends through the plate a length L out
either side. E = E î, so no flux passes through the side walls of the cylinder. The single sheet is symmetric to reflection in it’s plane, so

2



(defining x = 0 to be the x value of the plane) E(x) = −E(x) (positive charges are repelled from both sides). So, letting the area of a
single end cap be A, the charge enclosed by the cylinder is σA and the flux through the end-caps of the cylinder is given by

ΦE = 2EA =
qin

ε0
=

σA
ε0

(24)

E =
σ

2ε0
(25)

A constant! (See Example 19.12 on page 629 for the book’s version)
(a) Using Equation 25 and superposition, we see

EL =
σ

2ε0
+
−σ

2ε0
= 0 (26)

(b)

EB =
σî
2ε0

+
−σ · (−î)

2ε0
=

σ

ε0
î (27)

(c) Identically to (a), ER = 0.
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