Homework 2

Chapter 19
Problem 31. A $d=40.0 \mathrm{~cm}$ diameter loop is rotated in a uniform electric field until the position of maximum electric flux is found. The flux in this position is measured to be $\Phi_{E}=5.20 \cdot 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / C$. What is the magnitude of the electric field?

$$
\begin{align*}
\Phi_{E} & =E A \tag{1}\\
E & =\frac{\Phi_{E}}{A}=\frac{\Phi_{E}}{\pi(d / 2)^{2}}=\frac{5.20 \cdot 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}}{\pi \cdot(0.200 \mathrm{~m})^{2}}=4.14 \cdot 10^{6} \mathrm{~N} / \mathrm{C} \tag{2}
\end{align*}
$$

Problem 36. An $m=10.0 \mathrm{~g}$ piece of Styrofoam carries a net charge of $q=-0.700 \mu C$ and floats above the center of a large horizontal sheet of plastic that has a uniform charge density σ on it's surface. Find σ.

Because the Styrofoam is floating in equilibrium, the sum of forces in the vertical direction must be zero. So

$$
\begin{align*}
F_{g}=m g & =F_{E}=q E=q \frac{\sigma}{2 \varepsilon_{0}} \tag{3}\\
\sigma & =\frac{2 \varepsilon_{0} m g}{q}=\frac{2 \cdot 8.54 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \cdot 0.0100 \mathrm{~kg} \cdot 9.80 \mathrm{~m} / \mathrm{s}^{2}}{-0.700 \cdot 10^{-6} \mathrm{C}}=2.39 \cdot 10^{-6} \mathrm{C} / \mathrm{m}^{2} \tag{4}
\end{align*}
$$

Problem 55. Four identical point charges $(q=+10.0 \mu C)$ are located on the corners of a rectangle as shown in Figure P19.55. The dimensions of the rectangle are $L=60.0 \mathrm{~cm}$ and $W=15.0 \mathrm{~cm}$. Calculate the magnitude and direction of the resultant electric force exerted on the charge at the lower left corner by the other three charges.

This is just a jazzed up version of Problem 15 from recitation. The unit vector $\hat{\mathbf{r}}$ diagonally across from the upper right is given by

$$
\begin{align*}
\hat{\mathbf{r}} & =\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}} \tag{5}\\
\theta & =\arctan W / L+180^{\circ}=194^{\circ} \tag{6}\\
\cos \theta & =-0.970 \tag{7}\\
\sin \theta & =-0.243 \tag{8}
\end{align*}
$$

So the electric field in the lower left corner is given by

$$
\begin{align*}
\mathbf{E} & =k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i}=k_{e}\left(\frac{q}{L^{2}}(-\hat{\mathbf{i}})+\frac{q}{\left(L^{2}+W^{2}\right)}(\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}})+\frac{q}{W^{2}}(-\hat{\mathbf{j}})\right) \tag{9}\\
& =-k_{e} q\left[\left(\frac{1}{L^{2}}-\frac{\cos \theta}{L^{2}+W^{2}}\right) \hat{\mathbf{i}}+\left(\frac{1}{W^{2}}-\frac{\sin \theta}{L^{2}+W^{2}}\right) \hat{\mathbf{j}}\right] \tag{10}
\end{align*}
$$

So the magnitude of \mathbf{E} is given by

$$
\begin{equation*}
E=k_{e} q \sqrt{\left(L^{-2}-\frac{\cos \theta}{L^{2}+W^{2}}\right)^{2}+\left(W^{-2}-\frac{\sin \theta}{L^{2}+W^{2}}\right)^{2}}=4.08 \cdot 10^{6} \mathrm{~N} / \mathrm{C} \tag{11}
\end{equation*}
$$

(Remembering to convert L and W to meters.) And the direction θ (measured counter clockwise from $\hat{\mathbf{i}}$) of \mathbf{E} is given by

$$
\begin{equation*}
\theta=\arctan \left(\frac{-W^{-2}+\frac{\sin \theta}{L^{2}+W^{2}}}{-L^{-2}+\frac{\cos \theta}{L^{2}+W^{2}}}\right)+180^{\circ}=263^{\circ} \tag{12}
\end{equation*}
$$

Where the $+180^{\circ}$ is because the tangent has a period of 180°, and the angle we want is in the backside 180°.
$\mathbf{F}=q \mathbf{E}$ so the direction of \mathbf{F} is the same as the direction of \mathbf{E}. The magnitude of \mathbf{F} is given by

$$
\begin{equation*}
F=10.0 \cdot 10^{-6} \mathrm{C} \cdot 4.08 \cdot 10^{6} \mathrm{~N} / \mathrm{C}=40.8 \mathrm{~N} \tag{13}
\end{equation*}
$$

