Homework 1

Chapter 19
Problem 7. Two identical conducting small spheres are placed with their centers $r=0.300 \mathrm{~m}$ apart. One is given a charge of $q_{1}=$ $12.0 n C$ and the other a charge of $q_{2}=-18.0 n C$. (a) Find the electric force exerted by one sphere on the other. (b) Next, the spheres are connected by a conducting wire. Find the electric force between the two after they have come to equilibrium.
(a)

$$
\begin{equation*}
F=k_{e} \frac{q_{1} q_{2}}{r^{2}}=8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \frac{12.0 \cdot 10^{-9} \mathrm{C} \cdot(-18.0) \cdot 10^{-9} \mathrm{C}}{(0.300 \mathrm{~m})^{2}}=-2.16 \cdot 10^{-5} \mathrm{~N} \tag{1}
\end{equation*}
$$

And the force is towards the other sphere for each sphere because opposites attract.
(b) The total charge on the both spheres is $Q=q_{1}+q_{2}=-6.0 \mathrm{nC}$. The spheres are identical, so at equilibrium, there will be $Q / 2=-3.0 \mathrm{nC}$ on each sphere. The repulsive (since now they have the same charge sign) force between them is given by

$$
\begin{equation*}
F=k_{e} \frac{(Q / 2)^{2}}{r^{2}}=8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(\frac{-3.0 \cdot 10^{-9} \mathrm{C}}{0.300 \mathrm{~m}}\right)^{2}=8.99 \cdot 10^{-7} \mathrm{~N} \tag{2}
\end{equation*}
$$

Problem 13. Three point charges are arranged as shown in Figure P19.13.
(a) Find the vector electric field \mathbf{E} that q_{2} and q_{3} together create at the origin. (b) Find the vector force \mathbf{F} on q_{1}.

Name	Charge (nC)	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
q_{1}	5.00	0	0
q_{2}	6.00	0.300	0
q_{3}	-3.00	0	-0.100

(a)

$$
\begin{equation*}
\mathbf{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i}=k_{e}\left[\frac{q_{2}}{x_{2}^{2}}(-\hat{\mathbf{i}})+\frac{q_{3}}{y_{3}^{2}} \hat{\mathbf{j}}\right]=8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(\frac{-6.00 \hat{\mathbf{i}}}{0.300^{2}}-\frac{3.00 \hat{\mathbf{j}}}{0.100^{2}}\right) \cdot 10^{-9} C / \mathrm{m}^{2}=(-0.599 \hat{\mathbf{i}}-2.70 \hat{\mathbf{j}}) \mathrm{kN} / \mathrm{C} \tag{3}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\mathbf{F}=q_{1} \mathbf{E}=(-3.00 \hat{\mathbf{i}}-13.5 \hat{\mathbf{j}}) \mu \mathrm{N} \tag{4}
\end{equation*}
$$

Problem 16. Consider the electric dipole shown in Figure P19.16. Show that the electric field at a distant point on the $+x$ axis is $E_{x} \approx 4 k_{e} q a / x^{3}$.

Let us assume the point in question has a positive x value (just reverse the sign if $x<0$).

$$
\begin{equation*}
\mathbf{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i}=k_{e}\left[\frac{q}{(x-a)^{2}} \hat{\mathbf{i}}+\frac{-q}{(x+a)^{2}} \hat{\mathbf{i}}\right] \tag{5}
\end{equation*}
$$

For $|x| \gg|c|$,

$$
\begin{equation*}
(x+c)^{n}=x^{n}\left(1+\frac{c}{x}\right)^{n}=x^{n}\left[1+n \frac{c}{x}+\frac{n(n-1)}{2} \cdot\left(\frac{c}{x}\right)^{2}+\ldots\right] \approx x^{n}\left(1+n \frac{c}{x}\right) \tag{6}
\end{equation*}
$$

Because $(c / x)^{2}$ is very, very small. (What we are doing, is just Taylor expanding $(x+c)^{n}$ as a function of c / x, and keeping only the first two terms.) In our case, $n=-2$ and $c=\mp a$

$$
\begin{equation*}
\mathbf{E}=k_{e}\left[\frac{q}{x^{2}}\left(1-2 \frac{-a}{x}\right)+\frac{-q}{x^{2}}\left(1-2 \frac{a}{x}\right)\right] \hat{\mathbf{i}}=k_{e} \frac{q}{x^{2}}\left(1+2 \frac{a}{x}-1+2 \frac{a}{x}\right) \hat{\mathbf{i}}=\frac{4 k_{e} q a}{x^{3}} \hat{\mathbf{i}} \tag{7}
\end{equation*}
$$

