
Recitation 6 solutions

Problem 30. An m = 2.00 kg block is attached to a spring of force constant k = 500 N/m as shown in Active Figure 6.8 on
page 164. The block is pulled A = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as
it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and
surface is µ = 0.350.

For both cases we will use conservation of energy. Call the point where the block is released P0 and the point where
the block passes through equilibrium P1. At P0, the block has spring potential energy Us0 = 1/2 · kA2 and no kinetic or
gravitational potential energy. At P1, the block has kinetic energy K1 = 1/2 · mv2 and no potential energy.

(a) Without friction, the energy at P1 is the same as that at P0 because there is no energy lost to friction. So

P0 = P1
1
2
kA2 =

1
2
mv2 (1)

v = A

√
k

m
= 5 cm

√
500 kg/s2

2 kg
= 79.1 cm/s (2)

(b) With friction, part of the initial energy P0 bleeds out into internal heat energy. The work done by friction is given by

Wf = F ·∆x (3)

Because the block is sliding the whole way in, the frictional force is always maxed out at the constant

Ff = µFN = µmg (4)

In the direction opposite to the motion. So friction from the table does

Wf = −FfA = −µmgA (5)

Where the negative sign denotes the frictional force sucking energy from the block.
Knowing the frictional work, the velocity at the equilibrium position is given by

E0 + Wf = Us0 + Wf = E1 = K1 (6)
1
2
kA2 − µmgA =

1
2
mv2 (7)

mv2 = kA2 − 2µmgA (8)

v =

√
k

m
A2 − 2µgA (9)

=

√
500 kg/s2

2 kg
(0.05 m)2 − 2 · 0.35 · 9.8 m/s2 · 0.05 m (10)

= 0.531 m/s (11)

What I was doing for (b) in class on Wednesday was more complicated because I had misread the question. I thought it
was asking us to find the maximum speed, when it just asks for the speed at equilibrium. Figuring out when the maximum
speed occurs requires more knowledge of differential equations than you guys are responsible for.

Problem 57. In diatomic molecules, the consituent atoms exert attractive forces on each other at large distances, and
repulsive forces at short distances. For many molecules, the Lennard-Jones law is a good approximation to the magnitude of
these forces:

F = F0

[
2

(σ

r

)13

−
(σ

r

)7
]

(12)

Where r is the center-to-center distance between the atoms in the molecule, σ is a length parameter, and F0 is the force when
r = σ. For an oxygen molecule, F0 = 9.60 · 10−11 N and σ = 3.50 · 10−10 m. Determine the work done by this force as the
atoms are pulled apart from r0 = 4.00 · 10−10 m to r1 = 9.00 · 10−10 m.
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The work done by the force is given by

W =
∫ r1

r0

F · dr (13)

=
∫ r1

r0

F · dr (14)

=
∫ r1

r0

{
F0

[
2

(σ

r

)13

−
(σ

r

)7
]}

· dr (15)

= 2F0

∫ r1

r0

(σ

r

)13

dr − F0

∫ r1

r0

(σ

r

)7

dr (16)

(17)

Then we note that ∫ (a

x

)n

dx = an

∫
x−ndx = an x−n+1

−n + 1
(18)∫ r1

r0

(a

x

)n

dx =
an

1 − n

(
r1−n
1 − r1−n

0

)
(19)

And plug this into our equation for W

W = 2F0
σ13

−12
(
r−12
1 − r−12

0

)
− F0

σ7

−6
(
r−6
1 − r−6

0

)
(20)

=
−F0σ

6

[(
σ

r1

)12

−
(

σ

r1

)6
]

+
F0σ

6

[(
σ

r0

)12

−
(

σ

r0

)6
]

(21)

=
−F0σ

6
[
σ12

(
r−12
1 − r−12

0

)
− σ6

(
r−6
1 − r−6

0

)]
(22)

=
−9.50 · 10−11 N · 3.50 · 10−10 m

6
{
(3.50 Å)12

[
(9.00 Å)−12 − (4.00 Å)−12

]
− (3.50 Å)6

[
(9.00 Å)−6 − (4.00 Å)−6

]}
(23)

= 1.35 · 10−25 J (24)
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