
Useful Equations

Introduction

I’ve just gone through and compiled the important equations from the ends of the various chapters, and the equations given on the quizzes
so far. Hope this helps :).

Chapter 1: Introduction and vectors

Trig

sohcahtoa

sinθ =
opposite

hypotenuse
(1)

cosθ =
adjacent

hypotenuse
(2)

tanθ =
opposite
adjacent

(3)

Vectors

R = A +B = (Ax +Bx)î +(Ay +By)ĵ +(Az+Bz)k̂ (4)

Chapter 2: Motion in one dimension

Definitions

Average quantities

vavg≡
∆x
∆t

(5)

aavg≡
∆v
∆t

(6)

Instantaneous quantities

v ≡ dx
dt

(7)

a≡ dv
dt

(8)

Equations of motion

For constant velocity problems (integrating the instantaneous velocity definition)

xf = xi +vxt (9)

And for constant acceleration problems (integrating the instantaneous acceleration definition twice, and manipulating a bit).

vx f = vxi +axt (10)

xf = xi +
1
2
(vxi +vx f )t (11)

xf = xi +vxit +
1
2

axt (12)

v2
x f = v2

xi +2ax(xf −xi) (13)

Where eqn. 13 comes from solving eqn 12 fort using the quadratic formula and plugging the result into eqn 10.
The quadratic formula says that

x =
−b±

√
b2−4ac

2a
(14)

Yeilds two values ofx that solve the quadratic equation

0 = ax2 +bx+c (15)
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Chapter 3: Motion in two dimensions

Constant acceleration

Applying our 1D equations of motion to each direction, we get the multidimensional formulas:

v f = vi +at (16)

r f = r i +vit +
1
2

at (17)

In the special case of projectile motion withax = 0 anday = g these reduce to

vx f = vxi = constant (18)

xf = xi +vxt (19)

vy f = vyi−gt (20)

yf = yi +vyi−
1
2

gt2 (21)

We could apply our accelerations to all four of the constant 1D acceleration equations in chapter 2, but you get the idea...

Circular motion

A particle moving in a circle of radiusr with velocityv has a centerward acceleration of

ac =
v2

r
(22)

Frames of reference

If an observerO′ is moving with velocityvO′O with respect to observerO, their measurements of the velocity of a particle located at
pointP are related according to

vPO = vPO′ +vOO′ (23)

Chapter 4: The laws of motion

Newton’s laws

1. An object in motion will remain in motion unless acted upon by an outside force.

2. ∑F = ma

3. For every force there is an equal and opposite reaction force.

Note that the two forces referenced in the 3rd law belong to twodifferentfree body diagrams (FBDs). For example, the sun and earth
attract each other gravitationally. LetF be the magnitude of the force, andî be the direction from the earth to the sun. The force on the
earth due to the sun (showing up on the earth’s FBD) isF î and the force on the sun due to the earth (showing up on the sun’s FBD) is
−F î.

Chapter 5: More applications of Newton’s laws

Friction

Let µs andµk be the static and kinetic coefficients of friction (respectively) between an object and a surface, and letFN be the normal
force on the object due to the surface. The respective forces of friction are given by

Fs f ≤ µsFN (24)

Fk f = µkFN (25)

Drag

Objects moving through viscous materials (air, water, etc.) experience a velocity dependent resistive force

Fdrag =−bv (26)

Whereb depends on the particular system under consideration.

2



Chapter 6: Energy and energy transfer

Work

In general

W ≡
Z r f

r i

F ·dr (27)

Or for the one dimensional case

W ≡
Z xf

xi

F · îdx (28)

Where the dot productA ·B is defined as
A ·B ≡ |A||B|cosθ (29)

Whereθ is the angle between the vectors. So in the 1D, constant force-and-angle case

W = F ·∆r (30)

The force from a spring is given by Hooke’s law
Fs =−kx (31)

So the work done by a spring fromxi to xf is

Ws =
Z xf

xi

(−kx)dx =
1
2

kx2
i −

1
2

kx2
f (32)

Kinetic energy

K =
1
2

mv2 (33)

Work-kinetic energy theorem

Wnet = K f −Ki = ∆K (34)

Power

Pavg≡
W
∆t

(35)

P≡ dW
dt

= F ·v =
dE
dt

(36)

Chapter 7: Potential energy

Conservative forces

A force is conservativeif the work it does on a particle is independent of the path the particle takes between two given points. The
potential energy change is the inverse of the work done by the force

∆U = U f −Ui =−
Z xf

xi

Fxdx (37)

Or, taking the derivative of both sides with respect tox

Fx =−dU
dx

(38)

The gravitational potential of a particle under a gravitational forceFg = mg is (relative to the energy at some heighthr = 0)

Ug =−
Z h

0
(−mg)dy = mgh (39)

The spring potential of a particle under a spring forceFs =−kx is (relative to the unstretched energy atxr = 0)

Us =−
Z x

0
(−kx)dx =

1
2

kx2 (40)

The gravitational potential energy of a particle under Newton’s gravitational forceFG is (relative to the energy atrr = ∞)

UG =−
Z r

∞

(
−Gm1m2

r2

)
dr = Gm1m2

Z r

∞

1
r2 dr =

−Gm1m2

r

∣∣∣∣r
∞

=
−Gm1m2

r
(41)

And so on for any other conservative forces...
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Mechanical energy

The total mechanical energy at any moment is
Emech≡ K +U (42)

Conserving energy using this formula

Ei = Ki +Ui = Ef = K f +U f (43)

∆K =−∆U (44)

Which is identical to the work-kinetic energy theorem from Chapter 6 (eqn 34 withWnet = −∆U). The only difference between these
two approaches is that nonconservative forces do not have really well defined “potential energies”.

Equilibria

In a potential energy diagram, a point ofstable equilibriumis a local minimum, a point ofunstable equilibriumis a local maximum, and
a region ofneutral equilibriumis a region of constant potential energy.

Chapter 8: Momentum and collisions

Linear momentum

Momentum
p ≡ mv (45)

is conserved

∑pi = ∑p f (46)

Impulse

The impulse-momentum theorem

I =
Z t2

t1
∑Fdt = ∆p (47)

Types of collisions

• Inelastic collision: kinetic energy is not conserved.

• Perfectly inelastic collision: the particles stick together afterwards.

• Elastic collision: kinetic energy is conserved.

In all types of collisions (without external forces), momentum is conserved.

Center of mass

rCM = ∑i mir i

∑i mi
(48)

Chapter 10: Rotational motion

Definitions

ω ≡ dθ
dt

(49)

α ≡ dω
dt

(50)
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Relations to linear quantities

(All of the linear quanties are tangential)

st = rθ (51)

vt = rω (52)

at = rα (53)

For constantα problems, all of the constant acceleration equations from Chapter 2 are still valid with the proper substitutions.

Analogs of other linear properties

The rotational motion equivalent of mass is themoment of inertia

I = ∑
i

mir
2
i (54)

I =
Z

ρr2dV (55)

And the moments of inertia for some common shapes (Table 10.2, page 300)

Hoop/ring about axis MR2

Solid cylinder about axis 1
2MR2

Hollow cylinder about axis 1
2M(R2

i +R2
o)

Long thin rod perp to axis through center 1
12ML2

Long thin rod perp to axis through end1
3ML2

Solid sphere about diameter2
5MR2

Thin spherical shell about diameter2
3MR2

Rectangular plate perp to one side through center112M(a2 +b2)

The kinetic energy of a rotating body is given by

K =
1
2

Iω2 (56)

(Note that the kinetic energy of any given particle should be expressed aseither a linear or a rotational kinetic energy, not asboth at
once. Youcanuse linear kinetic energy for one particle and rotational kinetic energy for another to find the kinetic energy at a single
point in time.)

The rotational equivalent to force is torque
τ ≡ r ×F (57)

Where the cross product between two vectors defined by

A×B ≡ |A||B|sinθr̂hr (58)

Wherer̂hr is a unit vector in the direction specified by the right-hand rule.
The analog to Newton’s second law is

∑τ = Iα =
dL
dt

(59)

The angular momentumL is given by
L ≡ r ×p = Iω (60)

Angular momentum is conserved if there are no external torques on the system. As with rotational kinetic energy, you should be careful
to avoid double counting by using both rotational and linear momentum to compute the momentum of the same particle, although here
the units do not match (another reason to keep track of your units!).

Quiz 1: Vector addition and projectile motion

v2
2 = v2

1 +2a(x2−x1) (From 13) (61)

v2 = v1 +at (From 10) (62)

x2 = x1 +v1t +
1
2

at2 (From 12) (63)
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Quiz 2: Projectile motion, Newton’s laws, and reference frames

y = y0 +v0(sinθ)t− 1
2

gt2 (From 21) (64)

x = v0(cosθ)t (From 19) (65)

vy = v0(sinθ)−gt (From 20) (66)

v2
x = v2

x0 +2ax∆x (From 13) (67)

∑Fext =
dp
dt

(From Newton’s 2nd law and 45) (68)

∑Fext = ma (Newton’s 2nd law) (69)

R= (v2
0sin2θ)/g (Range eqn 3.16 from book page 76) (70)

V12 = V1G +VG2 (From 23) (71)

Where they have also used sohcahtoa to getvxi = v0cosθ andvyi = v0sinθ.

Quiz 3: Friction, momentum, work, kinetic energy, and springs

∆W = ∆KE (From 34) (72)

KE = 1/2mv2 (From 33) (73)

∆Wext = 1/2kx2 (From 32 withxf = 0) (74)

F =−kx (From 31) (75)

∆W12 =
Z 2

1
F.dx (From 28) (76)

A.B = ABcosθ (From 29) (77)

∆W12 = F.X (From 30) (78)
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