Homework 8

Problem 6. A friend claims that as long as he has his seat belt on, he can hold on to an $m=12.0 \mathrm{~kg}$ child in a $v_{i}=60.0 \mathrm{mph}$ head-on collision with a brick wall in which the car passenger compartment comes to a stop in $\Delta t=0.050$ s. Show that the violent force during the collision will tear the child from his arms.

The force needed to hold on to the child is given by

$$
\begin{equation*}
F=\frac{\Delta p}{\Delta t}=-m \frac{v_{i}}{\Delta t}=-12.0 \mathrm{~kg} \frac{60 \mathrm{mph}}{0.050 \mathrm{~s}} \cdot \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}=-6436 \mathrm{~N} \tag{1}
\end{equation*}
$$

Which is much larger than what the friend is capable of applying.
Problem 24. An $m_{1}=90 \mathrm{~kg}$ fullback running east $(\hat{\mathbf{i}})$ with a speed of $v_{1}=5.00 \mathrm{~m} / \mathrm{s}$ is tackled by an $m_{2}=95 \mathrm{~kg}$ opponent running north $(\hat{\mathbf{j}})$ with a speed of $v_{2}=3.00 \mathrm{~m} / \mathrm{s}$. Noting that the collision is perfectly inelastic, (a) calculate the speed v_{f} and direction θ of the players $j u s t ~ a f t e r ~ t h e ~ t a c k l e ~ a n d ~(b) ~ d e t e r m i n e ~ t h e ~ m e c h a n i c a l ~ e n e r g y ~ l o s t ~ a s ~ a ~ r e s u l t ~ o f ~ t h e ~ c o l l i s i o n . ~ A c c o u n t ~ f o r ~ t h e ~ m i s s i n g ~ e n e r g y . ~$
(a) Conserving momentum in the $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ directions

$$
\begin{align*}
P_{i x}=m_{1} v_{1} & =P_{f x}=\left(m_{1}+m_{2}\right) v_{f x} \tag{2}\\
v_{f x} & =v_{1} \frac{m_{1}}{m_{1}+m_{2}}=2.43 \mathrm{~m} / \mathrm{s} \tag{3}\\
P_{i y}=m_{2} v_{2} & =P_{f y}=\left(m_{1}+m_{2}\right) v_{f y} \tag{4}\\
v_{f y} & =v_{2} \frac{m_{2}}{m_{1}+m_{2}}=1.54 \mathrm{~m} / \mathrm{s} \tag{5}\\
v_{f} & =\sqrt{v_{f x}^{2}+v_{f y}^{2}}=2.88 \mathrm{~m} / \mathrm{s} \tag{6}\\
\theta & =\arctan \left(\frac{v_{f y}}{v_{f x}}\right)=32.3^{\circ} \tag{7}
\end{align*}
$$

(b)

$$
\begin{align*}
\Delta K & =K_{f}-K_{i}=\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2} \tag{8}\\
& =\frac{1}{2}\left[90.0 \mathrm{~kg}(5.00 \mathrm{~m} . \mathrm{s})^{2}+95.0 \mathrm{~kg}(3.00 \mathrm{~kg})^{2}-(90.0 \mathrm{~kg}+95.0 \mathrm{~kg})(2.88 \mathrm{~m} / \mathrm{s})^{2}\right] \tag{9}\\
& =-786 \mathrm{~J} \tag{10}
\end{align*}
$$

All of which has been lost as mechanical energy, and is now thermal energy (warmer football players), noise (a loud crunch), etc.
Problem 28. A proton, moving with a velocity of $v_{i} \hat{i}$, collides elastically with another proton that is initially at rest. Assuming that the two protons have equal speeds after the collision, find (a) the speed v_{f} of each proton after the collision in terms of v_{i} and (b) the directions of the velocity vectors after the collision.
(a) Looking at the front inside cover of the text we see that the the mass of a proton is given by $m_{p}=1.672 \cdot 10^{-27} \mathrm{~kg}$. Conserving energy (because the collision is elastic) we have

$$
\begin{align*}
K_{i}=\frac{1}{2} m_{p} v_{i}^{2} & =K_{f}=\frac{1}{2} m_{p} v_{f}^{2}+\frac{1}{2} m_{p} v_{f}^{2} \tag{11}\\
v_{f} & =\sqrt{\frac{v_{i}^{2}}{2}}=\frac{v_{i}}{\sqrt{2}} \tag{12}
\end{align*}
$$

(b) Let $\mathbf{v}_{f 1}$ be the final velocity for the incident proton, and $\mathbf{v}_{f 2}$ be the final velocity for the proton initially at rest. Conserving momentum in the $\hat{\mathbf{j}}$ direction

$$
\begin{align*}
P_{i y}=0 & =P_{f y}=m_{p} v_{f 1 y}+m_{p} v_{f 2 y} \tag{13}\\
v_{f 1 y} & =-v_{f 2 y} \tag{14}
\end{align*}
$$

So the protons have equal magnitude speeds in the $\hat{\mathbf{j}}$ direction. Because the speed of the particles are equal, the magnitude of their speeds in the $\hat{\mathbf{i}}$ direction should also be equal $\left|v_{f 1 x}\right|=\left|v_{f 2 x}\right|$. Conserving momentum in the $\hat{\mathbf{i}}$ direction.

$$
\begin{align*}
P_{i x}=m_{p} v_{i} & =P_{f x}=m_{p} v_{f 1 x}+m_{p} v_{f 2 x}=2 m_{p} v_{f x} \tag{15}\\
v_{f x} & =\frac{v_{i}}{2} \tag{16}
\end{align*}
$$

Using the Pythagorean theorem to solve for the magnitude of $v_{f y}$

$$
\begin{align*}
v_{f}^{2}=\frac{v_{i}^{2}}{2} & =v_{f x}^{2}+v_{f y}^{2}=\frac{v_{i}^{2}}{4}+v_{f y}^{2} \tag{17}\\
v_{f y} & =v_{i} \sqrt{\frac{1}{2}-\frac{1}{4}}=\frac{v_{i}}{2}=v_{f x} \tag{18}
\end{align*}
$$

So because the $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ components of \mathbf{v}_{f} are the same, both protons are deflected away at an angle of $\theta=45^{\circ}$ from the $\hat{\mathbf{i}}$ direction, with opposite $\hat{\mathbf{j}}$ components (so the angle between $\mathbf{v}_{f 1}$ and $\mathbf{v}_{f 2}$ is 90°).

Problem 51. A small block of mass $m_{1}=0.500 \mathrm{~kg}$ is released from rest at the top of a curve-shaped, frictionless wedge of mass $m_{2}=3.00 \mathrm{~kg}$, which sits on a frictionless, horizontal surface as sown in Fig. P8.51a. When the block leaves the wedge, its velocity is measured to be $v_{1}=4.00 \mathrm{~m} / \mathrm{s}$ to the right $(\hat{\mathbf{i}})$ as shown in Fig. P8.51b. (a) What is the velocity \mathbf{v}_{2} of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?
(a) Conserving momentum

$$
\begin{align*}
P_{i}=0 & =P_{f}=m_{1} v_{1}+m_{2} v_{2} \tag{19}\\
v_{2} & =-v_{1} \frac{m_{1}}{m_{2}}=-4.00 \mathrm{~m} / \mathrm{s} \frac{0.500 \mathrm{~kg}}{3.00 \mathrm{~kg}}=-0.667 \mathrm{~m} / \mathrm{s} \tag{20}
\end{align*}
$$

Where the - sign denotes motion in the $-\hat{\mathbf{i}}$ direction (to the left in Fig. P8.51b).
(b) Let $y=0$ be the level of the table for the purpose of calculating gravitational potential energy. Conserving energy (since none is lost to friction or other internal energies)

$$
\begin{align*}
E_{i}=m_{1} g h & =E_{f}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \tag{21}\\
m_{1} g h & =\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} \frac{m_{1}^{2} v_{2}^{2}}{m_{2}^{2}}\right) \tag{22}\\
& =\frac{m_{1} v_{1}^{2}}{2}\left(1+\frac{m_{1}}{m_{2}}\right) \tag{23}\\
h & =\frac{v_{1}^{2}}{2 g}\left(1+\frac{m_{1}}{m_{2}}\right)=\frac{(0.667 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.80 \mathrm{~m} / \mathrm{s}^{2}}\left(1+\frac{0.500 \mathrm{~kg}}{3.00 \mathrm{~kg}}\right)=0.952 \mathrm{~m} \tag{24}
\end{align*}
$$

