
Homework 5

Problem 18. Whenever twoApollo astronauts were on the surface of the Moon, a third astronaut orbited the Moon. Assume the orbit
to be circular and r1 = 100km above the surface of the Moon. At this altitude, the free-fall acceleration is g= 1.52m/s2. The radius of
the Moon is r0 = 1.70·106 m. Determine(a) the astronaut’s orbital speed v and(b) the period of the orbit.

(a)Using the basic formula for circular motion

ac =
v2

r
(1)

v =
√

acr =
√

g(r1 + r0) =
√

1.52 m/s2 · (1.00·105 +1.70·106) m = 1.65 km/s (2)

(b) The astronaut travels the circumference at a constant speed so

∆x = v∆t (3)

T =
2πr
v

=
2πr
√

acr
= 2π

√
r
ac

= 2π

√
(1.00·105 +1.70·106) m

1.52 m/s2
= 6.84 ks= 1.90 hrs (4)

Problem 23. A pail of water is rotated in a vertical circle of radius r= 1.00m. What is the minimum speed of the pail, upside down at
the top of the circle, if no water is to spill out?

At the critical low speed, all of the centerward acceleration comes from gravity (no tension/normal force, like Chapter 5, Problem 47
from recitation). So

ac =
v2

r
(5)

v =
√

acr =
√

gr =
√

9.8 m/s2 ·1.00 m= 3.13Um/s (6)

Just like in Problem 18.

Problem 50. An air puck of mass m1 is tied to a string and allowed to revolve in a circle of radius R on a frictionless horizontal table.
The other end of the string passes through a hole in the center of the table, and a counterweight of mass m2 is tied to it (Fig. P5.50). The
suspended object remains in equilibrium while the puck on the tabletop revolves. What are(a) the tension in the string,(b) the radial
force acting on the puck, and(c) the speed of the puck?

(a)Constructing a free body diagram form2, we see that the only forces on it are the tensionT and gravityFg2. Summing the forces
in the downward direction we have

∑F = Fg2−T = m2g−T (7)

= m2a = 0 (8)

T = m2g (9)

Where the first line is summing the forces, the second is Newton’s second law, and the third is combining the previous two and solving
for tension.

(b) The only radial force acting on the puck is tension soFc = T = m2g.
(c) We find the speed of the puck using the circular motion formula

ac =
v2

r
(10)

v =
√

acr =
√

Fcr
m1

=
√

m2

m1
gr (11)

Problem 52. An amusement park ride consists of a rotating circular platform d= 8.00m in diameter from which m= 10kg seats are
suspended at the end of l= 2.50m massless chains (Fig. P5.52). When the system rotates, the chains make an angle ofθ = 28.0◦ with
the vertical. (a) What is the speed of each seat?(b) Draw a free-body diagram of a mc = 40.0 kg child riding in a seat, and find the
tension in the chain.

(a)We will eventually usev =
√

acr as we have in all the other problems in this homework assignment to findv.
First, we need to find the radiusr of the path that the seat takes around the ride.

r =
d
2

+ l sinθ = (4.00+2.50sin28.0◦) m = 5.1736. . . m (12)

1



Now we need to find the centerward accelerationac. Drawing a free body diagram of our seat, we see that the only forces acting
upon it are the tensionT and gravityFg. We know that the seat does not rise or fall in the vertical (y) direction, so summing the forces
we have

∑Fy = T cosθ−mg= may = 0 (13)

T =
mg

cosθ
(14)

∑Fc = T sinθ = mgtanθ = mac (15)

ac = gtanθ = 9.8 m/s2 · tan28.0◦ = 5.2108. . . m/s2 (16)

So

v =
√

acr =

√
gtanθ · (d

2
+ l sinθ) =

√
5.2108. . . m/s2 ·5.1736. . . m = 5.19 m/s (17)

(b) Our free body diagram with a child in the seat will be the same as our diagram from(a)but with a new massm′ = m+mc = 50 kg.
Before we find the tension in the chain, we should check to see if the chain angle changes. The angular velocityω = v/r does not

change when people get into the seats (because they are of negligible mass compared to the platform), so we can relate our new velocities
v′ andr ′ using the sameω that we had in(a).

ω =
v′

r ′
=

v
r

=
√

gr tanθ
r

=

√
gtanθ

r
= 1.00 rad/s (18)

Not that the numerical value is important, just that it is a constant. We can plugv′ = ωr ′ into our centerward acceleration equation

a′c =
v′2

r ′
=

ω2r ′2

r ′
= r ′ω2 (19)

And applying this to eqn. 16(which hasn’t changed except for the need to substitute primed variables)

a′c = gtanθ′ = r ′ω2 (20)

gtanθ′ =
(

d
2

+ l sinθ′
)

ω2 (21)

The only unknown in this equation isθ′, but the equation is analytically unsolvable. We knowθ′ = 28.0◦ is one solution, because there
are no masses in this equation, so is must also hold for case(a). Then we have to decide if there will be any other solutions. We know
intuitively that any solutions will have 0◦ < θ′ < 90◦. Considering the sin and tan functions on that interval, we see that sinθ′ is concave
down and continuous over the entire interval, and that tanθ; is concave up and continuous over the entire interval. Therefore, the left
hand side of this equation only equals the right hand side at a single value ofθ′ so our 28.0◦ solution is unique. If this doesn’t make
sense to you, you can graph the right and left hand sides to check.

Having proved thatθ′ = θ we can move on to solve for the tension. Using eqn 14.

T ′ =
m′g

cosθ′
=

50 kg·9.8 m/s2

cos28.0◦
= 555 N (22)

As far as grading is concerned I will accept anything where you did any of the following:

• assumedθ didn’t change (skipping the wholeθ′ = θ step)

• assumedω didn’t change, and you went on to showθ′ = θ is a valid solution (skipping the uniqueness step).

• assumedω didn’t change, and proved thatθ′ = θ is valid and unique.
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