Homework 1 solutions

Problem 60. The consumption of natural gas by a company satisfies the empirical equation

$$V = 1.50t + 0.00800t^2,\tag{1}$$

where V is the volume in millions of cubic feet and t is the time in months. Express this equation in units of cubic feet and seconds. Assign proper units to the coefficients. Assume that a month is 30.0 days.

. Adding units to the equation coefficients:

$$V = 1.50 \left[\frac{\text{million ft}^3}{\text{month}}\right] t + 8.00 \cdot 10^{-3} \left[\frac{\text{million ft}^3}{\text{month}^2}\right] t^2$$
(2)

We prepare some conversions:

$$1 = \left[\frac{10^6 \text{ ft}^3}{\text{million ft}^3}\right] \tag{3}$$

$$I = \left[\frac{1 \text{ month}}{30 \text{ days}} \cdot \frac{1 \text{ day}}{24 \text{ hours}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} \cdot \frac{1 \text{ minute}}{60 \text{ s}}\right]$$
(4)

$$= \left\lfloor \frac{1 \text{ month}}{2.592 \cdot 10^6 \text{ s}} \right\rfloor \tag{5}$$

So converting the units in our equation to ft^3 and s:

$$V = 1.50 \left[\frac{\text{million ft}^3}{\text{month}} \cdot \frac{10^6 \text{ ft}^3}{\text{million ft}^3} \cdot \frac{1 \text{ month}}{2.592 \cdot 10^6 \text{ s}} \right] t + 8.00 \cdot 10^{-3} \left[\frac{\text{million ft}^3}{\text{month}^2} \cdot \frac{10^6 \text{ ft}^3}{\text{million ft}^3} \cdot \left(\frac{1 \text{ month}}{2.592 \cdot 10^6 \text{ s}} \right)^2 \right] t^2$$
(6)
$$V = 0.579 \left[\frac{\text{ft}^3}{\text{s}} \right] t + 1.19 \cdot 10^{-9} \left[\frac{\text{ft}^3}{\text{s}^2} \right] t^2$$
(7)

Problem 62. In physics, it is important to use mathematical approximations. Demonstrate that for small angles ($< 20^{\circ}$)

$$\tan \alpha \approx \sin \alpha \approx \alpha = \pi \alpha' / 180^{\circ} \tag{8}$$

(9)

where α is in radians and α' is in degrees. Use a calculator to find the largest angle for which $\tan \alpha$ may be approximated by α with an error less than 10.0%.

. To kill both birds with one stone, a table to show the approximations hold and show the % error of the approximation:

α'	α [rad]	$\sin \alpha$	$\tan \alpha$	% error
0°	0.000	0.000	0.000	Ø
5°	0.087	0.087	0.087	-0.25%
10°	0.175	0.174	0.176	-1.02%
15°	0.262	0.259	0.268	-2.30%
20°	0.349	0.342	0.354	-4.09%
31°	0.541	0.515	0.601	-9.95%
32°	0.599	0.530	0.625	-10.62%

where the % error is given by

$$\% \text{ error} = \frac{\text{approx.} - \text{actual}}{\text{actual}} = \frac{\alpha - \tan \alpha}{\tan \alpha}.$$

So 31° is the largest whole-degree angle with < 10% error.