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4.3 Dependency graph for my modular experiment control stack. The unfold-protein package
controls the experiment, but the same stack is used by calibcant for cantilever calibration
(Fig. 5.1). The dashed line ( ) separates the software components (on the left) from
their associated hardware (on the right). The data flow between components is shown
with arrows. For example, the stepper package calls pycomedi, which talks to the DAQ
card, to write digital output that controls the stepper motor ( , Section 4.3.2). The
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Abstract
Open source single molecule force spectroscopy

William Trevor King
Guoliang Yang, Ph.D. and Luis Cruz Cruz, Ph.D.

Single molecule force spectroscopy (SMFS) experiments provide an experimental benchmark for

testing simulated and theoretical predictions of protein unfolding behavior. Despite it use since

199730, the labs currently engaged in SMFS use in-house software and procedures for critical tasks

such as cantilever calibration and Monte Carlo unfolding simulation. Besides wasting developer

time producing and maintaining redundant implementations, the lack of transparency makes it

more difficult to share data and techniques between labs, which slows progress. In some cases it can

also lead to ambiguity as to which of several similar approaches, correction factors, etc. were used

in a particular paper.

In this thesis, I introduce an SMFS sofware suite for cantilever calibration (calibcant), experiment

control (unfold-protein), analysis (Hooke), and postprocessing (sawsim) in the context of velocity

clamp unfolding of I27 octomers in buffers with varying concentrations of CaCl2
2,5,20,21. All of the

tools are licensed under open source licenses, which allows SMFS researchers to centralize future

development. Where possible, care has been taken to keep these packages operating system (OS)

agnostic. The experiment logic in unfold-protein and calibcant is still nominally OS agnostic, but

those packages depend on more fundamental packages that control the physical hardware in use4.

At the bottom of the physical-interface stack are the Comedi drivers from the Linux kernel31. Users

running other operating systems should be able to swap in analogous low level physical-interface

packages if Linux is not an option.
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Chapter 1: Introduction

Single molecule force spectroscopy (SMFS) is the study of folding and unfolding transitions in

proteins under tension. By measuring these transitions, we hope to gain insight into fundamental

protein behavior. SMFS is an attempt to bridge the gap between chemists studying folding and

unfolding kinetics in bulk solutions and theorists simulating protein behavior at the amino-acid

level. An increased understanding of protein folding would guide researchers in developing drugs

targeting biologically significant receptors and enzymes. In this chapter, I describe the protein folding

problem in a general sense (Section 1.1), discuss theoretical frameworks for understanding protein

folding (Section 1.2), highlight the role of SMFS in extending this understanding (Section 1.3), and

explain the role of unfolding experiments in understanding protein folding (Section 1.4). The last

section in this chapter gives a roadmap for the rest of the thesis (Section 1.5).

1.1 The protein folding problem

In biological systems the most important molecules, such as proteins, nucleic acids, and polysaccha-

rides, are all polymers. Understanding the properties and functions of these polymeric molecules is

crucial in understanding the molecular mechanisms behind structures and processes in cells.

An organism’s genetic code is stored in DNA in the cell nucleus. DNA sequencing is a fairly well

developed field, with fundamental work such as the Human Genome Project seeing major develop-

ment in the early 2000s32–34. It is estimated that human genetic information contains approximately

25,000 genes, each encoding a protein35,36. Knowing the amino acid sequence for a particular pro-

tein, however, does not immediately shed light on the protein’s role in the body, or even the protein’s

probable conformation. Indeed, a protein’s conformation is often vitally important in executing its

biological tasks (Fig. 1.1). Unfortunately predicting a protein’s stable conformations from it’s amino

acid sequence has proven to be remarkably difficult, as has the inverse problem of finding sequences

that form a given conformation.
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Figure 1.1: Complex of biotin (red) and a streptavidin tetramer (green) (PDB ID: 1SWE)9.
The correct streptavidin conformation creates the biotin-specific binding pockets. Biotin-
streptavidin is a model ligand-receptor pair isolated from the bacterium Streptomyces avidinii .
Streptavidin binds to cell surfaces, and bound biotin increases streptavidin’s cell-binding affin-
ity10. Figure generated with PyMol.

1.2 Protein folding energy landscapes

Finding a protein’s lowest energy state via a brute force sampling of all possible conformations is

impossibly inefficient, due to the exponential scaling of possible conformations with protein length, as

outlined by Levinthal 37 . This has lead to a succession of models explaining the folding mechanism.

For a number of years, the “pathway” model of protein folding enjoyed popularity (Fig. 1.2a)37.

More recently, the “landscape” or “funnel” model has come to the fore (Fig. 1.2b)13. Both of these

models reduce the conformation space to a more approachable analog, and their success depends on

striking a useful balance between simplicity and accuracy.

When the choice of theoretical approach becomes murky, you must gather experimental data to

help distinguish between similar models. Separating the pathway model from the funnel model is

only marginally within the realm of current experimental techniques, but with higher throughput

and increased automation it should be easier to make such distinctions in the near future.

1.3 Why single molecule?

The large size of proteins relative to simpler molecules limits the information attainable from bulk

measurements, because the macromolecules in a population can have diverse conformations and

behaviors. Bulk measurements average over these differences, producing excellent statistics for the

mean, but making it difficult to understand the variation. The individualized, and sometimes rare,

1.2 Protein folding energy landscapes

http://dx.doi.org/10.2210/pdb1swe/pdb
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Figure 1.2: (a) A “double T” example of the pathway model of protein folding, in which the
protein proceeds from the native state N to the unfolded state U via a series of metastable
transition states I1 and I2 with two “dead end” states IX1 and IX2 . Adapted from Bédard
et al. 12 . (b) The landscape model of protein folding, in which the protein diffuses through
a multi-dimensional free energy landscape. Separate folding attempts may take many distinct
routes through this landscape on the way to the folded state. Reproduced from Dill and Chan 13 .

behaviors of macromolecules can have important implications for their functions inside the cell.

Single molecule techniques, in which the macromolecules are studied one at a time, allow direct

access to the variation within the population without averaging. This provides important and

complementary information about the functional mechanisms of several biological systems38.

Single molecule techniques provide an opportunity to study protein folding and unfolding at the

level of a single molecule, where the distinction between the pathway model and funnel model is

clearer. They also provide a convenient benchmark for verifying molecular dynamics simulations,

because it takes lots of computing power to simulate even one biopolymer with anything close to

atomic resolution over experimental time scales. Even with significant computing resources, compar-

ing molecular dynamics results with experimental data remains elusive. For example, experimental

pulling speeds are on the order of µm/s, while simulation pulling speeds are on the order of m/s39–43.

Single molecule techniques for manipulating biopolymers include optical measurements, i.e.,

single molecule fluorescence microscopy and spectroscopy, and mechanical manipulations of in-

dividual macromolecules, i.e., force microscopy and spectroscopy using atomic force microscopes

(AFMs), laser tweezers44,45, magnetic tweezers46, biomembrane force probes47, and centrifugal mi-

1.3 Why single molecule?
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croscopes48. These techniques cover a wide range of approaches, and even when the basic approach

is the same (e.g. force microscopy), the different techniques span orders of magnitude in the range

of their controllable parameters.

1.4 Why unfolding?

There’s a lot of talk about protein folding in this chapter, while the rest of the thesis (and the

title) are about unfolding. If you understand protein folding, you can use your understanding to

design drugs with a particular conformation, or predict the conformation of a biologically important

receptor (Section 1.1). Understanding protein unfolding is less directly useful, because unfolded

proteins are rarely biologically relevant (although it does happen49).

The focus on unfolding is mainly because it’s easier to unravel proteins by pulling on their ends

(Section 2.4) than it is to fold them into their native state by pushing on those ends (Figs. 1.1

and 2.3). For proteins with smooth enough energy landscapes, the folding and unfolding routes will

be similar, so knowledge about the unfolding behavior does shed light on the folding behavior.

Practically, the distinction between folding and unfolding makes little difference, because drug

designers and doctors are not consuming SMFS results directly. For researchers calibrating molec-

ular dynamics simulations, it doesn’t matter if you compare simulated folding experiments with

experimental folding experiments, or simulated unfolding experiments with experimental unfolding

experiments. The important thing is to compare your simulation against some experimental bench-

marks. If your molecular dynamics simulation successfully predicts a protein’s unfolding behavior,

it makes me more confident that it will correctly predict the protein’s native folding behavior.

1.5 Thesis outline

Chapter 2 of this thesis outlines the apparatus and methods for single molecule force spectroscopy

with an atomic force microscope. Chapter 3 presents my sawsim Monte Carlo simulation for model-

ing unfolding/refolding behavior. By comparing model simulations with experimental measurements,

we can gain insight into the protein’s kinetics. After Chapter 3, you should have a pretty firm grasp

of the underlying physics, so we’ll move on to Chapter 4 and discuss my pyafm and unfold-protein

1.4 Why unfolding?
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experiment control software. With both the kinetic theory and procedure taken care of, Chap-

ter 5 discusses thermal cantilever calibration, deriving the theoretical approach and presenting my

calibcant automatic calibration software.

Moving away from experiment control, Chapter 6 presents the Hooke suite for extracting unfold-

ing force histograms (for comparison with sawsim simulations). In Chapter 7, I pull all the pieces

together (experiment control, post processing, and simulation) to carry out unfolding experiments on

the immunoglobulin-like domain 27 from human Titin (I27) in buffers with different ionic strength.

We close with Chapter 8, which summarizes my conclusions and discusses possible directions for

future work.

1.5 Thesis outline
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Chapter 2: Mechanical protein unfolding via AFM

In this chapter we will review the basic methods and procedures for mechanically unfolding proteins

with an atomic force microscope. We will discuss the working principle behind an AFM (Section 2.1)

and outline the procedure for synthesizing protein chains (Section 2.2). With the groundwork out of

the way, we will look at sample preparation (Section 2.3) and the velocity clamp force spectroscopy

procedure (Section 2.4). Finally, we will give a summary of cantilever calibration (Section 2.5) which

is discussed in more detail in Appendix A.

Everything discussed in this chapter, with the possible exception of cantilever calibration, is

fairly standard practice in the field of force spectroscopy. See Appendix A for the development of

the cantilever calibration theory from first principles and references to related papers.

2.1 Instrumentation

Of the mechanical manipulation methods listed in Section 1.3, AFM is the most widely used due to

the availability of user-friendly commercial instruments. AFM has been employed on several types

of biological macromolecules, mechanically unfolding proteins50 and forcing structural transitions

in DNA27,51 and polysaccharides30.

An AFM uses a sharp tip integrated at the end of a cantilever to interact with the sample52.

Cantilever bending is measured by a laser reflected off the cantilever and incident on a position

sensitive photodetector53 (Fig. 2.1a). When the bending force constant of the cantilever is known54,

the force applied to the sample can be calculated using Hooke’s law (Eq. (3.3)).

The substrate is mounted in a fluid cell55,56 on a three dimensional piezoelectric actuator so that

the tip may be positioned on the surface with sub-nanometer resolution (although signal drift and

piezo hysteresis can cause larger errors in the positioning accuracy). Our tubular piezo has a range

of 1.6 µm in the horizontal directions and a range of 3.5 µm in the vertical (Fig. 2.1b).

The forces that can be applied and measured with an AFM range from tens of piconewtons to
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Cantilever

Substrate
Piezo

Photodiode
Laser

(a) (b)

Figure 2.1: (a) Operating principle for an Atomic Force Microscope. A sharp tip integrated
at the end of a cantilever interacts with the sample. Cantilever bending is measured by a laser
reflected off the cantilever and incident on a position sensitive photodetector. (b) Schematic of
a tubular piezoelectric actuator. In our AFM, the substrate is mounted on the top end of the
tube, and the bottom end is fixed to the microscope body. This allows the piezo to control the
relative position between the substrate and the AFM cantilever. The electrodes are placed so
radial electric fields can be easily generated. These radial fields will cause the piezo to expand
or contract axially. The z voltage causes the tube to expand and contract uniformly in the
axial direction. The x and y voltages cause expansion on one side of the tube, and contraction
(because of the reversed polarity) on the other side of the tube. This tilts the tube, shifting the
sample horizontally.

2.1 Instrumentation
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Figure 2.2: Biological role of titin. Moving clockwise from the upper left you can see a
bone/muscle group, a muscle fiber, a myofibril, and a sarcomere. In the sarcomere, the white,
knobbly filaments are actin. The myosin bundles are blue, and the titin linkers are red. When
the muscle contracts, the myosin heads walk up the actin filiaments, shortening the sarcomere.
When the muscle relaxes, the myosin heads release the actin filimants and slide back, lengthening
the sarcomere. Titin functions as an entropic spring that keeps the myosin from falling out of
place during the passive, relaxed stage. This figure is adapted from Wikipedia 14 .

hundreds of nanonewtons. The investigation of the unfolding and refolding processes of individual

protein molecules by the AFM is feasible because many globular proteins unfold under external

forces in this range. Since elucidating the mechanism of protein folding is currently one of the

most important problems in biological sciences, the potential of the AFM for revealing significant

and unique information about protein folding has stimulated much effort in both experimental and

theoretical research.

2.2 Protein polymer synthesis—Titin I27

Early experiments in force spectroscopy involved DNA27,57, but before long they were also investi-

gating proteins. Native titin was one of the first proteins studied with force spectroscopy30. Titin

is a muscle protein involved in passive elasticity (Fig. 2.2), so it is an ideal subject when examining

the effect of mechanical force58. Titin is also interesting because, while it is one of the largest known

proteins, it is composed of a series of globular domains. When Rief et al. 30 carried out their seminal

unfolding experiment, they observed a very characteristic sawtooth as the domains unfolded (see

Section 2.4 for a discussion of these sawteeth).

2.2 Protein polymer synthesis—Titin I27
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Figure 2.3: I27, the immunoglobulin-like domain 27 from human titin (PDB ID: 1TIT)15.
The entire domain is 4.7 nm from end to end. Figure generated with PyMol.

Unfortunately, it is difficult to analyze the unfolding of native titin, because the heterogenous

globular domains make it hard to attribute a particular subdomain to a partuclar unfolding event.

Unfolding a single domain is not feasable because the large radius of curvature of an AFM tip

(∼ 20 nm59) dwarfs the radius of a globular domain (∼ 2 nm15). When such a large tip is so close to

the substrate, van der Waals forces and non-specific binding with the surface dominate the tip-surface

interaction. In order to increase the tip-surface distance while preserving single molecule analysis,

Carrion-Vazquez et al. 6 synthesized a protein composed of eight repeats of immunoglobulin-like

domain 27 (I27), one of the globular domains from native titin (Fig. 2.3). Octameric I27 produced

using their procedure is now available commercially60.

Synthetic proteins are generally produced by creating a plasmid coding for the target protein,

inserting the plasmid in a bacteria, waiting while the bacteria produce your protein, and then

purifying your proteins from the resulting culture. In this case, Carrion-Vazquez et al. 6 extracted

messenger RNA coding for titin from human cardiac tissue30, and used reverse transcriptase to

generate a complementary DNA (cDNA) library from human cardiac muscle messenger RNA. This

cDNA is then amplified using the polymerase chain reaction (PCR), with special primers that allow

you to splice the resulting cDNA into a plasmid (which ends up with one I27). Then they ran

another PCR on the plasmid, linearized the plasmid with two restriction enzymes, and grafted two

I27-containing sections together to form a new plasmid (now with two I27s, Fig. 2.4). Another

PCR-split-join cycle produced a plasmid with four I27s, and a final cycle produced a plasmid with

eight. The eventual plasmid vector has the eight I27s and a host-specific promoter that causes the

2.2 Protein polymer synthesis—Titin I27

http://dx.doi.org/10.2210/pdb1tit/pdb
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Figure 2.4: Example of gene duplication via plasmid splicing (Kempe et al. 16 Fig. 2). Kempe
et al. 16 use a different gene, but some of the restriction enzymes are shared with Carrion-
Vazquez et al. 6 . The overall approach is identical.

bacteria to produce large quantities of I27. The exact structure of the generated octamer is6

Met-Arg-Gly-Ser-(His)6-Gly-Ser-(I27-Arg-Ser)7-I27-. . . -Cys-Cys

The plasmid is then transformed into the host, usually Escherichia coli 6,61,62 or a proprietary

equivalent such as Agilent’s SURE 2 Supercompetent Cells63,64. The infected cells are cultured to

express the protein.

The octamer is then purified from the culture using immobilized metal ion affinity chromatog-

raphy (IMAC), where the His-tagged end of the octamer covalently bonds to a metal ion that is

bound to the column media (e.g. Ni-NTA coated beads)61,62,64. Once the rest of the broth has been

washed out of the chromatography column, the octamer is eluted via either another molecule which

competes for the metal ions62 or by changing the pH so the octamer is less attracted to the metal

ion.

2.3 Sample preparation

In mechanical unfolding experiments, one end of the protein is bound to a substrate and the other

binds to the AFM tip. This allows you to stretch the protein by increasing the tip-substrate distance

using the piezo. A common approach is to synthesize proteins with cystine residues on one end

2.3 Sample preparation



11

(Section 2.2) and allow the cystines to bind to a gold surface6,64,65.

We prepare gold-surfaces by sputtering gold onto freshly cleaved mica sheets in a vacuum. The

mica keeps the gold surface protected from contamination until it is needed. In order to mount the

gold on our AFM, we glue glass coverslips to the gold using a two part epoxy. Instead of using mica

to protect the gold surface, some labs evaporate the gold directly onto the coverslips immediately

before running an experiment6.

When it is time to deposit proteins on the surface, we peel a coverslip off the gold-coated mica,

exposing the gold surface that had previously been attached to the mica. We dispense 5 µL of I27

solution (65 g/µL) on the freshly-exposed gold, followed by 5 µL of phosphate buffered saline (PBS).

We allow the protein to bind to the gold surface for 30 mintues and then load the coated coverslips

into our AFM fluid cell. There are a number of similar PBS recipes in common use27,64,66,67, but

our PBS is diluted from 10x PBS stock composed of 1260 mM NaCl, 72 mM Na2HPO4, and 30 mM

NaH2PO4
17.

As an alternative to binding proteins to gold, others have used EGTA68, Ni-NTA43,69–71, or

silanized glass62,72. Some groups have also functionalized the cantilever tips by coating them with

molecules designed to bind to the protein73. Of these, a Ni-NTA coating is the most popular74.

2.4 Mechanical unfolding experiments

In a mechanical unfolding experiment, a protein polymer is tethered between two surfaces: a flat

substrate and an AFM tip. The polymer is stretched by increasing the separation between the

two surfaces (Fig. 2.5a). The most common mode is the constant speed experiment in which the

substrate surface is moved away from the tip at a uniform rate. The tethering surfaces, i.e., the

AFM tip and the substrate, have much larger radii of curvature than the dimensions of single

domain globular proteins that are normally used for folding studies. This causes difficulties in

manipulating individual protein molecules because nonspecific interactions between the AFM tip

and the substrate may be stronger than the forces required to unfold the protein when the surfaces

are a few nanometers apart. To circumvent these difficulties, globular protein molecules are linked

into polymers, which are then used in the AFM studies17,19,50. When such a polymer is pulled from

2.4 Mechanical unfolding experiments
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Figure 2.5: (a) Schematic of the experimental setup for mechanical unfolding of proteins
using an AFM (not to scale). An experiment starts with the tip in contact with the substrate
surface, which is then moved away from the tip at a constant speed. xt is the distance traveled
by the substrate, xc is the cantilever deflection, xu is the extension of the unfolded polymer,
and xf = xf1 + xf2 is the extension of the folded polymer. (b) An experimental force curve
from stretching a ubiquitin polymer ( ) with the rising parts of the peaks fitted to the WLC
model ( , Section 3.2.1)17. The pulling speed used was 1 µm/s. The irregular features at the
beginning of the curve are due to nonspecific interactions between the tip and the substrate
surface, and the last high force peak is caused by the detachment of the polymer from the tip
or the substrate surface. Note that the abscissa is the extension of the protein chain xt − xc.

its ends, each protein molecule feels the externally applied force, which increases the probability of

unfolding by reducing the free energy barrier between the native and unfolded states. The unfolding

of one molecule in the polymer causes a sudden lengthening of the polymer chain, which reduces the

force on each protein molecule and prevents another unfolding event from occurring immediately.

The force versus extension relationship, or force curve, shows a typical sawtooth pattern (Fig. 2.5b),

where each peak corresponds to the unfolding of a single protein domain in the polymer. Therefore,

the individual unfolding events are separated from each other in space and time, allowing single

molecule resolution despite the use of multi-domain test proteins.

2.5 Cantilever spring constant calibration

In order to measure forces accurately with an AFM, it is important to measure the cantilever spring

constant κ. The force exerted on the cantilever can then be deduced from its deflection via Hooke’s

2.5 Cantilever spring constant calibration
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law,

F = −κx , (2.1)

where x is the perpendicular displacement of the cantilever tip (xc in Fig. 2.5a).

The basic idea is to use the equipartition theorem, which gives the thermal energy per degree of

freedom. For a simple harmonic oscillator, the only degree of freedom is x, so we have28

1

2
κ
〈
x2
〉

=
1

2
kBT , (2.2)

where kB is Boltzmann’s constant, T is the absolute temperature, and
〈
x2
〉

is the average value of

x2 measured over a long time interval.

To calculate the spring constant κ using Eq. (2.2), we need to measure the buffer temperature T

and the thermal vibration variance
〈
x2
〉
. We measure the temperature with a thermocouple inserted

into the AFM fluid cell, and we measure the thermal vibration by monitoring the cantilever during

thermal oscillation when it is far from the substrate surface.

The raw cantilever deflection data will have sources of noise that are not due to the cantilever’s

thermal vibration (e.g. electronic noise in the detector). To avoid biasing κ, there is a fairly elaborate

theory behind extracting
〈
x2
〉
. For more detail, see Chapter 5, where I discuss the

〈
x2
〉

extraction

in detail and present my open source calibcant tool for automated cantilever calibration.

2.5 Cantilever spring constant calibration
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Chapter 3: Monte Carlo mechanical unfolding simulation

Unfolding proteins by pulling on them with an AFM yields a series of force curves (Fig. 2.5b).

How do we get from the unfolding curves to a deeper understanding of the unfolding physics? In

this chapter, I present my sawsim simulator, which performs discrete-state unfolding simulations

using theoretical models of protein unfolding. By finding the models and parameters that best

reproduce the experimental data, we can find unforced unfolding rates and other unfolded polymer

distances that can be cross-checked in chemical unfolding experiments and used to validate more

detailed molecular dynamics simulations. The sawsim simulations discussed here are carried out

after the unfolding experiments (Chapter 4), cantilever calibration (Chapter 5), and post-processing

(Chapter 6), but I discuss sawsim first because it provides the cleanest description of the underlying

physical processes. After we cover the theory here, we will be better prepared for the realistic

complications discussed in the following chapters.

Much theoretical and computational work has been done in order to extract information about

the structural, kinetic, and energetic properties of the protein molecules from the experimental data

of force-induced protein unfolding measurements. Steered molecular dynamics simulations39,40, as

well as calculations and simulations using lattice75,76 and off-lattice models77,78, have provided in-

sights into structural and energetic changes during force-induced protein unfolding. However, these

simulations often involve time scales that are orders of magnitude smaller than those of the exper-

iments (Section 1.3), and the parameters used in the calculations are often neither experimentally

controllable nor measurable. As a result, a Monte Carlo simulation approach based on a simple

two-state kinetic model for the protein is usually used to analyze data from mechanical unfolding

experiments. A comparison of the force curves measured experimentally and those generated from

simulations can yield the unfolding rate constant of the protein in the absence of force as well as

the distance from the native state to the transition state along the pulling direction. The Monte

Carlo simulation method has been used since the first report of mechanical unfolding experiments
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using the AFM6,30,79–83, but these previous implementations are neither fully described nor publicly

available.

To fill this gap, I developed the sawsim simulation program2. In this chapter, I provide a detailed

description of the simulation procedure, including the theories, approximations, and assumptions

involved. I also explain the procedure for extracting kinetic properties of the protein from experi-

mental data and introduce a quantitative measure of fit quality between simulation and experimental

results. In addition, the effects of various experimental parameters on force curve appearance are

demonstrated, and the errors associated with different methods of data pooling are discussed. These

results should be useful in future experimental design, artifact identification, and data analysis for

single molecule mechanical unfolding experiments.

3.1 Review of current research

There is a long history of protein unfolding and unbinding simulations. Early work by Grubmüller

et al. 84 and Izrailev et al. 85 focused on molecular dynamics (MD) simulations of receptor-ligand

breakage. Around the same time, Evans and Ritchie 86 introduced a Monte Carlo Kramers’ simu-

lation in the context of receptor-ligand breakage. The approach pioneered by Evans and Ritchie 86

was used as the basis for analysis of the initial protein unfolding experiments30. However, none of

these earlier implementations were open source, which made it difficult to reuse or validate their

results.

Within the Monte Carlo simulation approach, there are two main models for protein domain

unfolding under tension: Bell’s and Kramers’87–89. Bell introduced his model in the context of cell

adhesion90, but it has been widely used to model mechanical unfolding in proteins6,30,87 due to

its simplicity and ease of use88 (Section 3.2.2). Kramers introduced his theory in the context of

thermally activated barrier crossings, which is how we use it here (Section 3.2.2).

Evans introduced the saddle-point Kramers’ approximation in a protein unfolding context in

1997 (Evans and Ritchie 86 Eq. (3)). However, early work on mechanical unfolding focused on

the simpler Bell model30. In the early 2000’s, the saddle-point/steepest-descent approximation to

Kramer’s model (Hänggi et al. 91 Eq. (4.56c)) was introduced into our field92,93. By the mid 2000’s,

3.1 Review of current research
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the full-blown double-integral form of Kramer’s model (Hänggi et al. 91 Eq. (4.56b)) was in use87.

There have been some tangential attempts towards even fancier models: Dudko et al. 92 at-

tempted to reduce the restrictions of the single-unfolding-path model and Hyeon and Thirumalai 93

attempted to measure the local roughness using temperature dependent unfolding. However, further

work on these lines has been slow, because the Bell model fits the data well despite its simplicity.

For more complicated transition rate models to gain ground, we need larger, more detailed datasets

that expose features which the Bell model doesn’t capture.

3.2 Methods

In simulating the mechanical unfolding process, a force curve is generated by calculating the amount

of cantilever bending as the substrate surface moves away from the tip. The cantilever bending

is obtained by balancing the tension in the protein polymer and the Hookean force of the bent

cantilever. The unfolding probability of the protein molecules in the polymer is then calculated

for that tension, and whether an unfolding event occurs is determined according to a Monte Carlo

method. The simulation was implemented in C, and there are a number of Python modules to

facilitate running several simulations in parallel1.

In the following sections, we’ll discuss models used to determine the tension of a chain composed

of several types of “domains” (e.g. one cantilever, three folded I27 domains, and seven unfolded

I27 domains) (Section 3.2.1). We’ll also work through a number of models for calculating the

probability that a domain will transition from one state (e.g. folded I27) to another (e.g. unfolded

I27) (Section 3.2.2).

3.2.1 Modeling polymer tension

The fundamental abstraction of the simulation is the “domain”, which represents a discrete chunk of

the flexible chain between the substrate and the cantilever holder (Fig. 3.1a). Each of these domains

is assigned a particular state; for example, the domain representing the cantilever is assigned to

the “cantilever” state, and the domains representing protein molecules are assigned to either the

“folded” or the “unfolded” state. When balancing the tension along the chain, we assume that

1 Source code available at http://blog.tremily.us/posts/sawsim/.

3.2 Methods
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the spatial order of domains along the chain is irrelevant96, so the domains can be rearranged and

grouped by state (Fig. 3.1b). To determine the tension in the chain and the amount of cantilever

bending when N states are populated, a system of N + 1 equations with N + 1 unknowns must be

solved

Fi(xi) = Ft (3.1)∑
i

xi = xt , (3.2)

where F are tensions, x are extensions, and the subscripts i and t represent a particular state group

and the total chain respectively (Fig. 2.5a). F (xt) may be computed from this system of equations

using any multi-dimensional root-finding algorithm.

Hooke’s law

Inside this framework, we chose a particular extension model Fi(xi) for each domain state. Cantilever

elasticity is described by Hooke’s law, which gives

F = κcxc , (3.3)

where κc is the bending spring constant and xc is the deflection of the cantilever (Fig. 2.5a).

Wormlike chains

Unfolded domains are modeled as wormlike chains (WLCs)30,64, which treat the unfolded polymer

as an elastic rod of persistence length p and contour length L (Fig. 3.2). The relationship between

tension F and extension (end-to-end distance) x is given by Bustamante’s interpolation formula57,97.

FWLC(x, p, L) =
kBT

p

[
1

4

(
1

(1− x/L)2
− 1

)
+
x

L

]
, (3.4)

where p is the persistence length. This interpolation formula is accurate to within 7% of the exact

FWLC for FWLC ≈ kBT/pu
97. Because most unfolded proteins studied have persistence lengths on

the order of the size of an amino acid (pu ≈ 3.8 Å6,30,64), this characteristic force works out to be

3.2 Methods
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Figure 3.1: (a) Extending a chain of domains. One end of the chain is fixed, while the
other is extended at a constant speed. The domains are coupled with rigid linkers, so the
domains themselves must stretch to accomodate the extension. Compare with Fig. 2.5a. (b)
Each domain exists in a discrete state. At each timestep, it may transition into another state
following a user-defined state matrix such as this one, showing a metastable transition state
and an explicit “cantilever” domain.
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Figure 3.2: (a) The wormlike chain models a polymer as an elastic rod with persistence length
p and contour length L. (b) Force vs. extension for a WLC using Bustamante’s interpolation
formula.

around 11 pN. Most proteins studied using force spectroscopy have unfolding forces in the hundreds

of piconewtons, by which point the interpolation formula is in it’s more accurate high-extension

regime.

For chain with Nu unfolded domains sharing a persistence length pu and per-domain contour

lengths Lu1, the tension of the WLC is determine by summing the contour lengths

F (x, pu, Lu, Nu) = FWLC(x, pu, NuLu1) . (3.5)

Folded domains

Short chains of folded proteins, however, are not easily described by polymer models. Several studies

have used WLC and FJC models to fit the elastic properties of the modular protein titin98,99, but

native titin contains hundreds of folded and unfolded domains. For the short protein polymers

common in mechanical unfolding experiments (Section 2.2), the cantilever dominates the elasticity

of the polymer-cantilever system before any protein molecules unfold. After the first unfolding

event occurs, the unfolded portion of the chain is already longer and softer than the sum of all the

remaining folded domains, and dominates the elasticity of the whole chain. Therefore, the details

3.2 Methods
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of the tension model chosen for the folded domains has negligible effect on the unfolding forces

(Eq. (3.2)), which was also suggested by Staple et al. 100 . Force curves simulated using different

models to describe the folded domains yielded almost identical unfolding force distributions (data

not shown).

As an alternative to modeling the folded domains explicitly or ignoring them completely, another

approach is to subtract the end-to-end length of the folded protein from the contour length of the

unfolded protein to create an effective contour length for the unfolding6. This effectively models the

folded domains as WLCs with the same persistence length as the unfolded domains.

Other models

The unfolded polypeptide chain has been shown to follow the WLC model quite well30 (Sec-

tion 3.2.1), though other polymer models have been tried. One alternative is the freely-jointed

chain (FJC)44,99,101,102, which models the polymer as a series of N rigid links, each of length l (the

Kuhn length), which are free to rotate about their joints (Fig. 3.3).

FFJC(x, l, L) =
kBT

l
L−1

( x
L

)
, (3.6)

where L = Nl is the total length of the chain, and L(α) ≡ cothα− 1
α is the Langevin function103.

More exotic models such as elastic WLCs101,104, elastic FJCs101,105, and freely rotating chains104

(FRCs) have also been used to model DNA and polysaccharides, but are rarely used to model the

relatively short and inextensible synthetic proteins used in force spectroscopy.

Assumptions

In the simulation, the protein polymer is assumed to be stretched in the direction perpendicular to

the substrate surface, which is a good approximation in most experimental situations, because the

unfolded length of a protein molecule is much larger than that of the folded form. Therefore, after

one molecule unfolds, the polymer becomes much longer and the angle between the polymer and the

surface approaches 90 degrees64.

The joints between domain groups are also assumed to lie along a line between the surface
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Figure 3.3: (a) The freely-jointed chain models the polymer as a series of N rigid links, each of
length l, which are free to rotate about their joints. Each polymer state is a random walk, and
the density of states for a given end-to-end distance is determined by the number of random
walks that have such an end-to-end distance. (b) Force vs. extension for a hundred-segment
FJC. The WLC extension curve (with p = l) is shown as a dashed line for comparison.

tether point and the position of the tip (Eq. (3.2) is scalar, not vector, addition). The effects of

this assumption are also minimized due to greater length of the unfolded domain compared with the

other domains (folded proteins and cantilever deflection). For example, a 0.050 N/m cantilever under

200 pN of tension will bend xc = F/κc = 4 nm. The entire end-to-end length of folded domains

such as I27 are also around 5 nm (Fig. 2.3). A single unfolded I27, with its 89 amino acids15, should

have an unfolded contour length of 89 aa · 0.38 nm = 33.8 nm, equivalent to a cantilever and five

folded domains.

Velocity-clamp example

Consider an experiment pulling a polymer with N identical protein domains at a constant speed.

At the start of an experiment, the chain is unstretched (xt = 0), which means all the domains are

unstretched, the cantilever is undeflected, and the tip is in contact with the surface. There is one

domain in the cantilever state, N in the folded state, and none in the unfolded state. As the surface

moves away from the tip at a constant speed v, the chain becomes more extended (Fig. 2.5a), such

3.2 Methods
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that

xt =
∑
i

xi = vt . (3.7)

The simulation assumes that the pulling takes discrete steps in space and treats xt as constant over

the duration of one time step ∆t. Because of the adaptive time steps discussed in Section 3.2.3,

the space steps ∆xt = v∆t may have different sizes, but each step will be “small”. At each step,

the total extension is calculated using Eq. (3.7), and the tension F (xt = vt) is determined by

numerically solving Eqs. (3.1) and (3.2) using the models Eqs. (3.3) and (3.4) for known values

of the parameters in the various states (Nu, Nf , v, κc, Lu1, pu). When one of the molecules in the

polymer unfolds (Section 3.2.2), there will be one domain in the unfolded state and N − 1 in the

folded state. In the next step, a newly balanced tension between the cantilever and the polymer is

determined by solving for F (xt) as discussed above, but with the total extension xt incremented by

v∆t and the new unfolded contour length Lu1 and folded contour length (N − 1)Lf1. The sudden

lengthening of the polymer chain results in a corresponding abrupt drop in the force, leading to the

formation of one sawtooth in the force curve. As the pulling continues and more domains unfold,

force curves with a series of sawteeth are generated (Fig. 3.7a).

Equlibration time scales

The tension calculation assumes an equilibrated chain, so consideration must be given to the chain’s

relaxation time, which should be short compared to the loading time scale. The relaxation time for

a WLC is given by

τ ≈ η kBTp
F 2

, (3.8)

where η is the dynamic viscosity, F is the tension, and p is the persistence length106. For forces

greater than 1 pN, with ηwater/kBT = 2.45 · 10−10 s/nm3, τ < 2 ns for the protein polymer used

in the simulation. Therefore, the polymer chain is equilibrated almost instantaneously within a

time step, which is on the order of tens of microseconds. The relaxation time of the cantilever can

be determined by measuring the cantilever deflection induced by liquid motion and fitting the time

dependence of the deflection to an exponential function107. For a 200 µm rectangular cantilever with

3.2 Methods
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a bending spring constant of 20 pN/nm, the measured relaxation time in water is ∼ 50 µ/s (data

not shown). This relatively large relaxation time constant makes the cantilever act as a low-pass

filter and also causes a lag in the force measurement.

3.2.2 Unfolding protein molecules by force

In the previous section, we discussed methods for calculating the tension of a chain composed of

several domains in series (Fig. 3.1a). Those methods allow us to calculate the tension of the chain

for any given extension. We use that tension to calculate transition rates between states (Fig. 3.1b).

In this section, we’ll introduce the Bell model for unfolding (Section 3.2.2) and mention a few more

exotic models. We’ll wrap up by pointing out some of the approximations and assumptions we make

when we use these simple models (Section 3.2.2).

Bell model

According to the theory developed by Bell 90 and extended by Evans and Ritchie 106 , an external

stretching force F increases the unfolding rate constant of a protein molecule2

ku = ku0e
F∆xu
kBT , (3.9)

where ku0 is the unfolding rate in the absence of an external force, and ∆xu is the distance between

the native state and the transition state along the pulling direction.

Monte Carlo transitions

We can use the Bell model (or other models, see Section 3.2.2) to calculate the unfolding rate ku at

a given force for a single domain. The probability for that single protein domain to unfold under

applied force is

P1 = ku∆t , (3.10)

where ∆t is the time duration for each pulling step, over which F is constant. This expression is

accurate for P1 � 1. From the binomial distribution, the probability of at least one of a group of

2 Also in Hummer and Szabo 88 Eq. (1), the first paragraphs of Dudko et al. 89 and Dudko et al. 108 , and many
other SMFS articles.

3.2 Methods



24

F
re

e
en

er
g
y
U
F

End-to-end distance x

folded

transition

forced
transition

ku0

kuF

Bell model unfolding

Figure 3.4: Energy landscape schematic for Bell model unfolding (Eq. (3.9)), which models
folded domains as two-state systems parameterized by an unforced unfolding rate ku0 and a
distance ∆x between the folded and transition states.
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Figure 3.5: Once the unfolding probability has been caculated, we need to determine whether
or not a domain should unfold. We do this by generating a random number, and comparing that
number to the unfolding probability P . The random number determines which of the possible
paths we should follow for the current simulation. Such “statistical sampling” is the hallmark
of the Monte Carlo approach18. This cartoon translates the idea into the more familiar doors
(possible paths) and dice (random numbers).

Nf identical domains to unfold in a given time step is

P = 1− (1− P1)Nf ≈ NfP1 , (3.11)

where the approximation is valid when NfP1 � 1.

To determine if an unfolding event occurs in a particular time step, the probability calculated

using Eq. (3.11) is compared with a randomly generated number uniformly distributed between 0

and 1 (Fig. 3.5). If P is bigger than the random number, a domain unfolds, changing the population

of each tension state, and a new balance between the polymer and the cantilever is determined. If
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no unfolding event occurs the pulling continues and the unfolding probability is calculated again in

the next step at a higher force. When all the molecules in the polymer have unfolded, the pulling

continues until a pre-determined force level is reached, where the polymer is assumed to detach from

one of the tethering surfaces. The cantilever deflection becomes zero after this point.

Other models

Although the Bell model (Eq. (3.9)) is the most widely used unfolding model due to its simplic-

ity and its applicability to various biopolymers80, other theoretical models have been proposed to

interpret mechanical unfolding data. For example, Walton et al. 109 uses a stiffness-corrected Bell

model. Schlierf and Rief 87 used the mechanical unfolding data of the protein ddFLN4 to demon-

strate that Kramers’ diffusion model (in the spatial-diffusion-limited case, a.k.a. the Smoluchowski

limit)86,91,110–112 fit the measured unfolding force data better than the Bell model for proteins with

broad free energy barriers.

1

ku
=

1

D

∫ ∞
−∞

e
UF (x)

kBT

∫ x

−∞
e
−UF (x′)
kBT dx′dx , (3.12)

where D is the diffusion coefficient and UF (x) is the free energy along the unfolding cordinate x

(Fig. 3.6).

When you are simulating the double integral form of Kramers’ model, you obviously need to

parameterize UF (x) somehow. There has not been much research done in this direction, but Schlierf

and Rief 87 used cubic splines with 15 variable knots. Shillcock and Seifert 111 used a cubic free energy

with variable coefficients. The amount of information you can extract from fitting such a model to

your data is limitless, but you run the risk of over-specifying if you add too many parameters when

you’re fitting noisy data.

There are alternative formulations of Kramers’ model besides the full double integral approach.

You can use a Gaussian steepest-descent approximation (a.k.a. stationary phase method or saddle-

point method) to reduce the integral to a formula that only depends on the free energy landscape

via the curvature ∂2UF
∂x2 evaluated at the folded state and transition state91. This approach makes
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Figure 3.6: (a) Energy landscape schematic for Kramers integration (compare with Fig. 3.4).
(b) A map of the magnitude of Kramers’ integrand, with black lines tracing the integration
region. The bulk of the contribution to the integral comes from the bump in the upper left,
with x near the boundary and x′ near the folded state. This is why you can calculate a close
approximation to this integral by restricting the integration to xmin and xmax, located a few
kBT beyond the folded and transition states respectively. The restricted integral is much easier
to calculate numerically than one bound by ±∞. (Eq. (3.12)).

sense for sufficiently sharp folded and transition states, where these two measurements will capture

the shape of the large-integrand region (Fig. 3.6b). The steepest-descent formulation has less to say

about the underlying energy landscape, but it may be more robust in the face of noisy data.

How to choose which unfolding model to use? For proteins with relatively narrow folded and

transition states, the Bell model provides a good approximation, and it is the model used by the

vast majority of earlier work in the field. I will use the Bell model in my analysis of ion-dependent

unfolding (Chapter 7), but analyzing my unfolding data with a different transition rate model is just

a matter of changing some command line options and rerunning the sawsim simulations.

Assumptions

The interactions between different parts of the polymer and between the chain and the surface

(except at the tethering points) are often ignored. This is usually reasonable since these interactions

should not make substantial contributions to the force curve at the force levels of interest, where
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the polymer is in a relatively extended conformation. However, Li et al. 96 showed that while the

unfolding properties of I27 are not effected by I28 flankers, I28 is stabilized by neighboring I27. The

unforced Bell model unfolding rate for I28 in (I28)8 was 2.8 ·10−5 s−1, while in (I27-I28)4 it dropped

to 2.5 · 10−6 s−1 96.

3.2.3 Choosing the simulation time steps

The demands on the time step vary throughout a simulated pull due to the non-linear elasticity of

the polymer. Within a specified time duration (or pulling distance), the force change is small at low

force levels and large at high force levels. To be efficient, the simulation algorithm adapts the time

step to keep the time steps large where large time steps have little effect, while shrinking the time

step where smaller steps are necessary.

Within each time step, the total chain extension xt is treated as a constant and a force balance

is reached very quickly among the various domains (Section 3.2.1). This force is used to determine

the unfolding probability (Eqs. (3.10) and (3.11)), which determines the domain state populations

in the next time step. Therefore, the chain tension must not change appreciably over the course

of the time step (∆F < 1 pN), and the unfolding probability is only calculated once for the entire

step. The time step must also be short enough that the probability of unfolding in a single time step

is low (P < 10−3). Besides ensuring that the approximations made in Eqs. (3.10) and (3.11) are

valid, this restriction makes time steps which should have multiple unfoldings in a single time step

highly unlikely. Experimentally measured unfolding are temporally separated, because the unfolding

transition is characterized by multiple, Markovian attempts over a large energy barrier, where the

probability of crossing the barrier in a single attempt is very low. A successful attempt quickly

extends the chain contour length, reducing the tension, dramatically reducing the likelihood of a

second escape in that time step. The time step used is recalculated for each step so that both of

these criteria are satisfied.

3.2 Methods



28

Table 3.1: (a) Model for I278 domain states and (b) transitions between them (compare with
Fig. 3.1). The models and parameters are those given by Carrion-Vazquez et al. 6 . Carrion-
Vazquez et al. 6 don’t list their cantilever spring constant (or, presumably, use it in their simu-
lations), but we can estimate it from the rebound slope in their Fig. 2.a and 2.b, see Fig. 3.9.

(a)

Domain states

Domain name Initial count Tension model Model parameters

AFM cantilever 1 Hooke (Eq. (3.3)) kc = 0.05 N/m
Folded I27 8 WLC (Eq. (3.4)) p = 3.9 Å, L = 5.1 nm
Unfolded I27 0 WLC (Eq. (3.4)) p = 3.9 Å, L = 33.8 nm

(b)

Transition rates

Transition Source Target Rate model Model parameters

Unfolding Folded I27 Unfolded I27 Bell (Eq. (3.9)) ku0 = 3.3 · 10−4 s−1, ∆x = 0.35 nm.

3.3 Results and discussion

3.3.1 Force curves generated by simulation

Figure 3.7a shows three simulated force curves from pulling a polymer composed of eight identical

protein molecules using parameters from typical experimental settings. The order of the peaks in

the force curves reflects the temporal sequence of the unfolding events instead of the positions of

the protein molecules in the polymer96. As observed experimentally (Fig. 2.5b), the forces at which

identical protein molecules unfold fluctuate, revealing the stochastic nature of protein unfolding since

no instrumental noise is included in the simulation.

After aquiring a series of experimental unfolding curves, we need to fit the data to an explanatory

model. For velocity-clamp experiments (Sections 2.4 and 3.2.1), we extract unfolding forces from

the sawtooth curves (Chapter 6) and generate histograms of unfolding forces. Then we construct a

parameterized model of the experimental system (Table 3.1). We can then run in silico experiments

mimicking our in vitro experiments (Fig. 3.7b). We extract the model parameters which provide the

best fit using a “fit quality” metric and a nonlinear optimization routine (or a full parameter space

sweep, for low-dimensional parameter spaces).

3.3 Results and discussion
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Figure 3.7: (a) Three simulated force curves from pulling a polymer of eight identical protein
molecules. The simulation was carried out using the parameters: pulling speed v = 1 µm/s,
cantilever spring constant κc = 50 pN/nm, temperature T = 300 K, persistence length of
unfolded proteins pu = 0.40 nm, ∆xu = 0.225 nm, and ku0 = 5 · 10−5 s−1. The contour length
between the two linking points on a protein molecule is Lf1 = 3.7 nm in the folded form
and Lu1 = 28.1 nm in the unfolded form. These parameters are those of ubiquitin molecules
connected through the N-C termini17,19. Detachment from the tip or substrate is assumed
to occur at a force of 400 pN. In experiments, detachments have been observed to occur at a
variety of forces. For clarity, the green and blue curves are offset by 200 and 400 pN respectively.
(b) The distribution of the unfolding forces from 400 simulated force curves (3200 data points)
such as those shown in (a). The frequency is normalized by the total number of points, i.e.,
the height of each bin is equal to the number of data points in that bin divided by the total
number of data points.

Because the unfolding behaviors of an individual sawtooth curve is stochastic (Fig. 3.7a), we

cannot directly compare single curves in our fit quality metric. Instead, we gather many experimental

and simulated curves, and compare the aggregate properties. For velocity-clamp experiments, the

usual aggregate property used for comparison is a histogram of unfolding forces6 (Fig. 3.7b). Defining

and extracting “unfolding force” is suprisingly complicated (Section 6.3), but basically it is the

highest tension force achieved by the chain before an unfolding event (the drops in the sawtooth).

The final drop is not an unfolding event, it is the entire chain breaking away from the cantilever tip,

severing the connection between the substrate and the cantilever.

3.3.2 The supramolecular scaffold

Analysis of the mechanical unfolding data is complicated by the dependence of the average unfolding

force on the unfolding order due to the serial linkage of the molecules. Under an external stretching

force F , the probability of some domain unfolding in a polymer with Nf folded domains is NfP1

3.3 Results and discussion



30

275

300

F
or

ce
(p

N
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Unfolding peak index i = Nu

100 240 380
Force (pN)

10−4

10−2

100

F
re

q
u

en
cy

100 240 380
Force (pN)

10−4

10−2

100

F
re

q
u

en
cy

100 240 380
Force (pN)

10−4

10−2

100

F
re

q
u

en
cy

Pulling speed dependence

Figure 3.8: The dependence of the unfolding force on the temporal unfolding order for four
polymers with 4, 8, 12, and 16 identical protein domains. Each point in the figure is the average
of 400 data points. The first point in each curve represents the average of only the first peak
in each of the 400 simulated force curves, the second point represents the average of only the
second peak, and so on. The solid lines are fits of Eq. (3.21) to the simulated data, with best fit
κWLC = 203, 207, 161, and 157 pN/nm, respectively, for lengths 4 through 16. The insets show
the force distributions of the first, fourth, and eighth peaks, left to right, for the polymer with
eight protein domains. The parameters used for generating the data were the same as those
used for Fig. 3.7a, except for the number of domains. The histogram insets were normalized in
the same way as in Fig. 3.7b.
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(Eq. (3.11)), which is higher than the unfolding probability for a single molecule P1. Consequently,

the average unfolding force is lower for the earlier unfolding events when Nf is larger, and the force

should increase as more and more molecules become unfolded. However, there is a competing factor

that opposes this trend. As the protein molecules unfold, the chain becomes softer and the force

loading rate becomes lower when the pulling speed is constant. This lower loading rate leads to a

decrease in the unfolding force (in the no-loading limit, all unfolding events occur at a tension of

0 N). The dependence of the average unfolding force on the unfolding order is the result of these two

opposing effects. Figure 3.8 shows the dependence of the average unfolding force on the unfolding

force peak order (the temporal order of unfolding events) for four polymers with 4, 8, 12, and 16

identical protein molecules. The effect of polymer chain softening dominates the initial unfolding

events, and the average unfolding force decreases as more molecules unfold. After several molecules

have unfolded, the softening for each additional unfolding event becomes less significant, the change

in unfolding probability becomes dominant, and the unfolding force increases upon each subsequent

unfolding event82.

We validate this explanation by calculating the unfolding force probability distribution’s depen-

dence on the two competing factors. The rate of unfolding events with respect to force is

ruF = −dNf
dF

= −dNf/dt

dF/dt
=
Nfku
κv

(3.13)

=
Nfku0

κv
e
F∆xu
kBT =

1

ρ
e
F−α
ρ , (3.14)

where Nf is the number of folded domain, κ is the spring constant of the cantilever-polymer system,

κv is the force loading rate3, and ku is the unfolding rate constant (Eq. (3.9)). In the last expression,

3

dF

dt
=

dF

dx

dx

dt
= κv . (3.15)

Alternatively,

F = κx = κvt (3.16)

dF

dt
= κv . (3.17)

See the text before Evans and Ritchie 86 Eq. (11) or Dudko et al. 89 Eq. (4) for similar explanations.
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ρ ≡ kBT/∆xu, and α ≡ −ρ ln(Nfku0ρ/κv). We can approximate κ as a series of Hookean springs,

κ =

(
1

κc
+

Nu
κWLC

)−1

, (3.18)

where κWLC is the effective spring constant of one unfolded domain, assumed constant for a particular

polymer/cantilever combination.

The event probability density for events with an exponentially increasing likelihood function

follows the Gumbel (minimum) probability density113 with ρ and α being the scale and location

parameters, respectively88

P(F ) =
1

ρ
e
F−α
ρ −e

F−α
ρ

. (3.19)

The distribution has a mode α, mean 〈F 〉 = α−γeρ, and a variance σ2 = π2ρ2/6, where γe = 0.577 . . .

is the Euler–Mascheroni constant113. Therefore, the unfolding force distribution has a variance

σ2 =

(
πkBT
∆xu

)2

6
, (3.20)

and and average67,88

〈F (i)〉 =
kBT

∆xu

[
ln

(
κv∆xu

Nfku0kBT

)
− γe

]
, (3.21)

where Nf and κ depend on the domain index i = Nu. Curves based on this formula fit the simulated

data remarkably well considering the effective WLC stiffness κWLC is the only fitted parameter, and

that the actual WLC stiffness is not constant, as we have assumed here, but a non-linear function of

F . Dudko et al. 114 derived a formula for the loading rate for a WLC, but as far as I know, nobody

has found an analytical form for the unfolding force histograms produced under such a variable

loading rate.

From Fig. 3.8, we see that the proper way to process data from mechanical unfolding experiments

is to group the curves according to the length of the polymer and to perform statistical analysis

separately for peaks with the same unfolding order. However, in most experiments, the tethering of

the polymer to the AFM tip is by nonspecific adsorption; as a result, the polymers being stretched
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between the tip and the substrate have various lengths96. In addition, the interactions between the

tip and the surface often cause irregular features in the beginning of the force curve (Fig. 2.5b),

making the identification of the first peak uncertain64. Furthermore, it is often difficult to acquire

a large amount of data in single molecule experiments. These difficulties make the aforementioned

data analysis approach unfeasible for many mechanical unfolding experiments. As a result, the

values of all force peaks from polymers of different lengths are often pooled together for statistical

analysis. To assess the errors caused by such pooling, simulation data were analyzed using different

pooling methods and the results were compared. Figure 3.7b shows that, for a polymer with eight

protein molecules, the average unfolding force is 281 pN with a standard deviation of 25 pN when

all data is pooled. If only the first peaks in the force curves are analyzed, the average force is 279 pN

with a standard deviation of 22 pN. While for the fourth and eighth peaks, the average force are

275 pN and 300 pN, respectively, and the standard deviations are 23 pN and 25 pN, respectively.

As expected from the Gumbel distribution, the width of the unfolding force distribution (insets in

Fig. 3.8) is only weakly effected by unfolding order, but the average unfolding force can be quite

different for the same protein because of the differences in unfolding order and polymer length.

Benedetti et al. 115 have since proposed an alternative parameterization for Eq. (3.18), using

κ =

(
1

κc
+
Nf
κf

+
Nu
κu

)−1

≡ κ′

1−ANf
, (3.22)

where κ′ is the spring constant of the completely unfolded chain and A is a correction term for the

supramolecular scaffold. This is effectively a first order Taylor expansion for κ−1 about Nf = 0, but

the remaining analysis is identical.

f(Nf ) ≡ κ−1 =
1

κc
+
Nf
κf

+
N −Nf
κu

(3.23)

= f(0) +
df

dNf

∣∣∣∣
Nf=0

Nf +O
(
N2
f

)
(3.24)

≈
(

1

κc
+
N

κu

)
+

(
1

κf
− 1

κu

)
Nf (3.25)
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In the case where the wormlike chain stiffnesses κf and κu are fairly constant over the unfolding

region, there are no higher order terms and the first order expansion in Eq. (3.25) is exact. Comparing

Eqs. (3.22) and (3.25), we see

κ′ =
1

κc
+
N

κu
(3.26)

−κ′A =
1

κf
− 1

κu
(3.27)

A =

1
κu
− 1

κf
1
κc

+ N
κu

(3.28)

By focusing on the A = 0 case (i.e. κf = κu), Benedetti et al. 115 avoid running Monte Carlo

simulations when modeling unfolding histograms. This simplification does not hold for our simulated

data (Fig. 3.8), but for some experimental analysis the loss of accuracy may be acceptable in return

for the reduced computational cost.

3.3.3 The effect of cantilever force constant

In mechanical unfolding experiments, the ability to observe the unfolding of a single protein molecule

depends on the tension drop after an unfolding event such that another molecule does not unfold

immediately. The magnitude of this drop is determined by many factors, including the magnitude of

the unfolding force, the contour and persistence lengths of the protein polymer, the contour length

increase from unfolding, and the stiffness (force constant) of the cantilever. Among these, the effect

of the cantilever force constant is particularly interesting because cantilevers with a wide range of

force constants are available. In addition, different single molecule manipulation techniques, such

as the AFM and laser tweezers, differ mainly in the range of the spring constants of their force

transducers109. Figure 3.9 shows the simulated force curves from pulling an octamer of protein

molecules using cantilevers with different force constants, while other parameters are identical. For

this model protein, the appearance of the force curve does not change much until the force constant

of the cantilever reaches a certain value (κc = 50 pN/nm). When κc is lower than this value, the

individual unfolding events become less identifiable. In order to observe individual unfolding events,

the cantilever needs to have a force constant high enough so that the bending at the maximum force
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Figure 3.9: Simulated force curves obtained from pulling a polymer with eight protein
molecules using cantilevers with different force constants κc. Parameters used in generating
these curves are the same as those used in Fig. 3.7, except the cantilever force constant. Suc-
cessive force curves are offset by 300 pN for clarity.

is small in comparison with the contour length increment from the unfolding of a single molecule.

Figure 3.9 also shows that the back side of the force peaks becomes more tilted as the cantilever

becomes softer. This is due to the fact that the extension (end-to-end distance) of the protein

polymer has a large sudden increase as the tension rebalances after an unfolding event.

It should also be mentioned that the contour length increment from each unfolding event is not

equal to the distance between adjacent peaks in the force curve because the chain is never fully

stretched. This contour length increase can only be obtained by fitting the curve to WLC or other

polymer models (Fig. 2.5b).

3.3.4 Determination of ∆xu and ku0

As mentioned in Section 3.3.1, fitting experimental unfolding force histograms to simulated his-

tograms allows you to extract best-fit parameters for your simulation model. For example, if you
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have Bell model unfolding (Section 3.2.2), your two fitting parameters are the zero-force unfold-

ing rate ku0 and the distance ∆xu from the native state to the transition state. Fig. 3.10a shows

the dependence of the unfolding force on the pulling speed for different values of ku0 and ∆xu.

As expected, the unfolding force increases linearly with the pulling speed in the linear-log plot106.

While the magnitude of the unfolding forces is affected by both ku0 and ∆xu, the slope of speed

dependence is primarily determined by ∆xu (Eq. (3.21)). Figure 3.10b shows that the width of

the unfolding force distribution is very sensitive to ∆xu, as expected from the Gumbel distribution

(Eq. (3.20)). To obtain the values of ku0 and ∆xu for the protein, the pulling speed dependence

and the distribution of the unfolding forces from simulation, such as those shown in Fig. 3.10a and

the insets of Fig. 3.10b, are compared with the experimentally measured results. The values of ku0

and ∆xu that provide the best match are designated as the parameters describing the protein under

study. Since ku0 and ∆xu affect the unfolding forces differently, the values of both parameters can

be determined simultaneously. The data used in plotting Fig. 3.10 includes all force peaks from the

simulated force curves because most experimental data is analyzed that way.

In most published literature, ku0 and ∆xu were fit by carrying out simulations using a handful

of possible unfolding parameters and selected the best fit by eye. This approach does not allow

estimation of uncertainties in the fitting parameters, as shown by Best et al. 81 . A more rigorous

approach involves quantifying the quality of fit between the experimental and simulated force dis-

tributions, allowing the use of a numerical minimization algorithm to pick the best fit parameters.

We use the Jensen–Shannon divergence116,117, a measure of the similarity between two probability

distributions.

DJS(pe, ps) = DKL(pe, pm) +DKL(ps, pm) , (3.29)

where pe(i) and ps(i) are the the values of the ith bin in the experimental and simulated unfolding

force histograms, respectively. DKL is the Kullback–Leibler divergence

DKL(pp, pq) =
∑
i

pp(i) log2

(
pp(i)

pq(i)

)
, (3.30)
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where the sum is over all unfolding force histogram bins. pm is the symmetrized probability distri-

bution

pm(i) ≡ [pe(i) + ps(i)]/2 . (3.31)

The major advantage of the Jensen–Shannon divergence is that DJS is bounded (0 ≤ DJS ≤ 1)

regardless of the experimental and simulated histograms. For comparison, Pearson’s χ2 test118,

Dχ2 =
∑
i

(pe(i)− ps(i))2

ps(i)
, (3.32)

is infinite if there is a bin for which pe(i) > 0 but ps(i) = 0.

Figure 3.11 shows the Jensen–Shannon divergence calculated using Eq. (3.29) between an exper-

imental data set and simulation results obtained using a range of values of ku0 and ∆xu. There is

an order of magnitude range of ku0 that produce reasonable fits to experimental data (Fig. 3.11),

which is consistent with the results Best et al. 81 obtained using a chi-square test. The values of ku0

and ∆xu can be determined to higher precision by using both the pulling speed dependent data and

the unfolding force distribution, as well as any relevant information about the protein from other

sources.

3.3.5 Features

sawsim is a great improvement over existing work in this field. Best et al. 81 are the only authors

to mention such automatic simulation comparisons, and their χ2 fit only compares mean unfolding

forces over a range of speeds. They calculate 〈F 〉 through an iterative method, and assume a

standard deviation of 20 pN on their simulated 〈F 〉. sawsim, by comparison, makes full use of your

experimental histograms, which you specify in a plain-text histogram file:

#HISTOGRAM: -v 6e-7

#Force (N) Unfolding events

1.4e-10 1

1.5e-10 0

...

3e-10 116

3.1e-10 18

3.3 Results and discussion
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Figure 3.10: (a) The dependence of the unfolding forces on the pulling speed for three different
model protein molecules characterized by the parameters ku0 and ∆xu. The polymer length is
eight molecules, and each symbol is the average of 3200 data points. (b) The dependence of
standard deviation of the unfolding force distribution on the pulling speed for the simulation
data shown in (a), using the same symbols. The insets show the force distribution histograms
for the three proteins at the pulling speed of 1 µm/s. The left, middle and right histograms are
for the proteins represented by the top, middle, and bottom lines in (a), respectively.
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Figure 3.11: Fit quality between an experimental data set and simulated data sets obtained
using various values of unfolding rate parameters ku0 and ∆xu. The experimental data are
from octameric ubiquitin pulled at 1 µm/s17, and the other model parameters are the same as
those in Fig. 3.7. The best fit parameters are ∆xu = 0.17 nm and ku0 = 1.2 · 10−2 s−1. The
simulation histograms were built from 400 pulls at for each parameter pair.

3.2e-10 1

#HISTOGRAM: -v 8e-7

#Force (N) Unfolding events

1.4e-10 0

1.5e-10 3

...

3.2e-10 50

3.3e-10 13

#HISTOGRAM: -v 1e-6

#Force (N) Unfolding events

1.5e-10 2

1.6e-10 3

...

3.3e-10 24

3.4e-10 2

Each sawsim run simulates a single sawtooth curve, so you need to run many sawsim instances to

generate your simulated histograms. To automate this task, sawsim comes with a Python wrapping

library (pysawsim), which provides convenient programmatic and command line interfaces for gen-

erating and manipulating sawsim runs. For example, to compare the experimental histograms listed

above with simulated data over a 50-by-50 grid of ku0 and ∆x, you would use something like
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$ sawsim_hist_scan.py -f ’-s cantilever,hooke,0.05 -N1 -s folded,null -N8

> -s "unfolded,wlc,{0.39e-9,28e-9}" -k "folded,unfolded,bell,{%g,x%g}"

> -q folded’ -r ’[1e-5,1e-3,50],[0.1e-9,1e-9,50]’ --logx histograms.txt

That’s a bit of a mouthful, so let’s break it down. Without the sawsim template (-f ...), we can

focus on the comparison options:

$ sawsim_hist_scan.py ... -r ’[1e-5,1e-3,50],[0.1e-9,1e-9,50]’ --logx histograms.txt

This sets up a two-parameter sweep, with the first parameter going from 1 · 10−5 to 1 · 10−3 in 50

logarithmic steps, and the second going from 0.1 · 10−9 to 1 · 10−9 in 50 linear steps. The sawsim

template defines the simulation model (Fig. 3.1 and Table 3.1), and %g marks the location where

the swept parameters will be inserted.

Behind the scenes, pysawsim is spawning several concurrent sawsim processes to take advantage

of any parallel processing facilities you may have access to (e.g. multiple cores, MPI, PBS, . . . ). A

50-by-50 grid with 400 runs per pixel at about one second per sawsim pull would take arount 12

days of serial execution. Moving the simulation to the departments’ 16 core file server cuts that

execution time down to 18 hours, which will easily complete over a quiet weekend. Using MPI on

the departments’ 15 box, dual core computer lab, the simulation would finish overnight.

3.3.6 Testing

Once a body of code reaches a certain level of complication, it becomes difficult to convince others

(or yourself) that it’s actually working correctly. In order to test sawsim, I’ve developed a test

suite (distributed with sawsim) that compares simulated unfolding force histograms with analytical

histograms for a number of situations where solving for the analytical histogram is possible. In

the following subsection, I’ll work out the theoretical unfolding force distribution for a number of

tractable cases. The sawsim test suite generates simulated unfolding curves for these tractable cases

(e.g. single domain Bell model unfolding with a constant loading rate), and compares the simulated

unfolding force histograms with the expected theoretical distribution. The simulated histograms

match the theoretical distributions for each combination of models regardless of the parameters you
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feed into the models, so we can be confident that sawsim correctly implements at those models.

The instantaneous likelyhood of a protein unfolding is given by dNu
dF , and the unfolding histogram

is merely this function discretized over a bin of width W 4.

h(F ) ≡ dF

dbin
=

dNu
dF
· dF

dbin
= W

dNu
dF

= −W dNf
dF

= −W dNf
dt

dt

dF
=
W

κv
Nfku (3.33)

Solving for theoretical histograms is merely a question of taking your chosen ku, solving for Nf (F ),

and plugging into Eq. (3.33). We can also make a bit of progress solving for Nf in terms of ku as

follows:

ku ≡ −
1

Nf

dNf
dt

(3.34)

−kudt · dF

dt
=

dNf
Nf

(3.35)

−1

κv

∫ F

0

k0(F ′)dF ′ = ln(Nf (F ′))|F0 = ln

(
Nf (F )

Nf (0)

)
= ln

(
Nf (F )

N

)
(3.36)

Nf (F ) = Ne
−1
κv

∫ F
0
ku(F ′)dF ′ , (3.37)

where Nf (0) = N because all the domains are initially folded.

Constant unfolding rate

In the extremely weak tension regime, the protein’s unfolding rate is independent of tension, so we

can simplify Eq. (3.37) and plug into Eq. (3.33).

Nf = Ne
−1
κv

∫ F
0
ku(F ′)dF ′ = Ne

−ku0
κv

∫ F
0

dF ′ = Ne
−ku0F
κv (3.38)

h(F ) =
W

κv
Nfku =

Wku0N

κv
e
−ku0F
κv . (3.39)

A constant unfolding-rate/hazard-function gives exponential decay. This is not an earth shattering

result, but it’s a comforting first step, and it does show explicitly the dependence in terms of the

various unfolding-specific parameters.

4 This is similar to Dudko et al. 89 Eq. (2), remembering that Ḟ = κv, that their probability density is not a
histogram (W = 1), and that their probability density function is normalized to N = 1
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Bell model

Stepping up the intensity a bit, we come to Bell’s model for unfolding (Section 3.2.2). We can simplify

the following calculation by parametrizing with the characteristic force ρ defined in Section 3.3.2 and

the similar single-domain mode α′ ≡ −ρ ln(ku0ρ/κv). With these substitutions, Eq. (3.9) becomes

ku = ku0e
F
ρ . (3.40)

The unfolding histogram is then given via Eqs. (3.33) and (3.37).
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which matches Eq. (3.19) except for a constant prefactor due to the range5.

Saddle-point Kramers’ model

For the saddle-point approximation for Kramers’ model for unfolding (Evans and Ritchie 86 Eqn. 3,

Hänggi et al. 91 Eqn. 4.56c, van Kampen 112 Eqn. XIII.2.2).

ku =
D

lblts
· e
−Ub(F )

kBT , (3.46)

where Ub(F ) is the barrier height under an external force F , D is the diffusion constant of the

protein conformation along the reaction coordinate, lb is the characteristic length of the bound state

lb ≡ 1/ρb, ρb is the density of states in the bound state, and lts is the characteristic length of the

5 The Gumbel distribution in Eq. (3.19) is normalized for the range −∞ < F < ∞, but Eq. (3.45) is normalized
for the range 0 ≤ F < ∞. This distinction will alter the analytical mean and variance listed after Eq. (3.19), but
with the experimental unfolding histograms showing few zero-force unfolding events, the effective difference will be
negligible.

3.3 Results and discussion
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transition state.

Evans and Ritchie 86 solved this unfolding rate for both inverse power law potentials and cusp

potentials.

3.4 Conclusions

We have described the method of performing Monte Carlo simulations based on a simple two-state

model for the mechanical unfolding of protein molecules and discussed the complications involved in

the simulation procedure. Besides its use in this thesis, sawsim analysis has been used in Roman 119

Fig. 75. In addition to the extraction of kinetic properties of the protein from mechanical unfolding

data, such simulations can help to elucidate the effects of various experimental parameters on the

appearance of force curves and to estimate the errors associated with data pooling. To date, the

force-induced unfolding approach has been used to investigate several different types of proteins.

As the technique is used to study a wider range of proteins, this simple simulation method will be

useful for data analysis, experimental design, and artifact identification.

3.4 Conclusions
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Chapter 4: Experiment control software, pyafm, and related packages

Civilization advances by extending the number of important operations which we can

perform without thinking about them. Operations of thought are like cavalry charges in

a battle—they are strictly limited in number, they require fresh horses, and must only be

made at decisive moments.

Alfred North Whitehead120

Velocity clamp experiments have been carried out since the initial work by Rief et al. 30 , so

I was somewhat surprised that there weren’t already community-driven packages for carrying out

and analyzing these experiments121–124. When I joined Prof. Yang’s lab, we were using experiment

control software written in LabVIEW and analysis software written in IGOR Pro, both developed in-

house. The existing software was not designed to control sample temperature or for easy extension,

so I proceeded to write my own control and analysis stack to add these capabilities.

For those of you thinking, “Why is he calling this thing a stack?”, software is rarely developed as

a single monolithic program. Instead, developers write software as a series of modular components,

with each layer in the stack using lower level features from the layers below it to supply higher level

features to the layers above it. New high-level programs will contain logic for the new idea (perform

velocity-clamp unfolding experiments) and leverage pre-existing packages for all the old ideas that

you need to get the job done (open a file, Fourier transform an array, . . . ). A well structured suite

of software breaks up the task at hand into many sub-components, with a distinct package handling

each component.

Whitehead 120 introduces his claim about civilization and subconscious operations to motivate

the utility of symbolism in subconcious reasoning. By encapsulating already established ideas in

a compact form, we can focus on the crux of an issue without being distracted by the peripheral

boilerplate.

In this chapter, I will discuss the earlier frameworks and abortive attempts that lead me towards
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my current architecture (Sections 4.1 and 4.2). I will also discuss some auxiliary packages I developed

to support the main stack (Section 4.3). I’ll wrap up by comparing my stack with Prof. Yang’s earlier

framework and summarizing lessons I’ve learned along the way (Sections 4.4 and 4.5).

4.1 Analog input output frameworks

For many users, computers are fairly self-contained systems. Users read and write files, using

a variety of editors, and share information between computers via networked connections. Using

computers to control and monitor arbitrary physical processes is common in the scientific community

and industry, but less so in the general consumer market. This means that interfaces between the

digital and analog worlds haven’t seen the focused development in the open source community that

more mainstream problem areas have received. In this section I’ll discuss a few possible options—

both open and proprietary—in the context of my experiment control stack.

4.1.1 LabVIEW

National Instruments127 is a major player in the experiment control and data aquisition market.

On the hardware side, they produce a wide range of DAQ cards. On the software side, they produce

LabVIEW125, a graphical programming language designed to make writing control and aquisition

experiments straightforward. Both LabVIEW and NI-DAQmx cards are ubiquitous in scientific

computing; in the four research labs I’ve worked in over my career, every lab has used both. By the

time I joined Prof. Yang’s lab, I’d been using LabVIEW for years, and had become familiar with its

two major limitations: name based linking and a binary file format.

Programming in a graphical language is quite similar to programming in a textual language.

In both, you reduce complexity by encapsulating functional subroutines of your process, and then

assembling those subroutines in other, higher-level subroutines128–131. This means that the appli-

cation level code can focus on application-level task (approach the surface, wait for binding, . . . )

without getting bogged down in the details (increment analog output channel zero in 5 bit steps

until analog input channel exceeds 39322 bits). In textual languages like C or Python, you can

use functions and libraries to package the functional subroutines. In LabVIEW, you package the

4.1 Analog input output frameworks
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Figure 4.1: An excerpt from the main frame of the LabVIEW stack. This frame codes for the
velocity-clamped pull phase of a push–bind–pull experiment.

subroutines in virtual instruments (VIs).

The problem comes when you want to update one of your subroutines. LabVIEW VIs are

linked dynamically by VI name132, so there was no easy way to swap a new version of the VI into

your application for testing without renaming the subroutine. With the Project Explorer (new in

LabVIEW 8.0132, released 2005), these renames became easier. However, throughout my time in

the Yang lab, the Windows machines all ran LabVIEW 7.1 (released in 2004).

Because of difficulties with name-based VI linking and the relative inexperience of many scientists

in the maintenance benefits of modular programming133,134, LabVIEW code often ends up without

a clean separation between high-level and low-level tasks (Fig. 4.1). This lack of structure makes it

difficult to reuse existing code to address similar tasks.

The second obstacle to maintaining LabVIEW code is the binary file format for VIs. The

established method for recording software history is to use a version control system (VCS), which

records versions of the project in a repository. Each change to the project is committed to the

4.1 Analog input output frameworks
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repository with some associated metadata (timestamp, committer name, explanatory message, . . . ).

Users can access this database to recover earlier versions of the project. For example, if you find a

bug in your package, you can use your VCS to determine if that bug affected the data you gathered

six months ago.

There are a number of open source version control systems in common use (Git, Mercurial,

and Subversion, . . . ), but in order to track and merge changes, they need a way to calculate the

difference between two versions of a given file. For textual programming languages, the line-based

textual differences used by VCSs work extremely well, but for binary file formats, performance

decreases drastically. There are third-party merge tools135 for LabVIEW, but the tools are not

officially supported.

While National Instruments seems to put a reasonable amount of effort into maintaining back-

wards compatibility, long term archival of binary formats is still a difficult problem. For example,

our legacy LabVIEW 7.1 installation is no longer compatible with recent LabVIEW releases. Sup-

port for the releases is so low, that without access to the old LabVIEW release, you may not even

be able to determine which version of LabVIEW your VI corresponds to. One officially suggested

method for extracting the version from an older VI is136:

Open the VI in the earliest version on your computer. If an error occurs, the VI is

saved in a later version. Close the VI and repeat this process for the next version of

LabVIEW. The first version that opens a VI without any error is the version in which

the VI is compiled.

This does not inspire confidence in an ability to extract experiment control software from VIs

after a decade of archival137.

4.1.2 NI-DAQmx

After deciding to avoid LabVIEW, my first attempt at writing an experiment control framework

involved calling National Instrument’s DAQmx library from C138 (Fig. 4.2). I spent most of 2007

working this framework, using Cygwin as the development environment. Inspired by EPICS, I built

4.1 Analog input output frameworks
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static int set_digital_output_data(DIGITAL_OUTPUT *d, unsigned int data)

{

d->data = (uInt32) data;

DAQmxErrChk_struct( Write_WriteDigPort(d->taskHandle, d->data) );

Error:

if (d->error != 0) {

CHK( close_digital_output(d) );

M_EXIT(FAILURE, "Error in NIDAQ stepper output\n");

}

CHK( nsleep(100) );

PING(1);

return SUCCESS;

}

Figure 4.2: An excerpt from the digital output module of my experiment server stack.
Most of the C code is error checking and tracing macros. The hardcoded delay time and
stepper-specific error message are symptoms of my previously poor programming practices.
Write_WriteDigPort is a simplifying wrapper around DAQmxWriteDigitalU32 from the exam-
ples bundled with NI-DAQmx.

a message passing server with experiment control and hardware interface modules connected via

sockets.

As the experiment server evolved, I started running into problems. The overhead of sending

all the data through sockets to generic hardware interface modules was larger than I had näıvely

expected. I also had trouble with multithreaded socket code on Cygwin, and decided to drop

Microsoft Windows altogether in favor of an open source operating system.

4.1.3 Comedi

After transitioning to Linux-based systems, I could no longer use NI-DAQmx (which only supported

Microsoft Windows). Luckily, the Comedi project already provided open source driver code for our

DAQ card (an NI-PCI-6052E). Comedi (from “Control and Measurement Device Interface”) is a

general purpose library for interacting with DAQ devices, and supports a wide range of hardware.

When I moved to Comedi, it was a stand-alone kernel module, but since November 2008 it has been

included in the Linux source as a staging driver.

Comedi development goes back to 2000, so by the time I arrived things were already pretty stable.

I submitted a small patch to support simultaneous analog input/output triggering on National

4.1 Analog input output frameworks
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Cantilever

Substrate
Piezo

Photodiode
Laser

DAQ card motorpycomedi

pypiezo

pyafm

unfold-protein

stepper pypid

h5config

calibcant

Figure 4.3: Dependency graph for my modular experiment control stack. The unfold-protein
package controls the experiment, but the same stack is used by calibcant for cantilever calibra-
tion (Fig. 5.1). The dashed line ( ) separates the software components (on the left) from their
associated hardware (on the right). The data flow between components is shown with arrows.
For example, the stepper package calls pycomedi, which talks to the DAQ card, to write dig-
ital output that controls the stepper motor ( , Section 4.3.2). The pypiezo package, on the
other hand, uses two-way communication with the DAQ card ( ), writing driving voltages to
position the piezo and recording photodiode voltages to monitor the cantilever deflection (Sec-
tion 4.2.2). The pypid package measures the buffer temperature using a thermocouple inserted
in the fluid cell ( , Section 4.3.3). I represent the thermocouple with a thermometer icon ( ),
because I expect it is more recognizable than a more realistic .

Instruments cards, and started building my stack.

4.2 The pyafm stack

In order to reduce future maintenance costs, I have based my stack as much as possible on existing

open source software, and split my stack into reusable components where such components might

appeal to a wider audience. From the bottom up, pycomedi wraps the Comedi device driver for

generic input/output, pypiezo builds generic piezo-control logic on top of pycomedi, pyafm combines

a pypiezo-controlled piezo with a stepper-controlled stepper motor and pypid-controlled temperature

controller, and unfold-protein adds experiment logic to pyafm to carry out velocity-clamp force

spectroscopy (Fig. 4.3).

4.2.1 Pycomedi

After my experience with C (Section 4.1.2), I knew I wanted a higher level language for the bulk of

my experiments. Comedi already had SWIG-generated Python bindings, so I set to work creating

pycomedi, an object-oriented interface around the SWIG bindings. The first generation pycomedi

4.2 The pyafm stack
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interface was much easier to use than the raw SWIG bindings, especially for simultaneous analog

input/output, which I needed to monitor cantilever deflection during piezo-sweeping velocity-clamp

pulls.

The SWIG-based interface to Comedi provided a solid base for my experiment control stack, but

as the stack matured, I started bumping up against problems due to both my poor design choices1

and general awkwardness with the thin SWIG bindings. In 2011 I ripped out most of this layer and

used Cython to bind directly to Comedi’s userspace library. This lead to a much more Pythonic

interface, and removed a number of previously sticky workarounds required by earlier versions of

pycomedi.

As a generic Python interface to Comedi, pycomedi has a wider user base than the rest of my

experiment control stack (there are more folks writing Python code for DAQ cards on Linux than

there are writing velocity-clamp AFM controllers on Linux). I’ve had a number of people contact

me directly with pycomedi questions, including a neuroscientist, a radiologist, and an automotive

electrician. Éric Piel even contributed a few patches for software-calibrated devices.

Comparing the NI-DAQmx implementation of digital writes (Fig. 4.2) with a more complete

pycomedi implementation (Fig. 4.4), the pycomedi implementation reads much more naturally. The

main difference is that Python’s object-oriented structure allows us to bundle complex Comedi

subdevice handling into a series of intuitive methods. We also benefit from Python’s exception

handling. While C requires you to actively check for exceptions where they might occur (“hey, this

write failed”), Python exceptions bubble up the call stack so you can deal with them at a more

appropriate level (“hey, the stepper motor failed”). This allows us to centralize error handling in

higher level code, making the low level code much cleaner.

4.2.2 Pypiezo

The piezo controlling code builds on the framework established by pycomedi to define an interface

for controlling the peizo-mounted surface (Fig. 2.1b). This involves code to sweep the piezo in

a hardware-timed ramp as well as code for discrete jumps. To carry out these tasks, pypiezoalso

1Brooks 142 says “plan to throw one away,” although I’m more optimistic about the feasibility of long-term main-
tenance than he is.

4.2 The pyafm stack
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from pycomedi.device import Device

from pycomedi.channel import DigitalChannel

from pycomedi.constant import SUBDEVICE_TYPE, IO_DIRECTION

device = Device(’/dev/comedi0’)

device.open()

subdevice = device.find_subdevice_by_type(SUBDEVICE_TYPE.dio)

channels = [subdevice.channel(i, factory=DigitalChannel)

for i in (0, 1, 2, 3)]

for chan in channels:

chan.dio_config(IO_DIRECTION.output)

def write(value):

subdevice.dio_bitfield(bits=value, write_mask=2**4-1)

Figure 4.4: A four-channel digital output example in pycomedi (from the stepper
doctest). Compare this with the much more verbose Fig. 4.2, which is analogous to the
subdevice.dio bitfield() call.

contains code to convert piezo motion (in meters) to DAC output voltages (in bits), an h5config-based

framework for automatically configuring pycomedi channels and piezo axes, and surface detection

logic.

Because of the tight coupling needed between piezo motion and cantilever deflection detection for

synchronized ramps, the basic Piezo class can be configured with generic pycomedi input channels.

In practice, only the cantilever deflection is monitored, but if other pypiezo users want to measure

other analog inputs, the functionality is already built in.

The surface detection logic is somewhat heuristic, although it has proven quite robust in practice.

Given a particular piezo axis, target deflection, number of steps, and an allowed piezo range, the

procedure is:

1. Ramp the piezo from its current position away to its maximum separation zmax.

2. Step the piezo in towards its minimum separation, checking the deflection after each step to

see if the target deflection threshold has been crossed. This is the high-contact piezo position

zmin.

3. Ramp the piezo away to its maximum separation zmax. Because of protein on the surface, the

4.2 The pyafm stack
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detachment region between the contact region and non-contact region may have additional

forces (Fig. 2.5b). This can make the determination of the contact kink difficult. The full

retraction breaks any protein-based contacts between the cantilever and the surface.

4. Ramp the piezo in to the high-contact position zmin. Because any protein-based contacts were

broken in the previous step, the contact kink at zkink should be clear and crisp.

5. Ramp the piezo back to the original position.

The deflection data d(z) from 4, which should clearly show the contact kink, is fit to a bilinear

model (a linear non-contact region and a linear contact region, which meet at the the contact kink).

The fitting is carried out by minimizing the residual difference between the approach data and

bilinear model with SciPy’s leastsq optimizer, a wrapper around MINPACK’s lmdif and lmder

algorithms145,146.

d(z) =


dkink + σp,c(z − zkink) z ≤ zkink

dkink + σp,nc(z − zkink) z ≥ zkink

(4.1)

Initial parameters for the fit are:

dkink = d(zmax) (4.2)

zkink =
zmax − zmin

2
(4.3)

σp,c = 2 · d(zmax)− d(zmin)

zmax − zmin
(4.4)

σp,nc = 0 (4.5)

The fitted dkink is accepted unless:

• the fitted slope ratio |σp,c/σp,nc| is less than a minimum threshold (which defaults to 10), or

• the fitted kink position zkink is within an excluded zwindow of the boundaries (zwindow defaults

to 2% of the total range zmax − zmin).

4.2 The pyafm stack
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The default slope ratios work well for the cantilevers I generally use, but softer cantilevers may

have enough drift that the minumum slope ratio threshold needs to be reduced. I have not yet run

into problems with the default kink window. Although these are low level parameters, appropriate

values may depend on details of the particular experimental setup. The h5config-based configuration

structure makes it easy to configure (and record) the values of many similar heuristic parameters

like these involved in robust experiment control.

In the event that the surface detection is not acceptable, pypiezo raises an exception which

bubbles up the call stack until it is handled in unfold-protein (Section 4.2.4).

4.2.3 Pyafm

Sweeping piezos around and measuring the resulting cantilever deflection is the core of velocity-

clamp force spectroscopy. However, our experimental apparatus contains some additional supporting

hardware: a stepper motor for coarse positioning and a peltier/thermocouple module for temperature

control. The pyafm module builds on pypiezo, stepper (Section 4.3.2), and pypid (Section 4.3.3) to

provide an easy to use (and easy to configure) AFM class for controlling the whole package.

While the piezo tube is able to move the surface relative to the cantilever tip (Fig. 2.1), it

only has a limited range (on the order of microns). Achieving such a small separation by hand

when assembling the microscope is unlikely, so a stepper motor controlling a fine pitch screw is

used for course positioning. Generic stepper control is handled by the stepper package, and pyafm

builds on this to add h5config-based configuration (time delay between steps, approximate step size,

approximate stepper backlash, digital control port, . . . ) and a few course positioning methods:

AFM.move_away_from_surface provides a safety mechanism that higher level applications can use

to bail out. For example, when unfold-protein can not locate the surface (for example, a bubble

in the fluid cell may be blocking the laser beam), it uses this method to put some distance

between the cantilever and the surface, to avoid crashing the tip and breaking the cantilever.

Less drastically, this method is also used by calibcant (Chapter 5) when it changes from the

surface bump stage (Section 5.4.1) to the thermal vibration stage (Section 5.4.3).

4.2 The pyafm stack
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class Unfolder (object):

# . . .
def run(self):

"""Approach-bind-unfold-save[-plot] cycle.

"""

ret = {}

ret[’timestamp’] = _email_utils.formatdate(localtime=True)

ret[’temperature’] = self.afm.get_temperature()

ret[’approach’] = self._approach()

self._bind()

ret[’unfold’] = self._unfold()

self._save(**ret)

if _package_config[’matplotlib’]:

self._plot(**ret)

return ret

Figure 4.5: The main unfolding loop in unfold-protein. Compare this with the much more
opaque pull phase in Fig. 4.1.

AFM.stepper_approach quickly positions the surface within piezo-range of the cantilever tip by

stepping in (with the stepper motor) until the cantilever deflection crosses a target threshold.

The piezo extension is kept constant during the approach, but a single stepper step only moves

the surface ∼ 170 nm, and our cantilevers can safely absorb deflections on that scale.

AFM.move_just_onto_surface is a more refined version of AFM.stepper_approach. This method

uses pypiezo’s surface detection algorithm to locate the surface kink position zkink, and adjusts

the stepper in single steps until the measured kink is within two stepper steps (∼ 340 nm)

of the centered piezo position. Then it shifts the piezo to position the cantilever tip at an

exact offset from the measured kink. This precise positioning is used for running calibcant’s

bumps (Section 5.4.1), but the per-step piezo manipulation makes long distance approaches

much slower than AFM.stepper_approach.

4.2.4 Unfold-protein

Capping the experimental control stack, unfold-protein adds the actual experiment logic to the

lower level control software. The abstractions provided by the lower level code make for clean, easily

adaptable code (Figs. 4.5 and 4.6).

4.2 The pyafm stack
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class UnfoldScanner (object):

# . . .
def run(self, stepper_tweaks=True):

self._stop = False

_signal.signal(_signal.SIGTERM, self._handle_stop_signal)

self.unfolder.afm.move_away_from_surface()

self.stepper_approach()

for i in range(self.config[’velocity’][’num loops’]):

_LOG.info(’on loop {} of {}’.format(

i, self.config[’velocity’][’num loops’]))

for velocity in self.config[’velocity’][’unfolding velocities’]:

if self._stop:

return

self.unfolder.config[’unfold’][’velocity’] = velocity

try:

self.unfolder.run()

except _ExceptionTooFar:

if stepper_tweaks:

self.stepper_approach()

else:

raise

except _ExceptionTooClose:

if stepper_tweaks:

self.afm.move_away_from_surface()

self.stepper_approach()

else:

raise

else:

self.position_scan_step()

Figure 4.6: The scanning loop unfold-protein. Unfolding pulls are carried out with re-
peated calls to self.unfolder.run() (Fig. 4.5), looping over the configured range of ve-
locities for a configured number of cycles. If stepper_tweaks is True, the scanner adjusts
the stepper position to keep the surface within the piezo’s range. After a successful pull,
self.position_scan_step() shifts the piezo in the x direction, so the next pull will not hit
the same surface location.

4.2 The pyafm stack
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import h5config.config as _config

class AxisConfig (_config.Config):

"Configure a single piezo axis"

settings = [

_config.FloatSetting(

name=’gain’,

help=(

’Volts applied at piezo per volt output from the DAQ card ’

’(e.g. if your DAQ output is amplified before driving the ’

’piezo),’)),

_config.FloatSetting(

name=’sensitivity’,

help=’Meters of piezo deflection per volt applied to the piezo.’),

# . . .
_config.ConfigSetting(

name=’channel’,

help=’Configure the underlying DAC channel.’,

config_class=OutputChannelConfig,

default=None),

# . . .
]

Figure 4.7: Portions of the configuration class for a single piezo axis (from pypiezo, Sec-
tion 4.2.2). The more generic analog output channel configuration is nested under the channel

setting.

4.3 Auxiliary packages

The previous section covered the core of the experiment stack (Section 4.2), but skipped over some

of the more peripheral packages.

4.3.1 h5config

The h5config package makes it easy to save and load configuration classes from disk. After populating

base configuration classes with parameters (Fig. 4.7), h5config automatically generates HDF5 and

YAML backends for saving and loading that class.

Basic configuration types include booleans, integers, floating point numbers, enumerated choices,

and freeform text. There is also support for lists of these basic types (e.g. lists of integers). The key

feature is nesting configuration classes. This means that your higher level tools can have their own

configuration settings and also include the configuration settings for their lower level components.

4.3 Auxiliary packages
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For example, the piezo axis configuration given in Fig. 4.7 contains configuration settings specific to

piezo axes, and it also contains a reference to the configuration settings for a generic analog output

channel. The piezo axis code doesn’t need to know what the analog output channel configuration

settings are, those are defined somewhere else.

The nesting continues all the way up the stack, to the unfold-protein configuration. This means

that a single file (~/.config/unfold_protein.yaml) contains every configurable setting required

for the whole experiment in an easy-to-edit text format. Adding additional configuration settings

at any level of the experiment stack is just a matter of adjusting a single h5config.config.Config

subclass the corresponding entry in the configuration file. There is no need to adjust the higher level

code, the new setting is passed down the stack to its point of use automatically.

Besides making it easy to configure your experiment, h5config also makes it easy to save the

configuration alongside your data. The section of unfold-protein that writes the whole configuration

stack into the per-pull HDF5 file is only four lines long. This makes post-processing much easier,

because almost every setting needed to analyze the data is already stored in the data file (the only

missing values are those that you did not need during the experiment control phase).

4.3.2 stepper

Because of thermal drift and mechanical instability, the distance between the tip and the surface

changes significantly over time. When the distance change exceeds the range of the piezo scan-

ner, the stepper motor must be engaged to reposition the AFM tip relative to the sample. The

earlier LabVIEW software (Section 4.1.1) lacked the ability to control the motor on its own, so it

would pause roughly every half hour and prompt the operator to make the necessary manual ad-

justments. Automatic motor control allows the system to run longer without interrupts, facilitating

the collection of large data sets.

The stepper package provides Python control of stepper motors149. The package is mostly

concerned with the maintenance of internal motor state:

position is a half-step counter that records the current motor position.

4.3 Auxiliary packages
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full step selects full or half stepping.

logic selects active high or active low operation.

delay sets the time delay between steps in seconds, in case the motor response is slower than the

digital output driver.

step size approximates the step size in meters.

backlash estimates the drive chain backlash in half-steps.

Actualizing the motor control signal is left up to the caller, in this case pyafm.

We verified the stability and reproducibility of the microscopic movement of the motor by making

several approach-retreat cycles from the surface of ∼70 steps which resulted in the data displayed

in Fig. 4.8a. We also measured the distance the surface moved with every step by determining the

change in deflection voltage as a function of peizo position as we stepped the AFM tip closer the

the surface. Our stepsize data is displayed in Fig. 4.8b.

The motor is very consistent when approaching the surface, which indicates that our control

software is operating correctly. However, the motor exhibits some hysteretic behavior on a scale

of ∼46 steps, which is almost certainly due to backlash, or slack in the motor–surface coupling

machinery. The first 46 steps in a new direction take the slack out of the coupling, and further

steps move the tip relative to the surface. The problem can be avoided entirely by simply replacing

“backwards motion by one step” with “backwards motion by 60 steps and forward motion by 59

steps”.

One issue raised by backlash is that it might be the source of some of our surface drift, as the

drive-chain relaxes towards some central value and pulls the surface with it. By oscillating into

our eventual position, we could perhaps settle the system at the beginning, reducing the need for

adjustments later on. While this is not a problem for the current unfolding experiments, it could be

an issue for longer unfolding-refolding experiments.

4.3 Auxiliary packages
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Figure 4.8: (a) Stepper motor reproducibility, stability, and backlash. The data are from a
single continuous counterclockwise trace of 14 approach-retreat cycles. The jump from about
(18,−6) to (17,−0.4) is the snap-off effect, where short-range attractive interactions between
the tip and the sample—due to surface wetting in air—require the tip to be actively pulled off
surface. Signal noise is comparable to that expected by drift. (b) Motor step size calibration.
The stepper gradually stepped closer to the surface, feeling forward with the piezo after each
step. Successive motor positions yield traces a, b, c, d, and e. As the motor moves the sample
closer, less piezo movement is required to approach to same deflection level. The average spacing
between the traces is roughly 170 nm. Traces c and d have regions of negative deflection because
the tip no longer retracts far enough from the surface to break free of the snap-off effect. There
is no backlash because the data were taken during a single approach.

4.3.3 pypid

The final component of the experiment control stack is pypid, which uses pymodbus to communicate

with a Melcor Series MTCA Thermoelectric Cooler Controller151 over a serial line. The controller

monitors the fluid cell temperature with a thermocouple, and reading temperatures from the con-

troller is fairly straightforward (Fig. 4.5). Temperature control is via a Peltier device mounted

underneath the sample surface (Fig. 4.9).

The controller tries to keep the measured temperature at the setpoint temperature via a modified

proportional-integral-derivative (PID) feedback algorithm. PID systems have been around for a

while152, but finding appropriate feedback terms for sensitive systems is not trivial. There are a

number of tuning procedures which characterize the system by evaluating its response under simpler

driving conditions. The pypid package implements Ziegler–Nichols’ step response152, bang-bang

response, and ultimate cycle response152 tuning rules, as well as Cohen–Coon’s153 and Wang–

Juang–Chan’s154 step response tuning rules155.

4.3 Auxiliary packages
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Figure 4.9: A Peltier functions by applying a voltage to regions of p- and n-type semiconductor
in series. Conduction in n-type semiconductors is mainly through thermally excited electrons
and in p-type semiconductors is mainly through thermally excited holes. Applying a positive
voltage as shown in this figure cools the sample by constantly pumping hot conductors in both
semiconductors towards heat sink, which radiates the heat into the environment. Reversing the
applied voltage heats the surface.

4.4 Discussion

With the radical shift from LabVIEW and Microsoft Windows over to Comedi and Linux, it is

a good idea to compare my new experiment control software with the earlier stack. Because the

fundamental procedure in my experiments is the velocity-clamp pull (Section 2.4), I used both

approaches in quick succession to collect pulls. Because the stacks diverge after the PCI DAQ card,

I was able to collect several pulls using my setup, power down the Linux computer, swap the PCI

card into the Windows computer, power up, and collect several pulls using the Windows stack on

top of the exact same hardware.

Because the goal of these experiments was to compare the two software stacks, the comparison

was carried out using our standard AFM cantilevers and gold surface, but distilled water was used

instead of PBS and no protein was bound to the surface. This gives a simpler system with fewer

distracting features. As shown in Figs. 4.10 and 4.11, large-scale features are identical, with similar

contact slopes and non-contact noise.

Although grossly similar, the two stacks do have some statistically significant differences. The

slope of the contact region for the LabVIEW/Windows stack (excluding the out-of-deflection-range

outlier) is 6.59± 0.13, while the Comedi/Linux stack slope is 6.17± 0.03 (both in deflection bits per

4.4 Discussion
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(a)

Figure 4.10: (a)Several velocity clamp pulls using both the LabVIEW/Windows stack (blue)
and the Comedi/Linux stack (red). The contact voltage and pulling distance were not synchro-
nized between the two experiments, and the raw data has been shifted to locate the contact
point at the origin. One LabVIEW/Windows curve has a flat deflection in the high-contact
region, where the laser was deflected beyond the photodiode’s working range. This is probably
due to a high approach setpoint, followed by surface drift during the binding phase, but is not
relevant to the stack comparison.

4.4 Discussion
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(b)

Figure 4.10: (b)The contact region from a single pull from (a). The LabVIEW/Windows
stack (blue) takes 0.5 nm piezo steps with ten deflection reads at each step. The Comedi/Linux
stack (red) makes a single read per step, but can take as many small steps as possible within
DAQ card’s memory buffer, frequency, and precision limitations. For 1 µm/s pulls, a step-
ping/sampling frequency of 50 kHz generated steps that were less than one DAC bit wide.

4.4 Discussion
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(c)

Figure 4.10: (c)The non-contact region from a single pull from (a) using both the Lab-
VIEW/Windows stack (blue) and the Comedi/Linux stack (red). The signal oscillates because
the AFM is sitting directly on the lab bench, our usual isolation mechanisms being unavail-
able when these curves were recorded. All protein unfolding experiments were carried out with
isolation, so the vibration was not a problem in those cases.

4.4 Discussion
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Figure 4.11: (a)Contact slope for the pull in Fig. 4.10 using both the LabVIEW/Windows
stack (blue) and the Comedi/Linux stack (red). The low-slope outlier is from the pull with
out-of-range deflection. (b)Power spectral densities (PSDs) of the non-contact noise for the
pulls from 4.10a. To produce this image, the PSD of the non-contact data extracted from 4.10a
was averaged for each software stack. The number of points in the non-contact region truncated
to the nearest power of two (for efficient fast Fourier transformation), which has the convenient
side effect of aligning the frequency axis for easy cross-pull averaging.
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z-piezo bit, Fig. 4.11a). While small, the 7% difference is significant, both statistically (3σ for the

LabVIEW/Windows standard deviation) and practically, because contact slope plays a key role in

cantilever calibration (Section 5.4.1).

Due to the table vibration, comparisons of non-contact noise between the two stacks are less

conclusive. However, rough comparisons of the noise spectra show that noise in the Comedi/Linux

data is generally a factor of two to three less than noise in the LabVIEW/Windows data across a

range of frequencies (Fig. 4.11b). While the noise difference may be small, it does highlight the

importance (and difficulty) of characterizing your apparatus and controlling software.

4.5 Conclusions

Developing an open software stack for controlling single molecule force spectroscopy is hard work, es-

pecially for scientists who lack experience designing or managing moderately large software projects.

Coming into this project, I already had several years of experience working with LabVIEW, but I

had very little experience in other languages and no formal training in project maintenance. I spent

the first two years of my research project acquiring enough experience to start making progress on a

sustainable stack2, and I’ve spent the remaining time tuning this stack (and the analysis software)

while running experiments.

An open source stack allows collaborative development so that this development cost can be

shared between labs, as well as lowering the barrier to entry for new labs entering the field. Besides

benefiting SMFS groups, lower-level packages in the stack will be useful to a wider audience (who

can share the maintenance cost). My existing stack and future distributed maintenance will allow

researchers to focus on generating new science, instead of generating new software.

Besides development efficiencies, a common stack could provide a benchmark for comparative

analysis between experiments carried out by different labs. With every lab using in-house software

and in-house hardware, it’s hard to judge the reliability or accuracy of the lab’s published research.

A common stack should include methods like those used in Section 4.4 to characterize and validate

2Since last summer I’ve been helping the Software Carpentry project134 reach out to scientists (mostly graduate
students) to provide boot camp introductions to software development and version control. It’s a chance to tell other
folks what I wish I’d been told when I was starting out.

4.5 Conclusions
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your apparatus. A common stack also provides a common file format for experimental data, which

makes it easier to share data and analysis tools.

While there have been other attempts SMFS control which claim to be open source, they have

either been based on closed source tools156 or have (critically) not actually published their source157.

Both of these limitations make it hard to realize the benefits of communal, open source development,

and the pyafm stack suffers from neither.

4.5 Conclusions
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Chapter 5: Cantilever spring constant calibration

The most common method for calibrating cantilevers for atomic force microscopes is via thermal

vibration27. In this chapter, I’ll derive the theory behind this procedure and introduce my calibcant

package for performing this calibration automatically.

We know the energy of the cantilever’s thermal vibration from the equipartion theorem (Eq. (2.2)

and Section 2.5). Solving the equipartition theorem for the spring contant κ yields

κ =
kBT

〈x2〉
, (5.1)

so we need to measure (or estimate) the temperature T and variance of the cantilever position
〈
x2
〉

in order to estimate κ.

We don’t measure x directly, though. We reflect a laser off the back of the cantilever and measure

the position of the deflected beam with a photodiode (Fig. 2.1a). In order to convert the photodiode

signal Vp to a tip displacement x, we scale Vp by a linear photodiode sensitivity σp.

x(t) =
Vp(t)

σp
. (5.2)

We measure σp by pushing the tip against the substrate surface and measuring the slope (deflection

volts per piezo meter) of the resulting contact-deflection trace (Section 5.4.1). By keeping Vp and

σp separate in our calculation of κ, we can gauge the relative importance errors in each parameter

and calculate the uncertainty in our estimated κ (Section 5.5.2).

In order to filter out noise in the measured value of
〈
V 2
p

〉
we fit the measured cantilever deflection

to the expected theoretical power spectral density (PSDf ) of a damped harmonic oscillator exposed

to thermal noise

PSDf (Vp, f) =
G1f

(f2
0 − f2)2 + β2

ff
2
. (5.3)
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In terms of the fit parameters G1f , f0, and βf , the expectation value for V 2
p is given by

〈
Vp(t)

2
〉

=
πG1f

2βff2
0

. (5.4)

Combining Eqs. (5.1), (5.2) and (5.4), we have

κ =
σ2
pkBT

〈Vp(t)2〉
=

2βff
2
0σ

2
pkBT

πG1f
. (5.5)

A calibration run consists of bumping the surface with the cantilever tip to measure σp (Sec-

tion 5.4.1), measuring the buffer temperature T with a thermocouple (Section 5.4.2), and measuring

thermal vibration when the tip is far from the surface to extract the fit parameters G1f , f0, and βf

(Section 5.4.3).

Although this theory should be well established (Section 5.1), there is continued confusion about

the details of the fitting (Section 5.2). To avoid further ambiguity, I’ll derive the power spectral

density mentioned above (Eqs. (5.3) and (5.4)) in Section 5.3. In Section 5.4, I’ll introduce my

calibcant package for automatically calibrating cantilevers. I’ll clear up a few remaining points in

Section 5.5 before wrapping up with Section 5.6.

5.1 Related work

In reality, the cantilever motion is more complicated than a pure simple harmonic oscillator. Various

corrections taking into acount higher order vibrational modes158,159 and cantilever tilt160 have been

proposed and reviewed27,54,161, but we will focus here on the derivation of noise in damped simple

harmonic oscillators that underlies all frequency-space methods for improving the basic κ
〈
x2
〉

= kBT

method.

Roters and Johannsmann 162 derive the PSD with a similar Fourier transform, but they use

the fluctuation–dissipation theorem to extract the PSD from the susceptibility (see their Eq. (4)).

Benedetti 163 has independently developed a Parseval’s approach similar to mine (in his Section 8.2.1),

5.1 Related work
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although he glosses over some of the integrals. Berg-Sørensen and Flyvbjerg 164 has an extensive

treatment of the extremely overdamped case and laser tweezer calibration, which they revisit a year

later during a discussion of noise color165. Gittes and Schmidt 166 derive some related results in the

extremely overdamped case, such the fact that the signal to thermal noise ratio is independent of

trap stiffness κ. Despite this earlier work, I think it is worth explicitly deriving the PSD of a damped

harmonic oscillator here, as I have been unable to find a reference that I feel treats the problem with

sufficient rigor. An explicit derivation may also help clear up the confusion about the proper PSD

form discussed in the next section.

5.2 Fitting with a Lorentzian

It is popular to refer to the thermal power spectral density as a “Lorentzian”27,28,54,162,167, but there

is dissagreement on what this means. The classic Lorentzian function is168

L(x) =
1

π

1
2Γ

(x− x0)2 +
(

1
2Γ
)2 , (5.6)

where x0 sets the center and Γ sets the width of the curve. However, the correct PSD for a damped

harmonic oscillator in a white noise bath is given by Eq. (5.3)26,163.

These formulas are fundamentally different.

For example, the slope of Eq. (5.3) is zero at f = 0, as we can see by using the chain rule

5.2 Fitting with a Lorentzian
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repeatedly,

dPSDf

df
=

d

df

(
G1f

(f2
0 − f2)2 + β2

ff
2

)
=

−G1f(
(f2

0 − f2)2 + β2
ff

2
)2

d

df

(
(f2

0 − f2)2 + β2
ff

2
)

(5.7)

=
−G1f(

(f2
0 − f2)2 + β2

ff
2
)2

(
2(f2

0 − f2)
d

df
(f2

0 − f2) + 2β2
ff

)
(5.8)

=
−G1f(

(f2
0 − f2)2 + β2

ff
2
)2

(
−4f(f2

0 − f2) + 2β2
ff
)

(5.9)

=
2G1ff(

(f2
0 − f2)2 + β2

ff
2
)2

(
2(f2

0 − f2)− β2
f

)
(5.10)

dPSDf

df

∣∣∣∣
f=0

= 0 . (5.11)

On the other hand, the slope of Eq. (5.6) is only zero at the peak (where x = x0).

dL(x)

dx
=

1

π

−1
2 Γ(

(x− x0)2 +
(

1
2Γ
)2)2 ·

d

dx

(
(x− x0)2 +

(
1

2
Γ

)2
)

(5.12)

=
1

π

−1
2 Γ(

(x− x0)2 +
(

1
2Γ
)2)2 · 2(x− x0) (5.13)

=
1

π

−Γ(x− x0)(
(x− x0)2 +

(
1
2Γ
)2)2 (5.14)

It is unclear whether the “Lorentzian” references are due to uncertainty about the definition of

the Lorentzian or to the fact that the two equations have similar behavior near the peak. Florin

et al. 27 likely are using Eq. (5.6), as the slope of the fitted PSD in their Fig. 2, has a slope at f = 0.

If they were using Eq. (5.3), the derivative would have been zero (Eq. (5.11)).

We have at least two models in use, one likely the “Lorentzian” (Eq. (5.6)) and one that’s

not. Perhaps researchers claiming to use the “Lorentzian” are consistently using Eq. (5.6)? There

are at least two counterexamples—Roters and Johannsmann 162 , Benedetti 163—with solid deriva-

tions of Eq. (5.45) which they then refer to as the “Lorentzian”. Which formula are the remaining

“Lorentzian” fitters using? What about groups that only reference their method as “thermal cal-

ibration” without specifying a PSD model? In order to avoid any uncertainty, we leave Eq. (5.3)

5.2 Fitting with a Lorentzian
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unnamed. I encourage future researchers to explicitly list the model they use, ideally by citing their

associated open source calibration package.

5.3 Power spectra of damped harmonic oscillators

As discussed in Section 5.2, the power spectral density for a Hookean cantilever is surprisingly

ambiguous. In this section, I’ll derive the frequency-space power spectra of the deflection voltage

(Eqs. (5.4) and (5.38)), modeling the cantilever as a damped harmonic oscillator.

mẍ+ γẋ+ κx = F (t) , (5.15)

where x is the displacement from equilibrium, m is the effective mass, γ is the effective drag coeffi-

cient, κ is the spring constant, and F (t) is the external driving force. During the non-contact phase

of calibration, F (t) comes from random thermal noise.

In the following analysis, we use the unitary, angular frequency Fourier transform normalization

F {x(t)} ≡ 1√
2π

∫ ∞
−∞

x(t)e−iωtdt , (5.16)

where ω is the angular frequency and i ≡
√
−1 is the imaginary unit.

We also use the following theorems (proved elsewhere):

cos

(
θ

2

)
= ±

√
1

2
[1 + cos(θ)] , 169 (5.17)

F
{

dnx(t)

dtn

}
= (iω)nx(ω) , 170 (5.18)∫ ∞

−∞
|x(t)|2dt =

∫ ∞
−∞
|x(w)|2dω . (Parseval’s)171 (5.19)

As a corollary to Parseval’s theorem, we note that the one sided power spectral density per unit

time (PSD) defined by

PSD(x, ω) ≡ lim
tT→∞

1

tT
2|x(ω)|2 172 (5.20)

5.3 Power spectra of damped harmonic oscillators
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relates to the variance by

〈
x(t)2

〉
= lim
tT→∞

1

tT

∫ tT /2

−tT /2
|x(t)|2dt = lim

tT→∞

1

tT

∫ ∞
−∞
|x(ω)|2dω =

∫ ∞
0

PSD(x, ω)dω , (5.21)

where tT is the total time over which data has been aquired.

We also use the Wiener–Khinchin theorem, which relates the two sided power spectral density

Sxx(ω) to the autocorrelation function rxx(t) via

Sxx(ω) = F {rxx(t)} , (Wiener–Khinchin)173 (5.22)

where rxx(t) is defined in terms of the expectation value

rxx(t) ≡ 〈x(τ)x(τ − t)〉 , 174 (5.23)

and x represents the complex conjugate of x.

5.3.1 Highly damped case

For highly damped systems, the inertial term in Eq. (5.15) becomes insignificant (m → 0). This

model is commonly used for optically trapped beads175. Because it is simpler and solutions are more

easily available26,175,176, it will serve to outline the general approach before we dive into the general

case.

Fourier transforming Eq. (5.15) with m = 0 and applying Eq. (5.18) we have

(iγω + κ)x(ω) = F (ω) (5.24)

|x(ω)|2 =
|F (ω)|2

κ2 + γ2ω2
. (5.25)

We compute the PSD by plugging Eq. (5.25) into Eq. (5.20)

PSD(x, ω) = lim
tT→∞

1

tT

2 |F (ω)|2

κ2 + γ2ω2
. (5.26)

5.3 Power spectra of damped harmonic oscillators
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Because thermal noise is white (not autocorrelated + Wiener–Khinchin Theorem), we can write

the one sided thermal power spectral density per unit time as

G0 ≡ PSD(F, ω) = lim
tT→∞

1

tT
2 |F (ω)|2 . (5.27)

Plugging Eq. (5.27) into Eq. (5.26) we have

PSD(x, ω) =
G0

κ2 + γ2ω2
. (5.28)

This is the formula we would use to fit our measured PSD, but let us go a bit farther to find the

expected PSD and thermal noise given γ and κ.

Integrating over positive ω to find the total power per unit time yields

∫ ∞
0

PSD(x, ω)dω =

∫ ∞
0

G0

κ2 + γ2ω2
dω =

G0

γ

∫ ∞
0

1

κ2 + z2
dz =

πG0

2γκ
, (5.29)

where we made the simplifying replacement z ≡ γω, so dω = dz/γ. The integral is solved in

Appendix A.2.1.

Plugging into our corollary to Parseval’s theorem (Eq. (5.21)),

〈
x(t)2

〉
=
πG0

2γκ
. (5.30)

Plugging Eq. (5.30) into Eq. (2.2) we have

κ
πG0

2γκ
= kBT (5.31)

G0 =
2γkBT

π
. (5.32)

Combining Eqs. (5.28) and (5.32), we expect x(t) to have a power spectral density per unit time

5.3 Power spectra of damped harmonic oscillators
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given by1

PSD(x, ω) =
2

π
· γkBT

κ2 + γ2ω2
. (5.33)

5.3.2 General form

The procedure here is exactly the same as the previous section. The integral normalizing G0,

however, becomes a little more complicated.

Fourier transforming Eq. (5.15) and applying Eq. (5.18) we have

(−mω2 + iγω + κ)x(ω) = F (ω) (5.34)

(ω2
0 − ω2 + iβω)x(ω) =

F (ω)

m
(5.35)

|x(ω)|2 =
|F (ω)|2/m2

(ω2
0 − ω2)2 + β2ω2

, (5.36)

where ω0 ≡
√
κ/m is the resonant angular frequency and β ≡ γ/m is the drag-acceleration coeffi-

cient.

We compute the PSD by plugging Eq. (5.36) into Eq. (5.20)

PSD(x, ω) = lim
tT→∞

1

tT

2|F (ω)|2/m2

(ω2
0 − ω2)2 + β2ω2

. (5.37)

Plugging Eq. (5.27) into Eq. (5.37) we have2

PSD(x, ω) =
G0/m

2

(ω2
0 − ω2)2 + β2ω2

. (5.38)

1Eq. (5.33) is Bechhoefer and Wilson 175 Eq. (A12) (who’s τ0 ≡ γ/κ), except that they’re missing a factor of 1/π.
Eq. (5.33) is also Burnham et al. 26 Eq. (8), where their damping coefficient b is equivalent to our γ, their frequency
ν is equivalent to our f = ω/2π, and their roll off frequency νR ≡ k/2πb is equivalent to our κ/2πγ.

2 Equation (5.38) is Roters and Johannsmann 162 Eq. (4)

5.3 Power spectra of damped harmonic oscillators
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Integrating over positive ω to find the total power per unit time yields

∫ ∞
0

PSD(x, ω)dω =
G0

2m2

∫ ∞
−∞

1

(ω2
0 − ω2)2 + β2ω2

dω =
G0

2m2
· π

βω2
0

=
πG0

2m2βω2
0

(5.39)

where the integration is solved in Appendix A.2.23. By the corollary to Parseval’s theorem (Eq. (5.21)),

we have 〈
x(t)2

〉
=

πG0

2m2βω2
0

. (5.42)

Plugging Eq. (5.42) into the equipartition theorem (Eq. (2.2)) we can reproduce Eq. (5.32).

κ
πG0

2m2βω2
0

= kBT (5.43)

G0 =
2m2βω2

0kBT

πκ
=

2m2β κ
mkBT

πκ
=

2mβkBT

π
=

2m γ
mkBT

π
=

2γkBT

π
. (5.44)

Combining Eqs. (5.38) and (5.44), we expect x(t) to have a power spectral density per unit time

given by4

PSD(x, ω) =
2kBTβ

πm [(ω2
0 − ω2)2 + β2ω2]

. (5.45)

As expected, we can recover the extremely overdamped form Eq. (5.33) from the general form

Eq. (5.45). Plugging in for β ≡ γ/m and ω0 ≡
√
κ/m,

lim
m→0

PSD(x, ω) = lim
m→0

2kBTγ

πm2
[(

κ
m − ω2

)2
+ γ2

m2ω2
] = lim

m→0

2kBTγ

π [(κ−mω2)2 + γ2ω2]
(5.46)

=
2

π
· γkBT

κ2 + γ2ω2
. (5.47)

3 Comparing Eqs. (5.29) and (5.39), we see

πG0

2m2βω2
0

=
πG0

2m2 γ
m

k
m

=
πG0

2γκ
. (5.40)

This is not a coincidence. Both spectra satisfy the equipartion theorem, so∫ ∞

0
PSD(x, ω)dω =

〈
x(t)2

〉
=
kBT

κ
, (5.41)

which is the same for both cases.
4Eq. (5.45) is Benedetti 163 Eq. (8.11).
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5.3.3 Fitting deflection voltage directly

In order to keep our errors in measuring σp separate from other errors in measuring
〈
x(t)2

〉
, we can

fit the voltage spectrum before converting to distance. Plugging Eq. (5.2) into Eq. (5.15),

V̈p
σp

+ β
V̇p
σp

+ ω2
0

Vp
σp

= F (t) (5.48)

V̈p + βV̇p + ω2
0Vp = σp

F (t)

m
(5.49)

V̈p + βV̇p + ω2
0Vp =

Fp(t)

m
, (5.50)

where Fp(t) ≡ σpF (t). This has the same form as Eq. (5.15), which can be rearranged to:

ẍ+
γ

m
ẋ+

κ

m
x =

F (t)

m
(5.51)

ẍ+ βẋ+ ω2
0x =

F (t)

m
, (5.52)

so the PSD of Vp(t) will be the same as the PSD of x(t), after the replacements x→ Vp(t), F → Fp,

and (because of Eq. (5.27)) G0 → σ2
pG0. Making these replacements in Eqs. (5.38) and (5.42), we

have

PSD(Vp, ω) =
σ2
pG0/m

2

(ω2
0 − ω2)2 + β2ω2

(5.53)

〈
Vp(t)

2
〉

=
πσ2

pG0

2m2βω2
0

= σ2
p

〈
x(t)2

〉
. (5.54)

The scaling parameters—G0 andm—cannot be fit independently, so we condense the power spectrum

of the right hand side of Eq. (5.49) into a single

G1 ≡
σ2
pG0

m2
. (5.55)
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This gives

PSD(Vp, ω) =
G1

(ω2
0 − ω2)2 + β2ω2

(5.56)

〈
Vp(t)

2
〉

=
πG1

2βω2
0

= σ2
p

〈
x(t)2

〉
. (5.57)

Plugging into the equipartition theorem (Eq. (5.1)) yields

κ =
σ2
pkBT

〈Vp(t)2〉
=

2βω2
0σ

2
pkBT

πG1
. (5.58)

Shifting this around, we can find the expected value of G1.

G1 =
2βω2

0σ
2
pkBT

πκ
=

2β κ
mσ

2
pkBT

πκ
=

2βσ2
pkBT

πm
(5.59)

5.3.4 Fitting deflection voltage in frequency space

As another alternative, you could fit in frequency f ≡ ω/2π instead of angular frequency ω. The

analysis will be the same, but we must be careful with normalization due to the different scales.

Comparing the angular frequency and normal frequency unitary Fourier transforms

F {x(t)} (ω) ≡ 1√
2π

∫ ∞
−∞

x(t)e−iωtdt (5.60)

Ff {x(t)} (f) ≡
∫ ∞
−∞

x(t)e−2πiftdt =

∫ ∞
−∞

x(t)e−iωtdt =
√

2π · F {x(t)} (ω = 2πf) , (5.61)

from which we can translate the PSD

PSD(x, ω) ≡ lim
tT→∞

1

tT
2 |F {x(t)} (ω)|2 (5.62)

PSDf (x, f) ≡ lim
tT→∞

1

tT
2 |Ff {x(t)} (f)|2 = 2π · lim

tT→∞

1

tT
2 |F {x(t)} (ω = 2πf)|2

= 2πPSD(x, ω = 2πf) .

(5.63)
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The variance of the function x(t) is then given by plugging into Eq. (5.21) (our corollary to Parseval’s

theorem)

〈
x(t)2

〉
=

∫ ∞
0

PSD(x, ω)dω =

∫ ∞
0

1

2π
PSDf (x, f)2π·df =

∫ ∞
0

PSDf (x, f)df . (5.64)

We can now extract Eqs. (5.3) and (5.4) from Eqs. (5.56) and (5.57).

PSDf (Vp, f) = 2πPSD(Vp, ω) =
2πG1

(4π2f2
0 − 4π2f2)2 + β24π2f2

=
2πG1

16π4(f2
0 − f2)2 + β24π2f2

=
G1/8π

3

(f2
0 − f2)2 + β2f2

4π2

=
G1f

(f2
0 − f2)2 + β2

ff
2

(5.65)

〈
Vp(t)

2
〉

=
π G1

(2π)3

2 β
2π

(
ω0

2π

)2 =
πG1f

2βff2
0

. (5.66)

where f0 ≡ ω0/2π, βf ≡ β/2π, and G1f ≡ G1/8π
3. Finally, we can generate Eq. (5.5) from Eqs. (5.1)

and (5.2).

κ =
σ2
pkBT

〈Vp(t)2〉
=

2βff
2
0σ

2
pkBT

πG1f
. (5.67)

Shifting this around, we can find the expected value of G1f .

G1f =
2βff

2
0σ

2
pkBT

πκ
=

2βf
κ

4π2mσ
2
pkBT

πκ
=
βfσ

2
pkBT

2π3m
(5.68)

Plugging Eq. (5.68) into Eq. (5.3), we have

PSDf (Vp, f) =
σ2
pkBTβf

2π3m
· 1

(f2
0 − f2)2 + β2

ff
2

(5.69)
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From which we can recover Burnham et al. 26 Eq. (6).

PSDf (x, f) =
PSDf (Vp, f)

σ2
p

=
kBTβf
2π3m

· 1

(f2
0 − f2)2 + β2

ff
2

(5.70)

=
kBTf0

2π3mQ
· 1

(f2
0 − f2)2 +

f2
0 f

2

Q2

=
kBT

2π3mQf3
0

· 1

(1− f2

f2
0

)2 + f2

f2
0Q

2

(5.71)

=
kBT

2π3mQ
(
ω0

2π

)3 · 1

(1− f2

f2
0

)2 + f2

f2
0Q

2

=
4kBT

mQω0ω2
0

· 1

(1− f2

f2
0

)2 + f2

f2
0Q

2

(5.72)

=
4kBT

mQω0
κ
m

· 1

(1− f2

f2
0

)2 + f2

f2
0Q

2

=
4kBT

ω0Qκ

1

(1− f2

f2
0

)2 + f2

f2
0Q

2

, (5.73)

where Q is the quality factor26

Q ≡
√
κm

γ
=

√
κ

m

m

γ
=
ω0

β
=

2πf0

2πβf
=
f0

βf
. (5.74)

5.4 Calibcant

A calibration run based on Eq. (5.5) consists of bumping the surface with the cantilever tip to

measure σp, measuring the buffer temperature T with a thermocouple, and measuring thermal

vibration when the tip is far from the surface to extract the fit parameters G1f , f0, and βf . I’ve

written the calibcant package to carry out this calibration procedure, building on packages in the

pyafm stack (Fig. 5.1).

5.4.1 Photodiode calibration

To calculate the photodiode sensitivity σp, we need surface bumps with a clearly delimited contact

slope. The calibcant package uses AFM.move_just_onto_surface (Section 4.2.3) to position the

cantilever tip a configurable distance off the surface (Section 4.3.1). Then calibcant uses the pypiezo

component (Section 4.2.2) to ramp the tip towards the surface a configurable distance before re-

turning the tip to its original position. The cantilever deflection during this approach–retract cycle

is analyzed to measure σp (Fig. 5.2).

The retraction data is analyzed using a similar approach to pypiezo’s surface detection algorithm
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Cantilever

Substrate
Piezo

Photodiode
Laser

DAQ card motorpycomedi

pypiezo

pyafm

unfold-protein

stepper pypid

h5config

calibcant

Figure 5.1: Dependency graph for calibcant, which shares the pyafm stack with unfold-
protein(Fig. 4.3). The only difference is that the “brain” module controlling the stack has
changed from unfold-protein to calibcant.

Figure 5.2: Measuring the photodiode sensitivity σp by bumping the cantilever tip on the
substrate surface. In the first panel, the blue dots are experimental data, the green line is the
heuristic guess at initial fitting parameters, and the red line is the optimized fit. The second
panel shows the residual (measured data minus modeled data) for the bump. In both panels,
there are two deflection measurements at each position, one taken during the approach phase
and another taken during the retraction phase. This is the first bump from the 2013-02-07T08-
20-46 calibration.
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to extract the slope of the contact region. Where pypiezo uses a bilinear model (Eq. (4.1)), calibcant

uses a limited linear model:

d(z) =



drail z ≤ zrail

dkink + σp(z − zkink) zrail ≤ z ≤ zkink

dkink z ≥ zkink

(5.75)

The fitted parameters are the surface contact point (zkink, dkink) and the contact slope σp. ADCs

can only digitize voltages between the rails of their power supply, and the clipping deflection drail is

the deflection ADC’s maximum measureable voltage (216 bits for our 16-bit ADCs).

By explicitly modeling the clipping deflection, we avoid the need for manual intervention when

the configured approach distance is too large for the cantilever geometry and a bump pushes too hard.

With short cantilevers, even small tip deflection distances can generate large laser deflection angles

(Fig. 2.1a), leading to unmeasurable deflection voltages. One of the unfolding pulls in Fig. 4.10a

exhibits this effect, although it was recorded using a different stack.

An alternative approach using sinusoidal piezo oscillation in the contact region has been proposed

by Materassi et al. 157 , on the grounds that it is more reliable and easily automated than an explicit

bump and manual analysis. While I agree that any automated method is likely better than manual

analysis, I feel that the difference between using an automated bump with a linear contact fit and

using an automated oscillation with a linear contact fit is likely negligible.

5.4.2 Temperature measurements

After a series of surface bumps have been made to measure σp, the stepper motor is used to move the

cantilever a configurable distance from the surface (generally ∼ 30 µm). While the cantilever settles

down after the jarring stepper motion, we measure the buffer temperature using pypid (Section 4.3.3),

a Melcor Series MTCA Thermoelectric Cooler Controller151, and a type E thermocouple5. The

thermocouple is inserted through one of the ports in the AFM fluid cell, so the thermocouple tip is

5Part number 5TC-TT-E-30-72 from OMEGA Engineering Inc.177. Breaking down the product number, it’s a five
pack of thermocouples (5TC) with perfluoroalkoxy insulation (TT), type E metals (chromel–constantan), number 30
AWG wires (0.255 mm diameter), in a 72 inch length.
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in the buffer less than 3 mm from the cantilever tip.

Equation (5.5) depends on the absolute temperature, so labs without easy access to a thermo-

couple can probably get away with estimating the buffer temperature. Errors of 5 K from an actual

temperature of around 300 K will be within 1.7% of the actual value. The effect of this error on κ

will be modest, but see Section 5.5.2 for a full discussion.

5.4.3 Thermal vibration

After the temperature measurements are complete, we measure the cantilever’s thermal vibration

without moving the piezo (Fig. 5.3). The parameters controlling these vibrations are configurable

(with h5config, Section 4.3.1), but the default values are:

frequency The sampling frequency, which defaults to 50 kHz. This value gives a Nyquist frequency

of 25 kHz, which is well above our resonant cantilever frequencies (∼ 5 kHz in the buffer).

sample time The acquisition time in seconds. This is rounded up as required so the number of

samples will be an integer power of two for efficient Fourier transformation. It defaults to 1 s.

model The vibration model. This selects the fitting method for extracting the variance
〈
Vp(t)

2
〉
.

By default, Eq. (5.3) is used, but you can add the constant offset (discussed below) or use the

näıve
〈
Vp(t)

2
〉

=
∑

(V 2
p )/N .

minimum fit frequency The low-frequency end of the PSD usually has a good deal of noise due to

detector drift or background (non-cantilever) vibrations. This parameter allows you to select a

window of the PSD for fitting that excludes the troublesome low-frequency region. It defaults

to 500 Hz.

maximum fit frequency For completeness, you can also set a high-frequency cutoff, although I’ve

never had to use this parameter.

chunk-size, overlap, . . . Assorted parameters for Fourier transforms used to compute the PSD.

Equation (5.3) decreases for large frequencies, but the measured PSD levels out (Fig. 5.3b).

I attribute this to background white noise in the measurement circuit, and not due to cantilever
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(a)

Figure 5.3: (a)Measuring the cantilever’s thermal vibration. The top panel shows the raw
time series data in bins, the middle panel shows the distribution of bin values with a Gaussian
fit, and the bottom panel shows the PSDf (Vp, f) with a fit following Eq. (5.76). The constant
offset P0f , drawn as the horizontal line in the third panel, accounts for white noise in the
measurement circuit26. The vertical line marks the peak frequency fmax (Eq. (5.80)). Only
data in the blue region was used when computing the best fit. This is the first vibration from the
2013-02-07T08-20-46 calibration, yielding a fitted variance

〈
Vp(t)

2
〉

= 96.90 ± 0.99 mV2. The
narrow spike around 14.3 kHz is not due to the cantilever’s thermal vibration, and rejecting
noise like this is the reason we use a frequency-space fit to calculate the thermal deflection
variance.
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(b)

Figure 5.3: (b)This is the same data as in (a) fit with Eq. (5.3), yielding a fitted variance〈
Vp(t)

2
〉

= 120.92± 0.90 mV2. The third panel is very similar to figure 2 in Florin et al. 27 , but
they do not go into further detail on the method or model. They may be fitting their data to
Eq. (5.6), see Section 5.2. Another similar figure is in Hutter and Bechhoefer 28 .
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oscillation. To avoid artificially inflating the estimated
〈
Vp(t)

2
〉
, I created an alternative model for

PSDf (Vp, f) that adds a frequency-independent offset P0f
26.

PSDf (Vp, f) =
G1f

(f2
0 − f2)2 + β2

ff
2

+ P0f . (5.76)

Plots of Eq. (5.76) fits look better than Eq. (5.3) fits (Fig. 5.3), but the significance on the variance

calculated with Eq. (5.4) depends on the amount of background noise in the vibration data. With

over an order of magnitude difference between the power of the damped harmonic oscillator peak

and the background noise, the effect of P0f will be small. With noisier setups, removing the white

background noise can lead to a significant difference. The fitted variance
〈
Vp(t)

2
〉

of my 2013-02-

07T08-20-46 data shifts from 120.92±0.90 mV2 using Eq. (5.3) to 96.90±0.99 mV2 using Eq. (5.76),

a 20% decrease. The calculated spring constant increases from 43.3 ± 2.1 to 54.1 ± 2.7 mN/m, a

25% increase. Changes of this magnitude are important for accurate unfolding force calibration.

5.5 Discussion

5.5.1 Peak frequency

Since we went through the trouble of calculating the derivative of PSDf in Eq. (5.10), it’s useful to

also calculate the frequency of the resonant peak.

0 =
dPSDf

df
=

2G1ffmax(
(f2

0 − f2
max)2 + β2

ff
2
max

)2

(
2(f2

0 − f2
max)− β2

f

)
(5.77)

= 2(f2
0 − f2

max)− β2
f (5.78)

f2
max = f2

0 −
β2
f

2
(5.79)

fmax =

√
f2

0 −
β2
f

2
, (5.80)

where we used f 6= 0 during the large simplifying multiplication. We see that the peak frequency is

shifted from f0 depending on the damping term βf . For overdamped cantilevers with large values

of β, the peak frequency will not have a real solution.
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5.5.2 Propagation of errors

Extracting cantilever spring constants with Eq. (5.5) is great, but the number you get is not much

good if you can’t estimate its accuracy. We can find the effect of measurement and fitting errors on

the calculated κ using Taylor expansions178. To the first order,

f(x) ≈ f0 +

n∑
i

(
df

dxi
(xi − xi0)

)
. (5.81)

To applying this to Eq. (5.5), we need the derivatives

dκ

dσp
=

d

dσp

(
σ2
pkBT

〈Vp(t)2〉

)
=

2κ

σp
(5.82)

dκ

dT
=
κ

T
(5.83)

dκ

d〈Vp(t)2〉
=

−κ
〈Vp(t)2〉

, (5.84)

where I have used
〈
Vp(t)

2
〉

directly to support alternative variance extraction models (Section 5.4.3).

Our measurements of σp, T , and
〈
Vp(t)

2
〉

are independent and therefore uncorrelated. This lets

us estimate standard deviation of κ from the standard deviation of the measured parameters178.

σκ ≈

√(
dκ

dσp

)2

σ2
σp +

(
dκ

dT

)2

σ2
T +

(
dκ

d〈Vp(t)2〉

)2

σ2
〈Vp(t)2〉 (5.85)

≈

√
4κ2

σ2
p

σ2
σp +

κ2

T 2
σ2
T +

κ2

〈Vp(t)2〉
σ2
〈Vp(t)2〉 (5.86)

σκ
κ
≈

√√√√√4

(
σσp
σp

)2

+
(σT
T

)2

+

σ2
〈Vp(t)2〉

〈Vp(t)2〉

2
 (5.87)

By repeating each experiment (surface bumps, temperature readings, and thermal vibrations)

several times, we can estimate the statistical uncertainty in each parameter (Fig. 5.4). Values for

σp and
〈
V 2
p

〉
are quite sensitive to the location of the laser spot on the cantilever, so they can vary

over large time scales as the microscope alignment drifts (e.g. due to thermal expansion as the room
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warms up). However, the calculated value for κ should not vary significantly.

For example, on a recent calibration run6 I measured σp = 35.68 ± 0.87 V/µm, T = 298.151 ±

0.033 K, and
〈
V 2
p

〉
= 96.90± 0.99 mV2, which gives κ = 54.1± 2.7 mN/m. These numbers are very

similar to those obtained with a different cantilever from the same batch measured a month later

(Table 5.1). The uncertainty contributions from each term are

4

(
σσp
σp

)2

= 2.38 · 10−3 N2/m2 (5.88)

(σT
T

)2

= 1.29 · 10−8 N2/m2 (5.89)σ2
〈Vp(t)2〉

〈Vp(t)2〉

2
 = 1.04 · 10−4 N2/m2 (5.90)

The size of the thermal vibration is
√〈

V 2
p

〉
/σp ≈ 2.8 Å with forces on the order of κ

√〈
V 2
p

〉
/σp ≈

15 pN.

In this particular run, most of the uncertainty in κ comes from σσp , with some from σ〈Vp(t)2〉.

To add uncertainty comparable to the photodiode sensitivity contribution, the temperature variance

would have to be

σT =
σσp
σp
· T ≈ 2 · 0.87

35.68
· 298.151 T ≈ 15 K . (5.91)

This is a large enough window that simply using room temperature (or even a hard-coded 300 K)

should not introduce excessive error in the calculated κ.

5.5.3 Archiving experimental data

Scientific data is not thrown away after analysis. Organizations may have standards for archival,

and many journals require supporting data to be available on request after publication or archived

in public databases179,180. Both the raw data and the experimental parameters used to collect need

to be preserved, but managing this manually is tedious and error prone. Lab notebooks rarely

contain all of the parameters used to collect and analyze a particular calibration. Data collected

with calibcant is saved in HDF5 with the full configuration (Section 4.3.1), bundling all of the

62013-02-07T08-20-46
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Figure 5.4: Estimating the statistical uncertainty of the calculated cantilever spring constant
κ through repeated measurements.

Table 5.1: Measured spring constant calibration parameters (mean and standard deviation)
for a single cantilever on two consecutive days. The measured parameters have changes slightly
because the laser alignment and buffer temperature drift over time, but the measured κ are not
significantly different (p = 0.9, as measured with a two-tailed Welch’s t-test7,8).

Timestamp: 2013-03-03T16-37-12 2013-03-04T12-21-54

Quantity Units Mean Std. Dev. Mean Std. Dev.

σp V/µm 46.22 0.76 41.30 0.21
T K 296.302 0.021 294.272 0.022〈
V 2
p

〉
mV2 108.3 1.1 105.5 2.16

κ mN/m 67.3 2.5 65.6 1.5
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information together in a single file.

One minor drawback to this approach is that configuration information (which is not likely to

change often) is duplicated between calibration runs. While this uses some extra disk space, the

overhead is small. The full calibration datafile weighs in at 3.4 MB, while the calibration section

alone is just 37 kB (1% of the total).

Besides the benefit of having a self contained file, HDF5 provides efficient support for large arrays

of typed data (such as the unsigned 16-bit values from our DACs and ADCs), which is not possible

with many other open file formats. The HDF libraries are supported by the non-profit HDF Group

with a 20 year development history181 and many users182. This suggests that HDF will be around

for the long haul, and if it is eventually phased out, that there will be a number of well funded

organizations interested in developing migration plans.

5.6 Conclusions

Thermal cantilever calibration has been common practice for many years now27,28, starting with

estimates of thermal noise183. However, discussion and explicit derivations have been limited. While

this is likely done because the underlying theory is “obvious”, it makes it more likely that corner

cases slip by the notice of calibration experts184 or incorrect formulæ are used during the fitting

(Section 5.2). By centralizing calibration procedures in an open package, calibcant should both

reduce the effort needed to calibrate AFM cantilevers, improve the quality of the calibration, and

ease data sharing and archival.

5.6 Conclusions
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Chapter 6: Data analysis with Hooke

Individual unfolding force curves acquired with the pyafm stack (Chapter 4) are hard to compare

with other experimental data. One way to analyze them in bulk is to extract unfolding force

histograms. These experimental histograms can then be used for fitting simulated models with

sawsim (Chapter 3), and the model fitting parameters will summarize the kinetic behavior. In this

chapter, I’ll discuss the histogram extraction procedure and the Hooke package that facilitates it.

6.1 History

Hooke was originally developed by Sandal et al. 5 working at the University of Bologna. It was

actively developed until the paper came out, after which development became more sporadic. This

was partly because Hooke worked well enough for the original authors and partly because some of

the developers had graduated and moved on to other fields1.

Before discovering Hookein 2010, I had been using a series of fairly site-specific scripts to post-

process my unfolding data. Excited by the existence of a published, open source post-processing

framework, I dropped my scripts and started working on Hooke. Other open-source tools for post-

processing SMFS data exist, but they are based on closed sorce tools156,185 and some are no longer

being developed185. There are also some completely closed source tools such as PUNIAS 187 and

JPK’s ForceRobot 189. Other work along this line exists, but source code is unavailable190.

Hooke supports a wide range of input file formats via drivers (Section 6.2), but when I began

working on the project, there wasn’t a clear interface between the drivers and processing plugins

(Section 6.3). I cleaned up this interface as part of a general refactoring, fixing a number of plugins

that relied on obscure internals in particular driver code. My refactoring removed these leaky

1 Developer turnover may seem like a good reason to avoid open source software. Why use something when its
developers may not stay around to support it? This argument may make sense if you’re comparing open source
and commercial packages, but it makes less sense if you’re comparing existing open source packages to hypothetical
in-house software. Why not use something, if it’s free and already exists? Figuring out someone else’s software is
often much more efficient than writing your own tool from scratch2.

2 . . . says the person who threw out the existing implementation and rewrote the control stack from scratch ;). I’m
ok with starting over if the existing project is not maintainable, but realize that you’re probably biting off a lot of
work.
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abstractions, and now every analysis plugin works with every data driver.

Hooke has been designed with an eye to modular flexibility, with a command line interface (CLI)

and graphical user interface (GUI). However, as with drivers and plugins, the initial abstractions

were leaky. I added a generic argument interface for analysis plugins, and taught the interfaces how

to handle the generic argument types (Section 6.4). With this framework, new analysis plugins are

automatically supported by both the CLI and the GUI. As a side effect of this reorganization, the

GUI (which had previously been a display for the CLI) became truly interactive. The interactive

portions of the GUI owe a large debt to earlier work by Rolf Schmidt et al. from the Centre for

NanoScience Research at Concordia University.

6.2 Drivers for loading unfolding pull data

Hooke supports a number of different SMFS data formats, including Hemingway157, JPK’s ForceR-

obot, Asylum’s MFP3D191, Bruker’s PicoForce, and my unfold-protein (Section 4.2.4) formats. The

drivers are responsible for loading curve data into a standardized format so that plugins can work

with data from any source. Drivers can determine if they are capable of reading a particular file,

so if you need to analyze a directory full of curve files in a number of formats, you can just point

Hooke at the directory and it will pick the appropriate driver for each curve.

After loading and parsing the data, drivers return a list of scaled blocks and a dictionary3

of metadata. Each block corresponds to a different phase of the experiment; standard unfolding

experiments have an approach block and a retraction block. The piezo position and cantilever

deflection data in each block is scaled by the driver into meters, but further processing (e.g. the

conversion of cantilever position to a chain tension in newtons) is carried out by plugins. The

metadata dictionary includes standard keys for information that is required for the analysis (e.g. the

calibrated spring constant in N/m). If the driver can parse any additional metadata from the file, it

adds it to the dictionary using non-standard keys. You can use this auxilliary metadata to perform

subsequent analysis (e.g. “give me all the curves that were recorded in PBS + 0.5M CaCl2”).

3 Python dictionaries are hash tables, which allow you to easily access arbitrary data if you know the key under
which it was stored.

6.2 Drivers for loading unfolding pull data
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6.3 Plugins for analysis

Plugins are groups of related commands for processing curves. Curves can be stored in playlists,

and there are builtin plugins for administrative tasks like managing curves (getting curve metadata,

exporting blocks, . . . ) and playlists (moving to the next curve, globbing curves to the playlist, . . . ).

There are also analysis plugins with commands for doing science. The vclamp plugin for velocity

clamp analysis has commands for finding the surface contact point, scaling the cantilever deflection,

removing the cantilever deflection from the total extension (Fig. 2.5), and flattening polynomial

drift in the non-contact region. The flatfilt plugin has commands for identifying peaks based

on spikes in the deflection derivative and for filtering curves from a playlist that only have more

than a minimum threshold of such peaks193. The polymer_fit plugin has commands for fitting

polymer models to the loading peaks (Section 3.2.1), which may have been identified using the

flatfilt plugin or with any other peak-marking plugin. For other available plugins, see the Hooke

documentation.

6.4 The user interface

Hookecommands are written with abstract argument definitions (using the cleverly named Argument

class). This makes it easier to add new user interfaces (UIs), because the user interface is fundamen-

tally about selecting commands and arguments to pass to them. In my work on Hooke, I borrowed

from the graphical user interface (GUI) version from Concordia with the original partially-command-

line-version from Bologna to produce two independent interfaces: a command line interface (CLI)

and the GUI. You can do exactly the same things in either interface; choosing whichever is most

convenient for the task at hand (Figs. 6.1 and 6.2). I usually use the CLI for scripting and routine

tasks and reproducible analysis, but fire up the GUI when I’m exploring new data.

6.5 Conclusions

My Hooke work builds on previous open source development from other groups to provide a solid,

extensible framework for processing raw force spectroscopy data. With this framework, it’s easy to

add analysis plugins to support new approaches to data analysis. It’s also easy to add drivers to

6.3 Plugins for analysis
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$ hk.py

Hooke version 1.0.0.alpha (Ninken)

...

----

hooke> new_playlist --output_playlist mylist

<FilePlaylist mylist>

Success

hooke> glob_curves_to_playlist *.jpk

<Curve 2009.04.23-15.15.47.jpk>

<Curve 2009.04.23-15.21.39.jpk>

Success

hooke> curve_info

name: 2009.04.23-15.15.47.jpk

path: /.../hooke/test/data/vclamp_jpk/2009.04.23-15.15.47.jpk

driver: <hooke.driver.jpk.JPKDriver object at 0x28f9710>

note: None

command stack: []

blocks: 2

block names: [’approach’, ’retract’]

block sizes: [(4096, 6), (4096, 4)]

Success

Figure 6.1: Creating a playlist with two JPK files in the Hooke command line interface.

support new data file formats.

In it’s current state, Hooke is used by a handful of people to analyze single molecule velocity clamp

unfolding experiments. Even with Hooke helping out, the process is not automatic. Because of the

scarcity of clean curves, it’s hard to set agressive margins for automatically filtering clean unfolding

sawteeth from curves that contain other interactions. Manually identifying clean curves from the

rest is time consuming and subjective. By writing software to objectively identify unfolding events,

we can improve the quality of the resulting science while at the same time increasing throughput.

Real world data is messy, so developing objective filtering procedures is difficult. With Hooke’s

standardized framework and broad support for existing analysis procedures, it will be easy to apply

new objective filtering procedures to old data, and see how well the new procedures match up with

their partially automated predecessors.

6.5 Conclusions
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Figure 6.2: Creating a playlist with two JPK files in the graphical Hooke interface. You
can see the output of the last curve info call, which matches the output from the command
line version (Fig. 6.1). This screenshot is a bit cramped (to fit on a printed page), but the
wxWidgets GUI toolkit provides automatic support for interactively rearranging and resizing
panels. The tree of commands is in the upper left corner. After you select a command, the
table of argument in the upper right corner is populated with default values, which you can
adjust as you see fit. The Playlist panel provides an easier interface for navigating to different
playlists and curves than the using jump to playlist and jump to curve commands.

6.5 Conclusions

http://www.wxwidgets.org
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Chapter 7: The effect of ions on unfolding force

With the tools in place, it’s time to do some science! As a simple experiment to demonstrate the

utility of the new stack, I ran a series of velocity clamp unfolding experiments on I27 octomers in PBS

(Section 2.3). After a series of pulls in the standard buffer, a buffer with additional calcium (from

CaCl2
194) was flushed into the fluid cell. After the new buffer equilibrated, unfolding experiments

were continued.

Since Hofmeister 195 , there has been a lot of research on the effect of ions on protein solubility.

However, previous research on the effect of ions on unfolding forces is small, but we do have some

material to work with. Earlier experimental work on amyloid β shows decreased fibrillation with

even small Ca2+ concentrations196,197. The mechanism behind this weaker bonding is unclear196,198,

although aspartic and glutamic acid groups tend to have a strong affinity for cations while arginine

has a strong affinity for the Cl- anion199. Of these amino acids, only glutamic acid occurs in the

key hydrogen bond regions responsible for I27 unfolding29 (Fig. 7.1). NaCl has also been shown to

decrease internal hydrogen bonding in the protein200. In molecular dynamics studies of amalyoid β

fragments, the destabilizing effect of CaCl2 is much greater than the destabilizing effects of MgCl2,

NaCl, and KCl201.

We added 0.5 M CaCl2 to our standard PBS (Section 2.3), which is much larger than extracellular

Ca2+ levels on the order of 2 mM197,202. After mixing, both buffers were adjusted with drops of HCl

and NaOH as needed to reach a pH around 7.5 (7.42 for the PBS, and 7.60 for the Ca2+-enhanced

PBS).

Unfolding experiments carried out on 2013-03-04 using our usual procedure (Section 2.4) yielded

an unusual density of clean unfolding curves1, with 105 successful pulls concentrated in a two hour

window. Of these pulls, 37 were in the standard PBS and 68 were in the enhanced Ca2+ buffer.

Histograms of unfolding forces show decreased unfolding forces in the Ca2+ buffer (Fig. 7.2), which

1 Experiments carried out using the same procedures throughout February were much less successful.



96

Figure 7.1: The backbone of I27 showing the eight key hydogen bonds responsible for the
critical unfolding force. Glutamic acids are highlighted in green. Based on Lu and Schulten 29

Fig. 1b. For a ribbon diagram of I27 showing the β-sheets, see Fig. 2.3. This figure was also
generated with PyMol.

is what we expect due to destabilized hydrogen bonding.

Modeling I27 as a Bell-model unfolder, we can use sawsim to find the Bell parameters that best

fit these experimental unfolding histograms (Sections 3.2.2 and 3.3.4). The results in Fig. 7.3 show

that the best fit for standard PBS was with ∆xu = 0.132 nm and ku0 = 0.222 s−1. In the Ca2+

buffer, the best fit was with ∆xu = 0.123 nm and ku0 = 0.450 s−1.
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Figure 7.2: I27 runs from 2013-03-04 with (red) and without (blue) an extra 0.5 M Ca2+.
Clockwise from the upper left, we have the distance (in nm) between peaks, the unfolding
force (in pN), and example force curve, and a scatter plot of unfolding force (in pN) versus
the distance between peaks. All of the pulls were taken with the same Olympus TR400-PSA
cantilever with a pulling speed of 1 µm/s. The green histogram drawn over the unfolding force
histograms is I27 unfolding data in PBS with 5 mM DTT from Carrion-Vazquez et al. 6 , rescaled
by a factor of 1

2 because they had more unfolding events.
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Figure 7.3: (a) Model fit quality for the standard PBS unfolding histogram data shown in
Fig. 7.2. (b) Model fit quality for the Ca2+-enhanced PBS unfolding histogram data. The best
fit parameters occur when the Jensen–Shannon divergence is minimized (at the bottom of these
valleys, Section 3.3.4).
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Chapter 8: Conclusions and future work

Single molecule force spectroscopy (SMFS) provides an experimental window on the mechanics and

kinetics of individual molecules and domains. Single molecule measurements extend bulk measure-

ments, by offering insight into the variations within a population of molecules in addition to insight

into the aggregate behavior of bulk solutions. They also bridge the gap between chemists experi-

menting at the bulk level and theorists simulating at the amino-acid level. By providing data for

comparison, SMFS lays the ground work for improving and validating all-atom protein simulations.

These simulations can then be used in predictive biological applications such as high throughput

drug screening. By developing open source experiment control and analysis software, I have made

it easier for new labs to get started in this field and for existing labs to collaborate on critical tools.

I validate my experiment and analysis suite by carring out new experiments showing that increased

CaCl2 concentration significantly decreases the stability of folded I27.

8.1 Salt

As expected196,197,200, increasing the ionic strength of the buffer did significantly decrease the un-

folding force (folding stability) of I27. For labs with strong gene-splicing capability, it would be

interesting to replace the glutamic acids involved in the major bonding (Fig. 7.1) with alternative

groups to gauge the specificity of the effect. For example, glutamine is identical to glutamic acid,

except that it has a hydroxyl group (OH) in the side-chain where glutamic acid has an amine group

(NH2). This gives glutamine and glutamic acid similar steric properties, but very different chemistry.

While the statistics are strong for the two concentrations we tested (standard PBS and PBS

with an additional 0.5 M CaCl2), it would be useful to study destabilization scaling over a range of

concentrations. Carrying out these experiments over a range of pulling speeds with additional force

clamp experiments would also increase confidence in the kinetic models used to summarize the data.

SMFS is a low-throughput technique, so such an exponential increase in assembled data would be
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much easier with more reliable hardware.

8.2 Hardware

Very few approach–bind–retract cycles actually pick up a protein and produce a clean unfolding

curve. This makes it hard to gather sufficient unfolding statistics unless you can run experiments

continuously over a long time span. While our modified MultiMode203 gets the job done, some

hardware upgrades would allow futher automation, increasing throughput through longer run times.

MultiModes measure the position of the cantilever by monitoring the reflected laser with a four-

segment photodiode. While the vertical and horizontal signals are accessible in the cable connecting

the MultiMode to its controlling NanoScope, the total photodiode signal is not. The loss of laser

signal—which can occur when bubbles in the fluid cell obstruct the laser—results in low voltage

deflection that is independent of piezo position. This flat-line deflection also occurs when mechanical

drift moves the surface out of range for the piezo positioner. In the drift case, we would like to

use the stepper motor to reduce the tip–surface separation. In the loss-of-signal case, we would

like to increase the tip–surface separation to avoid accidentally crashing the tip into a surface we

can no longer detect. By exposing the total photodiode signal to the control software, we could

unambiguously distinguish these two cases. This would allow for longer runs, aggressively using the

stepper motor to mitigate mechanical drift.

We could also reduce deflection signal noise—which is especially important for accurate cantilever

calibration (Chapter 5)—by automating photodiode positioning. The four-segment photodiode has

the least signal noise when the deflected laser lands near the point between all four sections. However,

mechanical drift in microscope alignment causes the spot location to vary with time. We currently

use manual thumbscrews to re-zero the photodiode as needed, but unmonitored overnight runs

would require computer-controlled positioning. Similar automatic positioning would be useful for

automatically aligning the incoming laser with the cantilever. While laser–cantilever alignment seems

to be less sensitive than cantilever–photodiode alignment, automatic laser alignment would also open

the door to automatic piezo calibration through measurements of laser interference patterns204.

Finally, our current hardware does not address potential piezo hysteresis, nonlinearity, or drift.

8.2 Hardware
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Newer piezos often use capacitive feedback, adjusting the driving voltage as needed to maintain

the target extension. Besides making existing distance measurements more accurate, the increased

stability opens the door to slower pulling speeds needed to monitor proteins with less stable folded

positions.

8.3 Software

Open source experiment control is possible! Even for a small lab, with a single novice developer1,

building reasonable software on top of existing pieces is possible. After a significant investment in

developing sawsim (Chapter 3), the pyafm stack (Chapters 4 and 5), and Hooke (Chapter 6), we

have a complete experiment control and analysis suite for single molecule force spectroscopy. All of

the software in the stack—including the existing libraries and systems layer dependencies—is open

source, so other labs are free to use, improve, and republish it as they see fit.

As the body of existing science increases, new researchers must become at the same time more

specialized and more interdisciplinary than their fore-bearers. With a relatively fixed undergraduate

curriculum, new researchers cannot afford to spend time becoming experts in every field that bears

on their research project. By pooling resources between labs, individual researchers can reduce time

spent on generic tooling and increase time spent on their particular project. Experiment control,

analysis, and simulation software is particularly amenable to community development, because the

cost of sharing software between labs is minimal.

Besides the low cost of transferring the data itself, the rise of distributed version control systems

such as Git have reduced the administrative overhead of maintaining a project with many far-

flung contributors. Researchers can automatically fetch and merge changes made by other groups,

incorperating remote improvements. They can also commit and push local improvements, which

are then available for remote researchers to incorperate. The version control systems and workflows

that facilitate this cooperation scale well, from small projects with a single user, to huge projects

like the Linux kernel with thousands of developers contributing to each release.

1 I started this project with a bit of LabVIEW and Matlab experience, but only a few days of Python from the
physics department’s “Welcome to Drexel” boot camp. I stumbled across version control on my own, after a year of
maintaining a directory full of version-stampted tarballs.

8.3 Software
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Once the software used in a lab has been published, it is also easier to audit by others who may be

skeptical of the summary published in a journal article. For example, resolving the confusion about

the “Lorentzian” (Section 5.2) would be trivial if Florin et al. 27 had also published their explicit

procudure for generating their figure. Do you think I’m not calibrating my cantilevers correctly?

Feel free to dig through my code. Let me know if you find something wrong (or fix it and send me a

patch!). Science is built on reproducible experiments and analysis, and open source software allows

you to explicitly specify your methods. With well organized code, the specification should be clear

from high-level, experiment-design choices down through low-level bit manipulation.

Many researchers have not received formal training in software development best practices, so

how do we bootstrap this transition to open source science? There is a wealth of documentation

available online for self-teaching, and scientists have lots of experience reading technical writing in

their own field. For those who are overwhelmed by the amount of available resources, organizations

such as Software Carpentry are actively reaching out to scientists with short boot camps to lay the

ground work. Mastery of any subject takes a significant investment, but gaining a working level

of knowledge in distributed version control should only take a few days2. The difficulty for the

uninitiated is often not mastering the new tool or workflow, but learning that it exists at all. There

are a number of papers highlighting best practices and tools that are good surveys for guiding future

learning124,134,206,207.

2 Software Carpentry allocates half a day to take students from “What is version control?” to being functioning
Git users.

8.3 Software

http://http://software-carpentry.org/
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Appendix A: Cantilever calibration

A.1 Contour integration

As a brief review, some definite integrals from −∞ to ∞ can be evaluated by integrating along the

contour C shown in Fig. A.1.

A sufficient condition on the function f(z) to be integrated, is that lim|z|→∞|f(z)| falls off at

least as fast as 1
z2 . When this is the case, the integral around the outer semicircle of C is 0, so the∫

C f(z)dz =
∫∞
−∞ f(z)dz.

We can evaluate the integral using the residue theorem,

∫
C
f(x)dz =

∑
zp∈{poles in C}

2πiRes (z = zp, f(z)) , (A.1)

where for simple poles (single roots)

Res (z = zp, f(z)) = lim
z→zp

(z − zp)f(z) , (A.2)

and in general for a pole of order n

Res (z = zp, f(z)) =
1

(n− 1)!
· lim
z→zp

dn−1

dzn−1
[(z − zp)n · f(z)] . (A.3)

Re

Im

Figure A.1: Integral contour C enclosing the upper half of the complex plane. If the inte-
grand f(z) goes to zero “quickly enough” as the radius of C approaches infinity, then the only
contribution comes from integration along the real axis (see text for details).
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A.2 Integrals

In the following sections I work out derivations for integrals that are important in Section 5.3.

A.2.1 Highly damped integral

I =

∫ ∞
0

1

a2 + z2
dz =

1

2

∫ ∞
−∞

1

a2 + z2
dz =

1

2

∫ ∞
−∞

1

a2 + (au)2
· adu =

1

2a

∫ ∞
−∞

1

u2 + 1
du , (A.4)

where u ≡ z/a and du = dz/a. The integrand f(u) ≡ (u2 + 1)−1 has simple poles at up = ±i. Using

Eq. (A.2),

I =
1

2a
· 2πiRes (u = i, f(u)) =

1

2a
· 2πi lim

u→i
(u− i) 1

u2 + 1
=

1

2a
· 2πi lim

u→i

1

u+ i
(A.5)

=
1

2a
· 2πi

i+ i
=

π

2a
. (A.6)

This result is used in Eq. (5.29).

A.2.2 General case integral

We will show that, for any (a, b > 0) ∈ R,

I =

∫ ∞
−∞

1

(a2 − z2)2 + b2z2
dz =

π

ba2
. (A.7)

First we note that |f(z)| → 0 like |z−4| for |z| � 1, and that f(z) is even, so

I =

∫
C

1

(a2 − z2)2 + b2z2
dz , (A.8)

where C is the contour shown in Fig. A.1.

Because the denominator is of the form A2 +B2, we can factor it into (A+ iB)(A− iB).

(a2 − z2)2 + b2z2 = (a2 − z2+ibz)(a2 − z2−ibz) (A.9)

A.2 Integrals
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The roots of z2±ibz − a2 are given by

zr± = ± ib
2

(
1±

√
1− 4

−a2

(ib)2

)
= ± ib

2

(
1±

√
1− 4

a2

b2

)
= ± ib

2
(1± S) , (A.10)

where S ≡
√

1− 4a
2

b2 .

To determine the nature and locations of the roots, consider the following cases

• a < b/2, overdamped.

• a = b/2, critically damped.

• a > b/2, underdamped.

In the overdamped case S ∈ R and S > 0, so zr± is purely imaginary, and zr+ 6= zr−. For any

a < b/2, we have 0 < S < 1, so Im(zr±) > 0. Thus, there are two single poles in the upper half

plane (zr±), and two single poles in the lower half plane (−zr±).

In the critically damped case S = 0, so zr+ = zr−, and we have double poles at ±zr+ = ib
2 .

In the underdamped case S is purely imaginary, so zr± is complex, with zr+ in the 2ndquarter,

and zr− in the 1stquarter. The other two simple poles, −zr− and −zr+, are in the 3rdand 4thquarters

respectively.

Our contour C always encloses the poles zr±. We will deal with the simple pole cases first, and

then return to the critically damped case.

Over- and under-damped

Our factored function f(z) is

f(z) =
1

(z − zr+)(z + zr+)(z + zr−)(z − zr−)
. (A.11)

A.2 Integrals
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Applying Eqs. (A.1) and (A.2) we have

I = 2πi (Res (z = zr+, f(z)) + Res (z = zr−, f(z))) (A.12)

= 2πi

(
1

(zr+ + zr+)(zr+ + zr−)(zr+ − zr−)
+

1

(zr− − zr+)(zr− + zr+)(zr− + zr−)

)
(A.13)

=
πi

z2
r+ − z2

r−

(
1

zr+
− 1

zr−

)
=

πi(
ib
2 (1 + S)

)2 − ( ib2 (1− S)
)2 · zr− − zr+zr+zr−

(A.14)

=
−4πi/b2

(1 + 2S + S2)− (1− 2S + S2)
·
ib
2 [(1− S)− (1 + S)](
ib
2

)2
(1 + S)(1− S)

=
−8π/b3

4S
· −2S

(1− S2)
(A.15)

=
4π

b3(1− S2)
=

4π

b3[1− (1− 4a
2

b2 )]
=

4π

b3 · 4a2

b2

=
π

ba2
. (A.16)

Critically damped

Our factored function f(z) is

f(z) =
1

(z − zr+)2(z − zr−)2
. (A.17)

Applying Eqs. (A.1) and (A.3) we have

I = 2πiRes (z = zr+, f(z)) = 2πi

(
1

2!
lim

z→zr+

d

dz

1

(z + zr+)2

)
= πi lim

z→zr+
−2 · 1

(zr+ + zr+)3
(A.18)

= −2πi
1

z3
r+

= −2πi
1

( ib2 )3
=

π

b( b2 )2
=

π

ba2
, (A.19)

which matches Eq. (A.16).

This result is used in Eq. (5.39).

A.2 Integrals
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Nomenclature

〈s(t)〉 Mean (expectation value) of a time-series s(t)

〈A〉 ≡ lim
tT→∞

1

tT

∫ tT /2

−tT /2
Adt . (A.20)

≡ Defined as (i.e. equivalent to).

∞ Infinity

|z| Absolute value (or magnitude) of z. For complex z, |z| ≡
√
zz.

z Complex conjugate of z.

rxx(t) Autocorrelation function (Eq. (5.23)).

Sxx(ω) Two sided power spectral density in angular frequency space (Eq. (5.22)).

coth Hyperbolic cotangent,

coth(x) =
ex + e−x

ex − e−x
. (A.21)

ṡ First derivative of the time-series s(t) with respect to time. ṡ = ds
dt .

s̈ Second derivative of the time-series s(t) with respect to time. s̈ = d2s
dt2 .

F {s(t)} Fourier transform of the time-series s(t). s(f) = F {s(t)} ≡ 1√
2π

∫∞
−∞ s(t)e−iωtdt.

L The Langevin function, L(α) ≡ cothα− 1
α

PSDf Power spectral density in frequency space

PSDf (g, f) ≡ lim
tT→∞

1

tT
2 |Ff {g(t)} (f)|2 . (A.22)
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PSD Power spectral density in angular frequency space

PSD(g, w) ≡ lim
tT→∞

1

tT
2 |F {g(t)} (ω)|2 . (A.23)

α The mode unfolding force, α ≡ −ρ ln(Nfku0ρ/κv) (Eq. (3.19)).

α′ The mode unfolding force for a single folded domain, α′ ≡ −ρ ln(ku0ρ/κv) (Eq. (3.45)).

β Damped harmonic oscillator drag-acceleration coefficient β ≡ γ/m (Eq. (5.36)).

γ Damped harmonic oscillator drag coefficient Fdrag = γẋ (Eq. (5.15)).

γe Euler–Macheroni constant, γe = 0.577 . . ..

∆xu Distance between a domain’s native state and the transition state along the pulling direction.

η Dynamic viscocity (Eq. (3.8)).

κ Spring constant (newtons per meter).

π Archmides’ constant, π = 3.14159 . . .. The ratio of a circle’s circumference to its diameter.

ρ The characteristic unfolding force, ρ ≡ kBT/∆xu (Eq. (3.19)).

ρb The density of states in the bound state (Eq. (3.46)).

σ Standard deviation. For example, σ is used as the standard deviation of an unfolding force

distribution in Eq. (3.19). Not to be confused with the photodiode sensitivity σp.

σp The linear photodiode sensitivity to cantilever displacement (Fig. 2.1a and Eq. (5.2)).

χ2 The chi-squared distribution.

ω Angular frequency (radians per second).

ω0 Resonant angular frequency (radians per second, Eq. (5.36)).
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Å Ångström, a unit of length. 1 Å = 1 · 10−10 m.

R Real numbers.

D Diffusion coefficient (square meters per second).

DJS The Jensen–Shannon divergence (Eq. (3.29)).

DLK The Kullback–Leibler divergence (Eq. (3.30)).

Dχ2 Pearson’s χ2 test (Eq. (3.32)).

e Euler’s number, e = 2.718 . . ..

ex Exponential function,

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ . . . . (A.24)

F Force (newtons).

f Frequency (hertz).

f0 Resonant frequency (hertz).

fmax The frequency of the peak power in PSDf (Eq. (5.80)).

G0 The power spectrum of the thermal noise in angular frequency space (Eq. (5.27)).

G1 The scaled power spectrum of the thermal noise in angular frequency space (Eq. (5.55)).

i Imaginary unit i ≡
√
−1.

k Rate constant for general state transitions (inverse seconds).

kB Boltzmann’s constant, kB = 1.38065 · 10−23 J/K218.

ku Unfolding rate constant.

ku0 Unforced unfolding rate constant.

L Contour length in a polymer tension model (Eqs. (3.4) and (3.6)).
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l Kuhn length in the freely-jointed chain (Fig. 3.3a and Eq. (3.6)).

lb The characteristic length of the bound state lb ≡ 1/ρb (Eq. (3.46)).

lts The characteristic length of the transition state (Eq. (3.46)).

m Effective mass of a damped harmonic oscillator (Eq. (5.15)).

Nf The number of folded domains in a protein chain (Section 3.3.2).

Nu The number of unfolded domains in a protein chain (Section 3.3.2).

P Probability for at least one domain unfolding in a given time step (Eq. (3.11)).

p Persistence length of a wormlike chain (Eq. (3.4))).

pm(i) The symmetrized probability distribution used in calculating the Jensen–Shannon divergence

(Eqs. (3.29) and (3.31)).

Q Quality factor of a damped harmonic oscillator. Q ≡
√
κm
γ (Eq. (5.74)).

ruF Unfolding loading rate (newtons per second).

T Absolute temperature (Kelvin).

t Time (seconds).

Ub(F ) The barrier energy as a function of force (Eq. (3.46)).

UF (x) Protein free energy along the unfolding coordinate x (joules).

v Cantilever retraction speed in velocity-clamp unfolding experiments.

Vp The vertical photodiode deflection voltage (Fig. 2.1a and Eq. (5.2)).

W Bin width of an unfolding force histogram (Eq. (3.33)).

x Displacement (meters).

ADC Analog to digital converter. A device that digitizes an analog signal. The inverse of a DAC.
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AFM Atomic force microscope (or microscopy).

Ala Alanine, an amino acid.

Arg Arginine, an amino acid.

Asn Asparagine, an amino acid.

Asp Aspartic acid, an amino acid.

Bacterial transformation The process by which bacterial cells take up exogenous DNA molecules.

cDNA Complementary DNA.

CLI Command line interface. A textual computing environtment, where the user controls execu-

tion by typing commands at a prompt (cf. GUI and UI).

Cys Cystine, an amino acid.

DAC Digital to analog converter. A device that converts a digital signal into an analog signal.

The inverse of an ADC

DAQ Data acquisition. Although the term only refers to input, it is sometimes implicitly extended

to include signal output as well (for controlling experiments as well as measuring results).

DNA Deoxyribonucleic acid.

DTT Dithiothreitol (C4H10O2S2), also known as Cleland’s reagent219. It can be used to reduce

disulfide bonding in proteins.

EGTA Ethylene glycol tetraacetic acid

Exogenous DNA DNA that is outside of a cell.

FJC Freely-jointed chain, an entropic spring model (Eq. (3.6)).

force curve Or force–distance curve. Cantilever-force versus piezo extension data aquired during a

force spectroscopy experiment (Fig. 2.5b).
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FRC Freely-rotating chain (like the FJC, except that the bond angles are fixed. The torsional

angles are not restricted).

Gln Glutamine, an amino acid.

Glu Glutamic acid, an amino acid.

Gly Glycine, an amino acid.

GUI Graphical user interface. A graphical computing environment, where the user controls exe-

cution through primarily through mouse clicks and interactive menus and widgets (cf. CLI

and UI).

His Histidine, an amino acid.

I27 Immunoglobulin-like domain 27 from human titin.

Ile Isoleucine, an amino acid.

IMAC Immobilized metal ion affinity chromatography.

Leu Leucine, an amino acid.

Lys Lysine, an amino acid.

MD Molecular dynamics simulation. Simulate the physical motion of atoms and molecules by

numerically solving Newton’s equations.

Met Methionine, an amino acid.

MPI Message passing interface, a parallel computing infrastructure.

Ni-NTA Nickle nitrilotriacetic acid.

OS Operating system.

PBS Phosphate buffered saline.
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PBS Portable batch system, a parallel computing infrastructure. You should be able to distinguish

this from the other PBS (phosphate buffered saline) based on the context.

PCR Polymerase chain reaction.

Phe Phenylalanine, an amino acid.

PID Proportional-integral-derivative feedback. For a process value p, setpoint p0, and manipu-

lated variable m, the standard PID algorithm is

m(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(A.25)

e(t) = p0 − p , (A.26)

where e is the error function, Kp is the proportional gain, Ki is the integral gain, and Kd is

the derivative gain.

playlist Playlists are containers in Hooke that hold lists of unfolding curves along with some addi-

tional metadata.

Pro Proline, an amino acid.

Ser Serine, an amino acid.

SMFS Single molecule force spectroscopy.

tarball A single file containing a collection of files and directories. Created by Tar, tarballs were orig-

inally used for tape archives (hence the name), but they are now often used for distributing

project source code.

Thr Threonine, an amino acid.

Trp Tryptophan, an amino acid.

Tyr Tyrosine, an amino acid.

UI User interface. What a user uses to interact with a software package (cf. GUI and CLI).

http://www.gnu.org/software/tar/
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Val Valine, an amino acid.

VCS Version control system. A system for tracking project development by recording versions of

the project in a repository.

VI Virtual instrument. LabVIEW’s analog to functions for encapsulating subroutines.

WLC Wormlike chain, an entropic spring model.



134

Vita
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Tel.: (215) 284 6634
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Education

09/2000–05/2004 Colgate University, Hamilton, NY (B.A. in Physics and Math)

09/2004–05/2006 University of Rochester, Rochester, NY (M.A. in Physics)

09/2006–05/2013 Drexel University, Philadelphia, PA (Ph.D. track in Physics)

Publications

Papers William Trevor King, Meihong Su, and Guoliang Yang. Monte Carlo simulation

of mechanical unfolding of proteins based on a simple two-state model. Interna-

tional Journal of Biological Macromolecules, 46(2):159–166, March 2010. Sawsim

is available at http://blog.tremily.us/posts/sawsim/.

Talks W. Trevor King. Manipulating combination locks & ray tracing with polarization.

Drexel Physics Graduate Student Association, June 2008.

W. Trevor King. Software life-cycles and alphabet soup. Drexel Physics Graduate

Student Association, October 2009.

http://blog.tremily.us/posts/sawsim/
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W. Trevor King. Collaborative version control with Git. Software Carpentry

boot camp, Columbia University, January 2013.

Posters W. Trevor King. Effects of cantilever stiffness on unfolding force in afm protein

unfolding. Biophysical Society Annual Meeting, February 2008.

W. Trevor King. Simulated mechanical unfolding of single proteins. Drexel CoAS

Research Day, April 2008.
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CoAS Research Day, April 2010.

W. Trevor King. Flexible parallel simulations and packaging. Drexel CoAS

Research Day, April 2011.
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chanics)
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Research

05/2002–09/2002 Vortex pinning in superconducting thin films. Wrote experimental control soft-
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pressible fluid flow from MatLab to C.
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an automated system for making rod pull equilibrium surface pressure measure-

ments on phospholipid vesicle suspensions. Completed drive chain hardware and

LabVIEW software for sequentially moving samples to the rod pull mechanism

for measurement.
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software in LabVIEW and data analysis software in MatLab. Managed the 3He

dilution refrigerator and assembled custom circuit boards.

09/2006–07/2013 Single molecule force spectroscopy via AFM. Designed calibration, experiment

control, data processing, and Monte Carlo simulation software in Python and C.
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09/2005–Present Home newtork system adminstrator. I run Linux systems (primarily Gentoo) at

home. I use my home network to test installation, deployment, and maintenance

of the software infrastructure I’d like to see at work, which has lead to experience

with many packages (highlights below). Since 2008 I’ve been publishing my notes

on these systems in my blog at http://blog.tremily.us/.

Software

Operating systems Linux (Gentoo)
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