
Tension balancing
The tension groups allow us to determine the tension of extending group i a distance xi,
but there may be multiple active tension groups (e.g. hookean AFM cantilever and WLC
unfolded proteins). In order to determine the tension F of the entire chain for a stretched
distance x, we need a method for determining the amount stretched by each group. For N
groups, this amounts to solving

Fi(xi) = F∑
i

xi = x ,

which is a system of N + 1 possibly nonlinear equations for N + 1 unknowns.

In general this is a root finding problem in N + 1 dimensions (N should be small), but,
by restricting ourselves to strictly monatonically increasing tension functions, the problem
reduces to two-deep, nested one-dimentional root finding. From the first active group, we
have F = F0(x0). We can then solve Fi(xi) = F to get the appropriate xi for the particular
x0. Therefore, N − 1 one dimensional root searches will yield the one dimensional function
x(x0), and one last one dimensional root search to solve x(x0) = x will yield the correct xi
and F .

This approach seems inefficient because of the nested rootfinding, but can be easily ac-
celerated by storing computed solutions in a lookup table for future reference. We are
currently working towards implementing this optimization.

Preliminary results

Unfolding simulations for ddFLN4 at 200 nm/s

Kramers’ model
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Unfolding globular domains.

Simulation mainloop
The simulation works on a list of domains. Each domain has a function determining it’s
unfolding rate under the current conditions (tension, temperature, . . . ). Each domain also
is asigned folded and unfolded tension groups and any associated parameters. The tension
groups allow for nonlinear tension models such as the worm-like chain. The main-loop of
the function looks like

while (num_folded > 0)
F = balance_tension(domains, environment, x);
dt = determine_dt(domains, environment, vel, max_prob, max_dt);
num_folded -= unfold_randomly(domains, environment, F, dt);

Tension models
The tension of unfolded protein domains, and occasionally even folded domains, are usu-
ally modeled as worm-like chains, continuous, elastically stiff entropic springs:

F =
kBT

p

[
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)
+
x

L

]
,

where p is the persistence length, and L is the contour length of the cable[7].

Occasionally proteins, and potentially folded domains, are modeled as freely-jointed
chains, a series of rigid links with freely-rotating joints:

F =
kBT

l
L−1

(x
L

)
,

where l is the length of a link, L = Nl is the total length of the chain, and L−1(α) is the
inverse Langevin function, where L(α) ≡ cothα− 1

a [7].

Because both these models are nonlinear, the main simulation loop cannot apply them
to individual domains, but instead searches all the domains, and passes a list of, say, all
worm-like chain domains to the worm-like chain handler. The handler goes through the list
and extracts the total contour and persistence lengths, which it then plugs into the WLC
function.

Tension model comparison
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Motivation
Understanding a protein’s free energy landscape is important to efficiently modeling pro-
tein folding behaviors. Due to polymer nature of the polypeptides, the protein folding free
energy landscape is rugged[1][2]. Knowledge of this landscape can enhance our under-
standing of the protein folding/unfolding mechanisms. We develop a simulation frame-
work for modeling the stochastic unfolding process. The framework allows access to a
number of models, including Bell’s and Kramers’ unfolding models, and the freely-jointed
and worm-like chain tension models, allowing automatic selection of the most appropri-
ate model combination for a particular experimental dataset. Particularly promising are
the Kramers’ unfolding model fits, which allow the extraction of arbitrary unfolding energy
landscape functions.

Unfolding rate models
There are two models in common usage for modeling the unfolding of simple proteins
under mechanical force. The more basic is Bell’s model, which treats the transition as a
thermalized transition in a two state system:

k = k0e
βF∆x ,

where k0 is the unforced unfolding rate, F is the applied force, ∆x is the distance between
the folded state and the transition state, and β is the inverse thermal energy[3].

Kramers’ model treats the process as quasi-thermalised, overdamped diffusion:

k−1 =
1

D

∫ xe

−∞
dyeβ[U(y)−Fy]

∫ y

−∞
dze−β[U(z)−Fz] ,

where 1/D = βMγ is the inverse diffusion constant (and the Einstein-Smoluchowski rela-
tion), γ is the damping constant, xe is the position that we define as “escaped”, and U(x)
is the free energy as a function of the unfolding coordinate. In general, U(x) is an arbitrary
function of x, but without much loss of practicality we can approximate it as a natural cubic
spline with a few tens of anchor points [4].

Because the double integral in the previous Kramers’ expression for k can be computation-
ally intensive, there exists the saddle-point-style approximation:

k =
ω−ω+

2πγ
e−β(∆U−F∆x) =

D
√
U ′′(x−)U ′′(x+)

2πkBT
e−β(∆U−F∆x) ,

where ω± ≡
√
U ′′(x±)/M are the oscillation frequencies at the well (x−) and transition

state (x+), ∆U ≡ U(x+)− U(x−) is the energy barrier, and ∆x ≡ x+ − x−[5][6].

By comparison with Bell’s model and identifying k0 = ω−ω+
2πγ e−β∆U , we see that the two

theories agree for β∆U � 1 (for which the saddle-point approximation is good) and
U ′′(x±)� ∆U/∆x2 (for which x± are insensitive to F )[4].

Unfolding rate model comparison
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