Physics 428: Quantum Mechanics 111
Prof. Michael S. Vogeley

Practice Problems 1
Problem 1

A particle in free space in one dimension is initially in a wave packet described by
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a) What is the probability that its momentum is in the range (p,p + dp)? (Hint:
remember the Fourier transform relation between position and momentum space).

The probability that the particle has momentum in this range is |¢(p)|?dp, where ¢(p)
is the Fourier transform of ¢(z),
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To do the integral, complete the square in the exponent,
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Thus
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The substitution u = \/a/2(z + ip/ah), du = dxm yields a simple integral over a

Guassian, and we obtain
B(p) = /201"

so the probability is
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b) What is the expectation value of the energy? Can you give a rough argument, based
on the “size” of the wave function and the uncertainty principle, for why the answer
should be roughly what it is?
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where we make the substitution u = y/ax in the third line (look up these integrals if you
don’t understand the result!).

The uncertainty principle is ApAz > h/2. The width of the wave packet is Ax ~
1/\/a, {p) = 0 and since Ap = (p*) — (p)?, the energy must be of order
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which is within a factor of 2 of the exact result.
Problem 2

Consider a free particle of mass m in one dimension with periodic boundary condi-
tions:

bz + L) = 1p(x)
a) Write down the complete set of normalized energy eigenfunctions and eigenvalues.

The solution to the Schrodinger equation for a free particle defined on a interval of

length L is simply
1
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But the condition (x4 L) = ¢ (z) constrains the allowed values of k, because we require
ehr = gik(e+l) — gikroibl o1 okl — 1 wwhich implies kL = 2nm with n = 0,41, £2, ...
Thus the allowed solutions are
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where the classical ground state n = 0 is not allowed.

These solutions are clearly eigenfunctions of both H and p,
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Thus, the eigenvalue for the nth eigenstate is
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Similarly,
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Thus, these are also eigenfunctions of momentum, with eigenvalues
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b) Show that any two of these eigenfunctions corresponding to different eigenvalues are
orthonormal; that is
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Plugging in the solution above,
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If m = n, the integral is trivially equal to 1. For m # n,
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Therefore,
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Problem 3

A particle of mass m moves in the potential

Lpx? x>0
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What are the energy levels and eigenfunctions for the this system? (Hint: compare this
problem to that of the simple harmonic oscillator.)

This potential is a semi-infinite harmonic oscillator. For x > 0, the potential is

identical to that of the S.H.O. The infinite potential at x = 0 requires the eigenfunctions
to be zero at « = 0. This is what all the anti-symmetric (odd) eigenfunctions of the S.H.O.
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do. Thus, the eigenfunctions of this problem are proportional to the anti-symmetric
eigenfunctions of the S.H.O., with different normalization,
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The eigenfunctions are therefore
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where the u,(x) are the S.H.O. eigenfunctions. In terms of the variable y = x\/mw/h,

the eigenfunctions are
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where the H,(y) are Hermite polynomials. The energy levels are
E,=(n+1/2)hw,n=1,3,5,...
Problem 4

In three-dimensional space, rotation of a vector about the z—axis is performed by the
matrix

cos¢ sing 0
R(¢)=| —sing cos¢ 0
0 0 1

What are the eigenvalues of this matrix? What is their magnitude?

The eigenvalue equation is

cos¢p sing 0 a a
—sing cos¢ 0 b |=A| b
0 0 1 c c

which is solved by computing the determinant

cosp — A sin ¢ 0
—sing cosp—A 0 =0
0 0 1—A

and finding the roots A; = 1, Ay 3 = . The magnitude of all the eigenvalues is |A| = 1.



Problem 5

Consider the matrix

1 1
Q=] —i 0 0
1 00

a) Is @ Hermitian?

Yes. Complex conjugate all the matrix elements and reverse the indices and you get
the same matrix (QT = Q).

b) What are the eigenvalues of Q7

As in problem 4, the eigenvalues are found by computing the determinant
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and finding the roots of the resulting polynomial. The eigenvalues are A = 0, —1, 2.
Problem 6

Consider the angular momentum matrices in the basis of spherical harmonic eigen-
functions. That is, the matrix elements of L? are given by

<Y2’m”L2|Y2m>
and the matrix elements of L, are given by
<Y2/m’ ’Lz|Y2m>

Notice that the full matrix can be decomposed into submatrices (corresponding to angular
momentum of dimension 2/ +1): a 1 x 1 submatrix for [ = 0, a 3 x 3 submatrix for [ = 1,
ete.

Write out the matrices for L? and L, up to and including [ = 2 in this representation.
Indicate the submatrices by dashed lines.

Recall L?Y},, = [(I+1)h*Y},, and the orthonormality of the spherical harmonics, which
yields
(Vi | L2 [Yimn) = 11 + 1) RS0

Similarly, L.Y},, = mhY},, yields
<Y2’m”Lz’Y2m> = mh25ll’5mm’
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Therefore, the L? matrix is

and the L, matrix is
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