
Physics 428: Quantum Mechanics III
Prof. Michael S. Vogeley

Practice Problems 1

Problem 1

A particle in free space in one dimension is initially in a wave packet described by

ψ(x) =
(
α

π

)1/4

e−αx
2/2

a) What is the probability that its momentum is in the range (p, p + dp)? (Hint:
remember the Fourier transform relation between position and momentum space).

The probability that the particle has momentum in this range is |φ(p)|2dp, where φ(p)
is the Fourier transform of ψ(x),

φ(p) = (2πh̄)−1/2
∫ ∞
−∞

dx ψ(x)e−ipx/h̄ = (2πh̄)−1/2
∫ ∞
−∞

dx
(
α

π

)1/4

e−αx
2/2e−ipx/h̄

To do the integral, complete the square in the exponent,

αx2

2
+
ipx

h̄
=
α

2

(
x+

ip

αh̄

)2

+
α

2

p2

α2h̄2

Thus

φ(p) = (2πh̄)−1/2
(
α

π

)1/4

e−
p2

2αh̄2

∫ ∞
−∞

dx e−
α
2

(x+ip/αh̄)2

The substitution u =
√
α/2(x + ip/αh̄), du = dx

√
α/2 yields a simple integral over a

Guassian, and we obtain

φ(p) =
1√

h̄
√
απ

e−p
2/2αh̄2

so the probability is

|φ(p)|2dp =
1

h̄
√
απ

e−p
2/αh̄2

dp

b) What is the expectation value of the energy? Can you give a rough argument, based
on the “size” of the wave function and the uncertainty principle, for why the answer
should be roughly what it is?

〈E〉 = 〈ψ|H|ψ〉 =
∫ ∞
−∞

dx ψ∗Hψ (1)
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=
∫ ∞
−∞

dx
(
α

π

)1/4

e−αx
2/2

[
− h̄2

2m

∂2

∂x2

] (
α

π

)1/4

e−αx
2/2 (2)

=
αh̄2

2m

1√
π

∫ ∞
−∞

du (1− u2)e−u
2

(3)

=
h̄2α

4m
(4)

where we make the substitution u =
√
αx in the third line (look up these integrals if you

don’t understand the result!).

The uncertainty principle is ∆p∆x ≥ h̄/2. The width of the wave packet is ∆x ∼
1/
√
α, 〈p〉 = 0 and since ∆p ≡ 〈p2〉 − 〈p〉2, the energy must be of order

〈E〉 ∼ 〈p
2〉

2m
∼ (∆p)2

2m
∼ 1

2m

(
h̄

2

)2

α =
h̄2α

8m

which is within a factor of 2 of the exact result.

Problem 2

Consider a free particle of mass m in one dimension with periodic boundary condi-
tions:

ψ(x+ L) = ψ(x)

a) Write down the complete set of normalized energy eigenfunctions and eigenvalues.

The solution to the Schrödinger equation for a free particle defined on a interval of
length L is simply

ψk(x) =
1√
L
eikx

But the condition ψ(x+L) = ψ(x) constrains the allowed values of k, because we require
eikx = eik(x+L) = eikxeikL or eikL = 1, which implies kL = 2nπ with n = 0,±1,±2, ....
Thus the allowed solutions are

ψn(x) =
1√
L
eiknx

with

kn =
2π

L
n, n = 0,±1,±2...

where the classical ground state n = 0 is not allowed.

These solutions are clearly eigenfunctions of both H and p,

Ĥψn(x) = − h̄2

2m

∂2

∂x2

[
1√
L
eiknx

]
=
h̄2k2

n

2m
ψn(x)
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Thus, the eigenvalue for the nth eigenstate is

h̄2k2
n

2m
=

2π2h̄2

mL2
n2

Similarly,

p̂ψn(x) = −ih̄ ∂
∂x

[
1√
L
eiknx

]
= h̄knψn(x)

Thus, these are also eigenfunctions of momentum, with eigenvalues

h̄kn =
2πh̄

L
n

b) Show that any two of these eigenfunctions corresponding to different eigenvalues are
orthonormal; that is ∫ L

0
dx ψ∗m(x)ψn(x) = δnm

Plugging in the solution above,∫ L

0
dx ψ∗m(x)ψn(x) =

1

L

∫ L

0
dx ei(kn−km)

If m = n, the integral is trivially equal to 1. For m 6= n,∫ L

0
dx ei(kn+k+m) =

1

i(kn − km)

[
ei

2π
L

(n−m)x
]L

0
= 0

Therefore, ∫ L

0
dx ψ∗m(x)ψn(x) = δnm

Problem 3

A particle of mass m moves in the potential

V (x) =

{
1
2
kx2 x > 0
∞ x ≤ 0

What are the energy levels and eigenfunctions for the this system? (Hint: compare this
problem to that of the simple harmonic oscillator.)

This potential is a semi-infinite harmonic oscillator. For x > 0, the potential is
identical to that of the S.H.O. The infinite potential at x = 0 requires the eigenfunctions
to be zero at x = 0. This is what all the anti-symmetric (odd) eigenfunctions of the S.H.O.
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do. Thus, the eigenfunctions of this problem are proportional to the anti-symmetric
eigenfunctions of the S.H.O., with different normalization,

1 =
∫ ∞

0
dx ψ∗(x)ψ(x)

instead of
1 =

∫ ∞
∞

dx ψ∗(x)ψ(x) = 2
∫ ∞

0
dx ψ∗(x)ψ(x)

The eigenfunctions are therefore

ψn(x) =

( √
2un(x) n = 1, 3, 5, ... x > 0

0 x ≤ 0

where the un(x) are the S.H.O. eigenfunctions. In terms of the variable y = x
√
mω/h̄,

the eigenfunctions are

ψn(y) =
1√

2n−1n!
√
π
e−y

2

Hn(y)

where the Hn(y) are Hermite polynomials. The energy levels are

En = (n+ 1/2)h̄ω, n = 1, 3, 5, ...

Problem 4

In three-dimensional space, rotation of a vector about the z−axis is performed by the
matrix

R(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


What are the eigenvalues of this matrix? What is their magnitude?

The eigenvalue equation is cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 a
b
c

 = λ

 a
b
c


which is solved by computing the determinant∣∣∣∣∣∣∣

cosφ− λ sinφ 0
− sinφ cosφ− λ 0

0 0 1− λ

∣∣∣∣∣∣∣ = 0

and finding the roots λ1 = 1, λ2,3 = e±iφ. The magnitude of all the eigenvalues is |λ| = 1.

4



Problem 5

Consider the matrix

Q =

 1 i 1
−i 0 0
1 0 0



a) Is Q Hermitian?

Yes. Complex conjugate all the matrix elements and reverse the indices and you get
the same matrix (Q† = Q).

b) What are the eigenvalues of Q?

As in problem 4, the eigenvalues are found by computing the determinant∣∣∣∣∣∣∣
1− λ i 1
−i −λ 0
1 0 λ

∣∣∣∣∣∣∣ = 0

and finding the roots of the resulting polynomial. The eigenvalues are λ = 0,−1, 2.

Problem 6

Consider the angular momentum matrices in the basis of spherical harmonic eigen-
functions. That is, the matrix elements of L2 are given by

〈Yl′m′|L2|Ylm〉

and the matrix elements of Lz are given by

〈Yl′m′ |Lz|Ylm〉

Notice that the full matrix can be decomposed into submatrices (corresponding to angular
momentum of dimension 2l+ 1): a 1×1 submatrix for l = 0, a 3×3 submatrix for l = 1,
etc.

Write out the matrices for L2 and Lz up to and including l = 2 in this representation.
Indicate the submatrices by dashed lines.

Recall L2Ylm = l(l+1)h̄2Ylm and the orthonormality of the spherical harmonics, which
yields

〈Yl′m′|L2|Ylm〉 = l(l + 1)h̄2δll′δmm′

Similarly, LzYlm = mh̄Ylm yields

〈Yl′m′ |Lz|Ylm〉 = mh̄2δll′δmm′
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Therefore, the L2 matrix is

L2 =



0
2h̄2

2h̄2

2h̄2

6h̄2

6h̄2

6h̄2

6h̄2

6h̄2

...


and the Lz matrix is

Lz =



0
h̄

0
−h̄

2h̄
h̄

0
h̄

2h̄
...
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