
PHYSICS 233: INTRODUCTION TO RELATIVITY
Winter 2018-2019

Prof. Michael S. Vogeley

Lecture Notes #9: Collide, Create, Annihilate
Thursday, February 28, 2019

0 Preliminaries

Required Reading: Spacetime Physics, ch. 8

Homework 7 due Thursday, March 7:
Ch. 6: 6-1, 6-3, 6-4

Concepts for today

• Mass, energy, and momenta of SYSTEMS of particles, in contrast to properties of
individual particles.

• Collisions, fission, fusion, annihilation.

1 Simple Systems

Most of our previous discussions of momenergy have focused on a single particle or object.
Now we’ll consider systems of particles. Is momentum conserved? Yes. Although the mo-
mentum of one particle may change, the momentum of the system is conserved. Is energy
conserved? Yes. Energy may be exchanged between particles, but the total energy of the
system remains same. Is mass invariant? Yes. Mass of the whole system is INVARIANT. It is
also CONSERVED throughout any kind of interaction between the parts of the system. But
pay attention: the mass of the system is not same as the sum of input particle masses!

Consider an elastic collision in which two glass marbles collide. We hang two glass marbles
from strings like pendula that can knock together. Let marble 1 swing and it gains momentum
as it swings down. Now let marble 1 hit 2. In this nearly perfect elastic collision, all of 1’s
momentum is given to 2. Similarly, all of 1’s kinetic energy is given to 2. But the total energy
and total momentum of the 1+2 system is conserved. None of this should be new to you;
it’s the same as in Newtonian mechanics. Momentum is conserved and energy is conserved,
therefore total momenergy is the same before and after the collision.
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Now examine an inelastic collision: the collision of two chewing gum globs. We simply
replace the marbles with equal mass chewing gum globs (yuch - just reach under your seats!).
Now pull them both back and let them collide. Just before the collision, glob 1 has momentum
only in the positive x direction and 2 has momentum only in the negative x direction, thus
the total momentum pi = γmv− γmv = 0. After colliding, they don’t move, so po = 0 also.
Total momentum is conserved.

Before the collision, gum globs 1 and 2 have equal kinetic energy, thus the total energy
is Ei = 2m + 2K. What about after the collision? Globs are not moving, so there’s
no kinetic energy. Does this mean that Eo = 2m, less than before? NO! There’s no
momentum, so the mass of the system, using m2 = E2−p2, is just the energy of the system,
thus Msystem = Esystem. This system mass never changes, right? Before the collision,
Esystem = 2m + 2K. So, if energy is conserved, the mass of the system after collision is
simply Msystem = 2m+ 2K.

Wait a minute! The system mass is greater than the sum of the glob masses, but neither
glob is moving. Where did this extra mass come from? Well, the kinetic energy of moving
globs must have been turned into heat within the stuck-together globs, or into energy of
deforming the globs. The energy couldn’t simply go away.

Think about it: Put the chewing gum glob system inside a sealed box, so that no energy
can get in or out. How much does it weigh? Does its mass depend on whether the globs
are swinging or stuck together? NO. Interactions among pieces of the closed system have no
effect on the momenergy of the system. Total system momentum, total system energy, and,
of course, total system mass are not changed by interactions among the constituents of the
system.

Thus, conservation of energy throughout a collision implies that heat has mass, right?
So, do you weight more when you’re hot? You certainly feel heavier... But seriously, can one
actually measure the extra mass associated with heat? Not yet. It’s just too sensitive an
experiment.

Take one kilogram of water at just above freezing. Heat it up to its boiling point (∆T =
100K). How much mass have you added? What’s the fractional increase in the mass? Could
you measure this fractional increase in mass? Remember that 1 calorie is energy to raise 1 g
of water 1 degree celsius and that 1 cal = 4.184 J. We raise the temperature of 1kg, or 1000g,
by 100C, thus we add E = 105 cal of energy. In Joules E = (105)(4.184) = 4.184 × 105J.
The mass equivalent of this heat energy is m = E/c2 = 4.2×105/(3×108)2 = 4.7×10−12kg.
Thus, the fractional increase in mass is δm/m = 4.7 × 10−12. No, we cannot detect this
difference in mass.
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2 Mass of a system of particles

Let’s combine some particles into a system and examine the properties of the system.

The energy of the constituents adds up to form the energy of the system. That’s just
conservation of energy, Esystem =

∑
iEi. Momenta of the constituents add up to form the

momentum of the system. That’s just conservation of momentum psystem =
∑
i pi, or for

each direction, px =
∑
i px.

But note that mass of particles does NOT add up to form the invariant mass of the
system! (msystem 6=

∑
imi) Be very, very careful!

Let’s consider another simple system of two particles: two equal masses, m1 = m2 = 8.
In our laboratory, 1 moves at v1 = 3/5 and 2 moves at v2 = −3/5 What are the momenta?
p = γmv = (1−(3/5)2)−1/2(8)(3/5) = 6. The Lorentz factor is γ = 5/4. Thus, the particles
have opposite momenta p1 = 6,p2 = −6.

The energy of each object obeys E2 = m2 +p2 thus E =
√

82 + 62 = 10. Thus, the total
system energy is Esystem = 20. The total momentum of the system is psystem = 0. Thus,

the invariant mass of the system is Msystem =
√
E2
system − p2system = 20.

Wait a minute! The sum of the masses of objects is m1 +m2 = 16. But the system mass
is Msystem = 20. Where did the extra mass come from? What happened to the invariance
of mass? The extra mass is a property of the system of masses. The relative motions of
the particles, call it the “heat” of the system, is a property of that system, which cannot be
observed by observing one particle at a time.

Look at the momenergy diagram of this system [see figure 8-3 on p. 224]. Add the
momenergy vectors of the two masses and what do you get? Remember, M2

system = E2
system−

p2system. Energies of the particles add up: Esystem = E1 + E2 = 10 + 10 = 20. Momenta of
the particles add up: psystem = p1 + p2 = 6 − 6 = 0. But masses of particles do NOT add
to form mass of system! Mass of the system of particles is the magnitude of the momenergy
vector, Msystem = 20, not 8 + 8.

3 Two equal masses collide

Special Relativity teaches us that Physics is the same in all inertial frames and provides tools
for transforming observations from one frame to another. Therefore, we frequently choose to
do our calculations in the frame that makes the problem easiest to solve. When dealing with
a system of particles, it is often convenient to work in the inertial frame in which the center
of mass of the system is at rest. This is because when psystem = 0, the system mass is simply
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the sum of the particle energies, thus Msystem = Esystem =
∑
i γimi.

Draw the spacetime, momenergy diagrams for each of these cases:

Easy: Consider two equal masses m1 = 8, m2 = 8 that move with velocities v1 = 3/5,
v2 = −3/5 (thus γ = 5/4). The momenta of the masses are p1 = γmv = (5/4)(8)(3/5) = 6
and p2 = γmv = (5/4)(8)(−3/5) = −6. The energy of each object is E2 = m2 + p2, thus
each has E =

√
82 + 62 = 10. Thus, total system energy Esystem = 20. The total system

momentum is 0, thus Msystem =
√
E2 − p2 = Esystem =

∑
i γimi = 20.

Harder: Now look at the same system from a frame in which v2 = 0. From this
frame’s point of view, our lab moves at vrel = 3/5. Use the velocity addition formula
to find v′1 = (v1 + vrel)/(1 + v1vrel) = 15/17. The Lorentz factor for mass 1 is γ1 =

1/
√

1− (15/17)2 = 17/8. The energy of 1 is E ′1 = γ1m1 = (17/8)(8) = 17 and its
momentum is p′1 = v′1E

′
1 = 15. Mass 2 is at rest, so it has p′ = 0 and E ′ = 8. The system

has total energy E ′ = 17 + 8 = 25 and total momentum p′ = 15 + 0 = 15. The total system

mass M =
√

(25)2 − (15)2 = 20, as before. This is invariant. But does M = γm1 + γm2?

As above γ1m1 = (17/8)(8) = 17, γ2m2 = (1)(8) = 8. Now
∑
i γimi = 25, not 20. That

only worked in the center of mass frame.

4 Mass creates mass

Collide a proton with another proton. If the incoming proton has enough energy, we can
create extra particles during the collision. We just have to make sure that we conserve energy,
momentum, and charge (among other things - you’ll learn about spin, baryon number, etc. in
quantum mechanics). During the collision, create a new pair of particles: one proton and one
anti-proton. An anti-proton has the same mass as a proton, but has negative charge instead
of positive. If the incoming proton has just the right energy, called the “threshold energy,” the
four particles will stay together after the collision. With lower energy, the proton-antiproton
pair could not be created.

[See Figure 8-9, p. 236]

p+ p −→ 3p+ p

This time express mass and energy in units of proton mass: A proton at rest has m = 1,
E = 1, p = 0. The incoming proton has m = 1, E = 7, p =

√
48. The total system energy

is Esystem = 1+7 = 8 and the total system momentum psystem = 0+
√

48 =
√

48. Therefore
the total system mass Msystem =

√
E2 − p2 =

√
82 − 48 = 4.

This collision creates a proton and an antiproton. After the collision, the particles move
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together with no relative velocities. The system energy, momentum, and mass are as before
collision. What’s the velocity of the system after the collision? Again, use p = Ev, thus
v = p/E =

√
48/8.

After the collision, we have four particles, each with rest mass or rest energy Erest = 1.
The sum of the rest energies is 4, just like the total energy of the system. In this case,
summing the masses adds up to the system mass because there are no internal motions.

5 Energy without mass: photon

What about photons? What is their mass, their energy, their momentum?

We showed how the momenergy vector is related to the spacetime displacement vector.
They both point in the same direction. Now let’s DRAW the spacetime and momenergy
diagrams. Look at the spacetime displacement of any photon: We see that the space dis-
placement x equals time displacement t, so that τ 2 = t2 − x2 = 0. What does this imply
about the momenergy? The space and time components of momenergy are also equal! They
have no mass, but they do have energy, right? So, if m = 0 and E > 0, what is p? It must
satisfy m2 = E2 − p2. Thus, for a photon, m = 0 and E = p. Recall the equality p = Ev.
For a photon, v = 1, thus p = E.

Therefore, photons have no mass, but they do have momentum and energy. See what
happens if we collide a high-energy photon into an electron: Let’s take Eγ = 1.022Mev. This
is an energy typical of a gamma ray. The mass of an electron, equivalent to its rest energy
is Ee = 0.511Mev, thus the photon has Eγ = 2Ee. Now collide this photon into an electron
at rest in such a way that the photon is scattered backwards and sends the electron forwards
with momentum p = 2.4 = 12/5. [diagram 8-6, p. 231]

We’ll work in units of electron mass. Before the collision, the photon has Ep = 2, pp = 2,
mp = 0 and the electron has Ee = 1, pe = 0, me = 1. The total energy is E = 2 + 1 = 3.
The total momentum is p = 2 + 0 = 2. Remember, total energy, total momentum, and
system mass all remain the same throughout the collision.

After the collision, the electron has pe = 12/5 = 2.4. The total input momentum was
pin = 2 and the photon reversed direction, so the outgoing photon must have momentum
pp = −2/5 = −0.4. The square of the energy of the photon equals the square of its
momentum, so its energy must be Ep = 2/5. The input energy was Ein = 3, so the electron
energy must be Ee = 3− 2/5 = 13/5 = 2.6.

The photon flies off to the left at v = 1. What is the velocity of the electron? Ee = 2.6
in units of electron mass, Ee = γm, where m = 1 in these units. 13/5 = (1 − v)−1/2. Do
the algebra to solve for v = 24/26. OR just remember that the momenergy and spacetime
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displacement vectors point in same direction. The ratio of momentum/energy = 24/26, thus
the ratio of space displacement/time displacement = 24/26, thus v = 24/26.

6 Photon creates mass

OK, so we accept that a photon has zero mass but does have momentum and energy. It can
slam into a particle that does have mass and send it flying. Now consider something a bit
more complicated: a photon can create particles!

Slam a very high-energy photon into an electron. During the collision with the electron,
another pair of particles is sometimes created. Consider the case in which the the new pair
includes one electron and one positron. A positron has the same mass as an electron, but
has positive charge rather than negative charge.

γ + e− −→ 2e− + e+

Now we’ve got a photon, two electrons, and one positron. With just the right energy
for the incoming photon, sometimes the three new particles will hang together, forming a
“polyelectron.” Let’s look at the momenergy diagram of this:

[See Figure 8-8, p. 234]

Again, we’ll work in units of electron mass. The incoming photon has mass m = 0 and
energy E = 4. The rest energy of the electron is its mass m = 1, so it has E = 1. Thus the
total energy of the system is Esystem = 5. The momentum of the photon is p = 4, and the
electron has p = 0, so the input total momentum is psystem = 4. Now compute the mass of

the system: Msystem =
√
E2
system − p2system =

√
52 − 42 = 3.

After the collision: The photon is gone! All of the energy and momentum goes into the
system of three massive particles. As before, Msystem = 3, Esystem = 5, psystem = 4. What
is the velocity of this system? Again, use the fact that the momenergy vector follows the
spacetime displacement vector: Momentum/energy = 4/5, thus space/time displacement =
4/5 and v = 4/5.
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7 Converting mass to energy: fission, fusion, annihi-

lation

The fact that “system” mass differs from the sum of masses of individual particles in the
system is what allows us to get energy out of fission and fusion. Fission is splitting of atomic
nuclei into lighter nuclei. Fusion is the process of combining light nuclei into heavier.

Wait - sometimes, SPLITTING an atomic nucleus yields energy. Other times, FUSING
nuclei into a heavier one yields energy. How can both processes yield energy?

Critical to understanding fission and fusion is the idea of “mass per nucleon.” We’ve seen
how systems of particles can have masses that differ from the sums of their masses. Likewise,
collections of protons and neutrons in the nuclei of atoms have different average mass per
particle, depending on how many neutrons and protons are in the nucleus. This is because
the sub-atomic forces holding the nucleus together yield different internal “system” energies
depending on the configuration of nucleons.

Draw the diagram of mass per nucleon. [See Figure 8-9, p. 238]

The most stable nucleus, the element with the smallest mass per nucleon, is Iron. Why is
“smallest mass per nucleon” the same as “most stable?” It means that we have to ADD the
most energy per nucleon to pry the neutrons and protons free. The total “system” mass of a
nucleus is LESS than the sum of masses of the same number of “free” neutrons and protons.
So the most stable nucleus is one that requires the most energy per nucleon to break it into
its consituent particles.

Recall notation for elements: upper number is nucleons (protons plus neutrons), lower is
number of protons.

Fission

n+ U235
92 −→ U236

92 −→ Rb95
37 + Cs14155 + energy (photons)

Slam a neutron into a U235
92 nucleus, producing (momentarily) U236

92 which decays into Rb95
37

and Cs14155 . Before, during, and after this collision, there are 92 protons and 144 neutrons.
But “useful” energy comes out of this reaction, because the Rb and Cs nuclei are more tightly
bound together than the original U nucleus. And so on towards Iron (Fe).

Fusion

2D2
1 −→ He42 + energy (photons)
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Combine two deuterium nuclei D2
1 into one helium nucleus He42. Deuterium is “heavy”

hydrogen, with an extra neutron. So-called “heavy water” is D20 rather than H2O. Helium
nucleus is more bound, has smaller mass per nucleon, than deuterium, so we get energy out
of this reaction.

Annihilation

e− + e+ −→ 2γ

Put a positron and an electron in slow orbit around one another. Eventually they annihilate
and out come 2 or 3 photons! All of the mass is consumed, leaving only energy in photons.

In units of electron mass: Before the annihilation: the electron and positron each have
E = m = 1, p = 0. The total system mass is Msystem = 2.

After the annihilation: 2 photons with opposite momentum p = +1,−1 fly out. The total
momentum is psystem = 0, as before. Note that conservation of momentum REQUIRES that
at least 2 photons come out, otherwise it is impossible to balance the outbound momenta.
Each photon has energy E = 1. The total energy remains Esystem = 2 and the sum of photon
masses is m = 0. Wait a second, isn’t mass invariant? Yes, that means that mass is same
in every frame. But remember that mass of system of particles is NOT the sum of individual
masses. The total system mass Msystem =

√
E2 − p2 =

√
22 − 0 = 2, as before.

Each photon has m2 = E2 − p2 = 0, but the SYSTEM has non-zero mass! In other
words, a collection of photons can have mass, even though none of the photon has mass.
Think about a box full of electrons and positrons. Weigh each of them, add up the masses.
Now put them in the box, seal it up and insulate it so that no heat can escape. Wait until
they have annihilated each other. Weigh the box again - same weight! Let the photons out
one by one. None of them have mass, but when you’re done, the box is lighter!

8


