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Lecture Notes #8: Momenergy
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0 Preliminaries

Required Reading: Spacetime Physics, ch. 7

Homework:
HW6 is due Thursday, February 28
Chapter 5, problems 5-2, 5-4, 5-6.

The goal of this section of the course is to understand the interactions of particles
and photons. Events of interest include collision, creation and annihilation of particles.

Concepts for today:

• Momenergy = momentum and energy, unified in SR just like spacetime = space
and time, momentum and energy are unified in SR

• 4-vectors

• Conservation of momenergy

• Invariant of momenergy is mass, E = mc2

1 Newtonian energy and momentum

You’re probably familiar with energy and momentum from Newtonian mechanics: Kinetic
energy of a particle is E = mv2/2. Momentum of a particle is p = mv. Here v is in
“conventional” units of meters per second. Energy is in Joules, while momentum is in
kilogram meters per second. Because they depend on the velocity, which depends on the
frame of the observer and which cannot exceed the speed of light, you already suspect
that these quantities will look different in SR. That is, the Newtonian expressions are
just the low-velocity limits of the more exact SR quantities. We’ll show that energy and
momentum are related to each other in the same way that time and space are related.
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In Newtonian mechanics, energy is conserved and momentum is conserved. In a
collision between particles, the particles may exchange energy, they may exchange mo-
mentum, but the total energy is conserved and the total momentum is conserved. What
is conserved in SR? That is, what is the invariant quantity?

In spacetime, we found that space and time depend on the reference frame, but that
the spacetime interval t2 − x2 is invariant. For momenergy, we’ll find that the invariant
is the rest mass, m2 = E2 − p2.

Wait a minute. That equation makes no sense. The units are all wrong! Mass in kilo-
grams, energy in Joules (kilogram meters squared per second squared), and momentum
in kilogram meters per second. This is the same problem as in spacetime – we just need
to convert to spacetime units, in which we measure space and time in the same units.
With time and distance in meters, c = 1 and all velocities are dimensionless.

Here are our new units, using c = 1: Energy E = mv2/2 has units of kilograms.
Momentum p = mv has units of kilograms. So, mass in kilograms, Energy in kilograms,
and momentum in kilograms. Strange, but no stranger than light-meters, right?

2 4-vectors and the momenergy arrow

Recall that a vector has both a magnitude and a direction. For example, a velocity in 2-
dimensional space has components vx, vy. It has magnitude v =

√
v2x + v2y and a direction

with respect to the x axis θ = tan−1(vy/vx). Likewise, a 3-vector of velocity in Euclidean
space would have components vx, vy, vz. Or simply a 3-vector of position x, y, z.

What about vectors in spacetime? The 4-dimensional spacetime displacement is a
4-vector, with components t, x, y, z. What is the magnitude of this vector? The invariant
spacetime interval, which is the same as the proper time

τ =
√
t2 − x2 − y2 − z2

Thus, in Newtonian mechanics, quantities like velocity are described by 3-vectors. In SR,
we need 4-vectors because of the way space and time are intertwined.

In Newtonian mechanics, the momentum and energy of a particle depend on its mass
and its 3-vector velocity: E = mv2/2, where v is the magnitude of the velocity 3-vector.
p = mv, where p is a vector quanitity - it has both a magnitude and direction, which
depends on the 3-vector v. The 3-vector velocity depends on the spatial displacement
and the time, e.g., vx = ∆x/∆t

In SR, energy and momentum are unified into momenergy, which also depends on the
mass of the particle. But, instead of using the 3-vector velocity, it now depends on the
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4-vector spacetime displacement and the proper time.

The momenergy 4-vector is
(momenergy) = (mass) × (spacetime displacement) / (proper time)
where both momenergy and the spacetime displacement are 4-vectors. Mass here
means the rest mass of a particle. It’s an intrinsic property of matter, which doesn’t
change with rest frame.

The momenergy 4-vector points in the same direction as the spacetime displacement.
Where else would it point? If the particle moves along a path from event 1 to event 2,
its momenergy vector must point along that same path.

REMEMBER that (spacetime displacement) is a 4-vector, while (proper time)
is the magnitude of that vector. The 4-vector is a geometric object, including both a
direction and magnitude. The spacetime displacement 4-vector has components t, x, y, z.
The proper time is just the magnitude.

In our simplified spacetime, with only one spatial dimension, we see that the energy
component of momenergy points along the time axis. The momentum component points
in the spatial direction. The magnitude of the momenergy vector is just like the spacetime
interval. Recall spacetime interval t2 − x2. Likewise, the square of the momenergy
magnitude is the time part squared minus the space part squared, E2 − p2.

OK, now let’s look in detail at the components of the momenergy 4-vector:
Time component = Energy = (mass) × (time displacement) / (proper time).
Recall our notation: t for time displacement (which depends on frame) and τ for proper
time. Thus, in calculus notation,

E = m
dt

dτ

Look at one space component of momenergy, in x direction:
Space component = momentum = (mass) × (x displacement) / (proper time).
Again, in calculus notation, the x component of momentum is

px = m
dx

dτ

Likewise, py = mdy/dτ and py = mdz/dτ

Does this look familiar? Almost. Newtonian momentum is p = mv = mdx/dt. Here
we’ve just replaced the time, which depends on reference frame, with proper time, which
is independent of reference frame.

We’ll return in a moment to look at the energy and momentum components in more
detail. But first, let’s look at the magnitude of the momenergy 4-vector. As with the
spacetime interval, take the square of the time component minus the squares of the space
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components:

E2 − p2x − p2y − p2z = m2 [(dt)2 − (dx)2 − (dy)2 − (dz)2]

(dτ)2

But what is (dτ)2? It’s just the square of the infinitesimal proper time,

(dτ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2

thus

E2 − p2 = m2 (dτ)2

(dτ)2
= m2

Note that p is a 3-vector, with magnitude p.

So, the invariant quantity of momenergy is just the mass! The time component,
energy, and spatial components, the momenta, vary with reference frame, but the mag-
nitude of the momenergy vector, the mass of the particle, remains the same.

What happens when we set a particle in motion? At rest, its worldline just follows
the time axis. Likewise, it’s momenergy is purely in the time direction – it has energy
but no momentum. Now, give it a kick in the x direction. It gains momentum, so its
momenergy now has a spatial component – momentum in the x direction.

What happens to the energy? Recall E = m(dt/dτ). The proper time, which is the
clock time in the particle’s frame, is no longer the same as laboratory time. Lab time
can only be longer than proper time, thus E is larger than before.

What about the magnitude of the momenergy, defined by m2 = E2−p2? Remarkably,
it stays the same. The square of the energy gets larger by exactly the same amount as
the momentum squared. The momenergy magnitude, the mass of the particle, is the
same regardless of what speed it moves at! But the energy itself does change:

E2 = m2 + p2

thus
E =

√
m2 + p2

(Recall t2 = τ 2 + x2.)

What happens when we transform to another frame of reference? Again, start with
a particle at rest, that is, with p = 0. Momenergy points along the time axis. Transform
to another reference frame, in which the particle is in motion with some velocity. Now
the particle has different energy and momentum, but the momenergy magnitude

m2 = E2 − p2

is invariant. We can now make a simplified “momenergy diagram” like our spacetime
diagrams. (DRAW the invariant hyperbola for momenergy, with energy along the “time”
axis and momentum along the “space” axis.)
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3 Momentum: the space part of momenergy

Let’s compare again the Newtonian and SR versions of momentum.
Newton: px = mdx/dt, likewise for py, pz.
SR: px = mdx/dτ .
What’s the difference? Proper time τ is the spacetime distance between events on the
worldline of the particle. This is the time as measured in frame of the moving particle,
in which there is no spatial motion of the particle.

The invariance of spacetime interval, comparing particle’s frame with any other im-
plies

(dτ)2 = (dt)2 − (dx)2 = (dt)2 − (vdt)2 = (1− v2)(dt)2

Thus,

dτ = dt(1− v2)1/2 =
dt

γ

With this relation for dt/dτ ,

E = m
dt

dτ
= mγ

and

px = m
dx

dτ
= m

dx

(dt/γ)
= m

dx

dt
γ = mvxγ

Likewise for py, pz.

At low velocity, γ ≈ 1 and we recover the Newtonian equations for energy and momen-
tum. Well, almost. What about units? In our SR equations, velocity is dimensionless, as
a fraction of the speed of light. Thus, px is units of kilograms. To get back to conventional
units, just multiply by c in conventional units of meters per second, pconv = pc

For energy, multiply by the square of the speed of light, so that energy in conventional
units is Econv = Ec2. Fully, Econv = mγc2. At rest, γ = 1, thus the famous equation

Econv = mc2
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4 Review of Momenergy (so far)

E, px, py, pz are components of momenergy just like t, x, y, z are components of spacetime.
In both cases, these are components of a 4-vector that has both a magnitude and a
direction.

Invariant of momenergy is mass m2 = E2 − p2, similar to the invariant spacetime
interval or proper time τ 2 = t2−x2 (for 1D case). The mass m is the invariant magnitude
of the momenergy 4-vector. The proper time τ is the invariant length of a spacetime
displacement 4-vector.

Units: remember that we’re working in units where time is measured in light-meters,
so velocities are dimensionless. Thus, energy, momentum, and mass all have the same
units of kilograms.

The momenergy 4-vector is related to the spacetime displacement 4-vector:
(Momenergy 4-vector) = (mass)(spacetime displacement 4-vector)/(proper time)
Thus, E = mdt/dτ px = mdx/dτ , etc.

The 4-vector of momenergy points in the same direction as the spacetime displace-
ment. For a particle at rest, the spacetime displacement between events only has a time
component, no space component. Thus, the momenergy has only an energy component,
no momentum. Set the particle in motion, it increases in both energy and momentum,
but the magnitude of momenergy remains the same, it’s just the mass of the particle
m2 = E2 − p2.

Momentum part, px = mdt/dτ = γmvx. At low velocity, γ = 1, so px = mv, just like
in Newtonian mechanics.

To get from SR units of momentum, we need to multiply the momentum by the speed
of light, pconv = pc.

5 Energy: the time part of momenergy

Again, E = mdt/dτ = m/(1− v2)1/2 = mγ.

Compare with the Newtonian kinetic energy EKinetic = KNewton = mv2/2. When
v = 0, KNewton = 0. But, in SR, when v = 0, E = m. This is the rest energy of the
particle, equivalent to its rest mass. The rest energy obviously does not go to zero at
v = 0.
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How can we reconcile the Newtonian and special relativistic descriptions of energy?
Simple. The SR energy is the total energy of the particle, whereas the Newtonian equation
includes only the kinetic energy at low speed. We simply need to define kinetic energy
as energy in addition to the rest energy, E = m+K or

K = E −m = m[γ − 1]

At v = 0, γ = 1, thus K = 0 in agreement with the Newtonian kinetic energy. Well,
almost. Again we have a problem of units. Here we have kinetic energy in kilograms,
not Joules. As we discussed before, we multiply by c2 to get back to conventional units.

Now, let’s work in conventional units and check that we recover the Newtonian kinetic
energy as v approaches zero:
In conventional units,

K = (E −m)c2 = mc2

 1√
1− (v/c)2

− 1


Look at the term 1/(1− (v/c)2)1/2. For small v/c, you can show that

1/(1− (v/c)2)1/2 ≈ 1 + (v/c)2/2

Now,
K = mc2[1 + (v/c)2/2− 1] = mv2/2

as required so that we recover the Newtonian energy at low velocity.

Again, in conventional units, the rest energy of a particle is E = mc2. Its total energy,
E = γmc2, increases with velocity. The kinetic energy part of this is just the total minus
the rest energy, K = E − Erest = mc2(γ − 1). Back to our c = 1 units, Erest = m,
E = γm, and K = m(γ − 1).

6 Relation between Energy and momentum

Note that p = γmv and E = γm. Thus

p = vE

Surprised? You shouldn’t be. Look at the spacetime diagram. In a spacetime diagram,
a particle at constant velocity has x = vt. The momenergy 4-vector always points in the
same direction, so it matches the tilt of the worldline.

In detail, using simple calculus:

E = m
dt

dτ
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and

p = m
dx

dτ

thus
p

E
=
mdx

dτ

m dt
dτ

=
dx

dt
= v

7 Conservation of momenergy

In Newtonian mechanics, we had conservation of energy and conservation of momemen-
tum. Smash some particles into each other,

1. Conservation of energy
∑
Ein =

∑
Eout

2. Conservation of momentum
∑

pin =
∑

pout where you have to remember that p is
a vector quantity, which can be broken down into components,

∑
px,in =

∑
px,out.

What about in SR? What is conserved? Regardless of which free-float frame from
which we observe the collision, the total momenergy is conserved! In a particular free-
float frame, the time and space parts of momenergy are individually conserved. In other
words, we now have conservation equations that look the same as before. Within an
inertial frame we have the following conservation relations:

1. Conservation of time part of momenergy
∑
Ein =

∑
Eout and

2. Conservation of space part of momenergy
∑

pin =
∑

pout. As above, this vector
equality can be broken into components.

Now, we need to be very careful in our terminology:

INVARIANT (with respect to reference frame) = quantity that has the same value in
any reference frame. Example: spacetime interval, magnitude of momenergy

CONSERVED (with respect to event such as collision) = quantity that remains un-
changed through some interaction, but the actual value of this quantity could de-
pend on reference frame. Example: Energy of set of particles, momentum of set of
particles

CONSTANT (with respect to time or place) = quantity that does not change with time.
Example: speed of light, mass of electron

8



These are not mutually exclusive; some quantities can be described by more than one of
these. For example, speed of light is invariant, conserved, and constant. Magnitude of
momenergy is invariant and conserved.

8 Summary

(momenergy 4-vector) = (mass) (spacetime displacement 4-vector) / (proper time for
that displacement)

Time and space components of momenergy E, px, py, pz, respectively, behave a lot like
time and space components of spacetime interval.

Invariant magnitude of momenergy, the rest mass

m2 = E2 − p2x − p2y − p2z

or just
m2 = E2 − p2 = E ′2 − p′2

where p is the magnitude of the momentum 3-vector.

Space components

px = m
dx

dτ
= mvxγ

Likewise for py, pz.

Time component

E = m
dt

dτ
= mγ

At rest, v = 0, thus Erest = m.

Kinetic energy is total energy minus rest energy,

K = E −m = m(γ − 1)

9 Sample problem 7-3

Write down the four components of the momenergy 4-vector in the given frame in the
form {E, px, py, pz}.
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(a) Particle moves in positive x direction with kinetic energy equal to three times its rest
energy (K = 3m).

Rest energy is just the mass m. Total energy is kinetic plus rest energy, thus

E = 3m+m = 4m

Momenta in y and z are zero. Get momentum in x direction from invariancem2 = E2−p2,
thus

p2 = E2 −m2 = (4m)2 −m2 = 15m2

{E, px, py, pz} = {4m, (15)1/2m, 0, 0}

(b) Same particle is observed in a frame in which kinetic energy equals its mass (K = m).

Total energy is kinetic plus rest energy, thus

E = m+m = 2m

Still zero momentum in y or z directions. Using invariance, get x momentum,

p2 = E2 −m2 = (2m)2 −m2 = 3m2

{E, px, py, pz} = {2m, (3)1/2m, 0, 0}

(e) A particle moves with equal x, y, z momentum components (px = py = pz) and with
kinetic energy equal to four times its rest energy (K = 4m).

Total energy equals kinetic plus rest

E = 4m+m = 5m

Momentum, px = py = pz and p2 = p2x+p2y+p
2
z = E2−m2 Same as 3p2x = (5m)2−m2 =

24m2,
px = 81/2m

{E, px, py, pz} = {5m, 81/2m, 81/2m, 81/2m}
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