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Lecture Notes #5: Trip to Canopus
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0 Preliminaries

Required Reading: Spacetime Physics, ch. 4

Homework: HW4 is due Thursday, February 7:
Just 3 problems from chapter L: 6 (a only), 7, 8

1 Proposal: A Trip to Canopus

Good news! NASA wants to send a manned mission to the unusual star Canopus, to make
astronomical observations as close to its surface as we can get, and return home.

Bad news (maybe): you have been selected to make the trip! This trip to Canopus will
not involve actually landing on the star. Look, but don’t touch!

The problem is that Canopus lies 99 light years away. Even at light speed, it would take
99 years to get there and 99 to get back, right? We would need to take lots of people and
return 6 or 7 generations (roughly, 6 times 30 or so) later. Pack the wife and kids, pigs,
chickens, some good books... Not likely that we would want to do this. Or maybe there is a
way...

2 Measuring speed along the way: Faster than light?

To decide if we’d like to actually make the journey, let’s first imagine what the trip would be
like, yet another “Gedankenexperiment.”

Imagine that along the way from Earth to Canopus are strewn some beacons that show
the time in the Earth reference frame, one at every light-year checkpoint. These beacons
are synchronized in the Earth frame just like the camera-clocks in one of our rod and clock
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lattices. How did they get there? Don’t worry, this is just a thought experiment, not a real
one! Now let’s imagine that we take the trip on a rather fast spacecraft. On board the ship
we carry own our very accurate atomic clock to time the journey.

We leave Earth on a momentous occasion, at noon on July 4, 2000, with a marching band
playing for us and a big send-off parade. As we travel along toward Canopus, we peer out the
window looking for the beacons in space that mark the way. When we see one, we compare
the time and date on our clock to the time and date on the beacon.

(DRAW Earth, Canopus, rocket, numbered beacons along the way)

At beacon #8, 8 light years from Earth (as measured in the Earth frame), we see that
the beacon time is 12:00 PM, July 4, 2010. We look down at our clock, which reads 12:00
PM, July 4, 2006. Hmmm. What’s going on here? Have we travelled 8 light years in 6 years
of time (as measured on our clocks), for a speed v = 8/6? Or have we travelled 8 light years
in 10 years (as measured by the beacon clocks), for a speed v = 8/10?

What’s the correct way to measure velocity? We have to measure both distance and time
in the same reference frame! In the rocket frame, the time of our trip so far is as measured
by the clock on board the ship, ∆t′ = 6, and we have travelled a distance ∆x′ = 0 – because
we’re just sitting inside the rocket. Thus our speed in the rocket frame is v′ = 0, right?

In the frame of Earth, we have travelled a distance ∆x = 8 in a time ∆t = 10. Thus
an Earth-frame observer says that we’re moving at speed v = 8/10 = 0.8 times the speed of
light. This is also the speed at which Earth appears to move from our perspective; vrel must
be the same as measured by both frames.

You have to be very careful to keep track of which measurements belong in which frame!

3 The Flight Contract - Carefully State Your Terms

We have the notion that some SR effect involving time dilation might help us get to Canopus
and back in less than twice 99 years. In our previous thought experiment, travelling at v = 0.8,
we covered 8 light-years of Earth-measured distance in 6 years of rocket-clock time, but 10
years of Earth time, thus we anticipate that the trip would take 99× 6/10 = 74 years in each
direction (1/γ = 6/10 is ratio of times from above). Less than 99, but still too long for our
taste. Going faster might decrease the length of the trip as measured by the rocket clock and,
therefore, as measured by our body clocks. But a faster ship will cost NASA more money!

Let’s make the length of time for the journey a demand to NASA - a term of our contract
with them. But we have to state it very carefully. Let’s say that we don’t want to spend
more than 20 years to get there, as measured by the clock on board the rocket (2× 20 = 40
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years - come home to retire). The DISTANCE of the trip will be specified as measured in the
Earth frame, but the TIME elapsed for the trip, which is what we care about, must be short
enough in the rocket frame for us to return alive!

After playing with the numbers a bit, we propose that NASA build a ship that will travel
at 99/101 times the speed of light. Preposterous, they say. Well, that’s what we need, we
reply. Let’s justify this request.

Consider the spacetime interval in the Earth frame, evaluating two events: launch from
Earth and turnaround at Canopus. At v = 99/101, it will take

t = 99 ly/(99/101 ly/ y) = 101 y

to travel in each direction. The spacetime interval between launch and turnaround, as mea-
sured in the Earth frame, is

t2 − x2 = (101)2 − (99)2 = 10201 − 9801 = 400 = (20)2 y2

Thus the spacetime interval is 20 years.

The invariance of the spacetime interval says t′2 − x′2 = t2 − x2, where the primes
are the rocket-frame time and distance. In the rocket frame, we don’t move at all, thus
t′2 − (0)2 = (20)2, thus the time elapsed in the rocket frame is simply 20 years.

Thus, the time dilation factor is 101/20 = 5.05. Note that this is the Lorentz factor for

v = 99/101, γ = 1/
√

1 − (99/101)2 = 5.05.

How long does the trip take in the Earth frame? The whole journey will take 202 years in
the Earth frame. Yikes! NASA doesn’t like this, but we explain that this is tough luck. Even
if we travel at light speed, the trip could be no shorter than 198 years as measured on Earth.
The fact that the trip lasts a much shorter time as observed on the rocket doesn’t change
the situation on Earth very much.

We explain that the trip could be even shorter for us: Suppose that the ship could travel
at 1 − 10−6 of lightspeed. Then the trip would last only 0.28 years, or about 3.5 months!
But it would still take about 200 years in the Earth frame.

The lesson here is that, with a fast enough ship, we can travel to any place that we want
in an arbitrarily short period of time. But, as we’ll discuss, this comes at a price – we don’t
return to the same TIME. Time travel is quite possible, but only time travel to the future.

NASA is not happy about the 202 years before they get their data, but they’re encouraged
that we’re willing to take the trip, provided that it only ages us by 40 years.
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4 Challenges to our Plan

Our plan is submitted to a panel of experts and politicians (these groups are, of course,
mutually exclusive) for review.

4.1 Two Inertial Frames?

Question from Jim Fastlane:
“How is it that you will age only 40 years while we here on Earth will age 202 years? That’s
ridiculous! You say that this happens because of Special Relativity, because you will fly at
almost light speed. But once you’re flying along toward Canopus, we could just as easily say
that you’re standing still and Earth is moving – they’re both perfectly good inertial frames.
Thus, your proposal is nonsense.”

Our response:
It’s the fact that we have to turn around and come back that makes the rocket flight different
from the Earth frame.

Fastlane:
“What? Now I really know that you’re crazy. You age less because you’re out driving around?”

Well, actually that IS the answer! Look at the spacetime interval: d2 = t2 − x2. For
the same total spacetime interval, a longer path travelled implies a shorter amount of time
elapsed (in the frame of the traveler, that is). So, the surest way to get old at the maximum
rate is to sit around and do nothing. Makes you want to hit the road, doesn’t it? It almost
doesn’t seem fair – the faster you go, travelling around the Universe, seeing lots of things,
the slower you age!

Look at the spacetime diagram of the journey in the Earth frame (DRAW it!). Consider
all the possible paths one can take between two events: launch of the rocket and return of
the rocket. The spacetime interval between the two events is the same for all, but the time
elapsed for the traveler is shortest when the spatial distance traveled is longest! The longest
possible distance traveled is when the traveler moves about at nearly the speed of light.

Remember to use the invariant spacetime interval:

d2 = t2Earth − l2Earth = t2Rocket − l2Rocket

The distance between events is zero in the Rocket frame (they both happen at the rocket),
lRocket = 0, and the Earth frame distance between the events is simply lEarth = vreltEarth,
thus the elapsed times in the Earth and Rocket frames are related by

tRocket = tEarth

√
1 − v2rel
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4.2 Lorentz Contraction

One of the other panel members chimes in, this time Dr. Joanne Short:
“Wait a minute, you say that only 20 years will elapse on your outward journey. But you
STILL know that the distance is 99 light years. How can you travel 99 light years in 20
years?”

Any suggestions, class?

Of course, Dr. Short is getting very confused by mixing up measurements from different
reference frames. She’s comparing the 20 years of time in the rocket frame to 99 light-years of
distance measured in the Earth frame. But that’s NOT the distance for the trip as measured
in the rocket frame! From the rocket frame, we’ll measure a different Earth-Canopus distance,
which is shorter due to the SR length contraction effect.

There’s no problem, because the distance from Earth to Canopus appears shorter in the
rocket frame by the same factor that the time appears shorter. The ratio of rocket time/Earth
time for the trip is 20/101. The length contraction has the same ratio, so from the rocket
we’ll measure the distance from Earth to Canopus as 99×20/101 = 19.6 light-years. We can
get there in only 20 years because, to a rocket moving at 99/101 of light speed, the journey
only looks 19.6 light-years in length!

4.3 Travel into the Future – but Not Back!

It occurs to one of the panel members that we’ll be travelling forward in time, returning
to Earth 202 years later, about 6 human generations later. Of course, we knew that and
accepted that we’ll never see our immediate families again – maybe we should bring them on
board?

Let’s draw a spacetime diagram to show what happens. Our world line is at nearly 45
deg angle going out and coming back. We return far into the future. There’s no way to get
BACK in time, only to go forward. Note how spacetime interval is measured in this space:
d2 = t2 − x2, NOT t2 + x2

Review: vrel = 99/101, γ = 101/20, tEarth = 101 y, LEarth = 99 ly, tRocket = 20 y,
LRocket = 19.6 ly.
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4.4 Relativity of Simultaneity - Jumping from Frame to Frame

Are we done justifying our plan to NASA? No, our critic Jim Fastlane has one last withering
criticism.

Fastlane:
“Let’s look again at comparing time in rocket and Earth frames. While it’s flying along at
constant velocity your rocket frame is an inertial frame just like the Earth frame. You’re sitting
at rest in the rocket. Imagine a set of synchronized clocks in the rocket frame, stretching out
as long at the Earth-Canopus distance. Since the Earth moves relative to the rocket-frame
clocks, a clock on Earth should appear to run slower than the rocket-frame clocks. So that
trip takes less time on the Earth clocks than it does on your rocket clock. The same thing
happens on the way back: the time measured by the Earth clock, which appears from the
rocket frame to be moving, will be less than as measured by the rocket clock. So, tell me
again how you do this in only 20 years?”

Uh-oh. It would seem that he’s got us here. Or does he? Wait a minute! Our trip to
Canopus and back involves more than one inertial frame. We fly out at constant velocity in
one direction, but we return at constant velocity in the opposite direction. Those are TWO
separate inertial frames. At Canopus, the process of braking and turning around effectively
jumps us from the outgoing inertial frame to the incoming inertial frame.

Each rocket-frame, incoming and outgoing, has a large set of synchronized clocks attached
to it. From the rocket frame, note the time on a clock at Earth while we travel to Canopus
and back. We have to be very careful to note WHERE the clock is and in what frame we are
making the observation.

Let’s analyze our trip again. We agree that, as measured on board the rocket, the trip to
Canopus takes only 20 years if we travel at 99/101 lightspeed. What does the Earth clock
read? It will appear to run slower than the rocket-frame clocks, and the relative velocity
between the rocket and beacons is 99/101, so FROM THE ROCKET FRAME, the Earth
clock appears to run slow by the same factor that the rocket clock appears to runs slower
as observed by the Earth frame. Thus, as observed by the rocket frame, the Earth clock
records a time 20× (20/101) = 3.96 years. Note that this observation appears very different
from our Gedankenexperiment, in which we looked out the window and looked at the time
on beacon-clocks in the Earth frame. Why? Because although the Earth clock and all the
beacon clocks appear synchronized in the Earth frame, they do NOT appear synchronized
from the rocket frame.

Remember the key to this: Rocket clock appears to run slow, as observed by Earth-frame.
Likewise, the Earth clock appears to run slow as observed by the rocket-frame. From the
outbound rocket frame, the Earth clock hits 3.96 years just as we reach Canopus. As measured
on Earth, that same event occurs after 101 years. The discrepancy is due to the relativity of
simultaneity! The rocket and Earth frames DO NOT record the arrival of the rocket at the
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same time.

Now, what happens when we turn the ship around? We jump to the incoming inertial
frame. During the return trip, again our rocket clock records 20 years of time, but from the
rocket frame, the Earth clock ticks off 3.96 years of time while we reach Earth again.

But observers on Earth tell us that our roundtrip took 202 years, right? That means that,
at the moment after we turned around, Earth clocks must have read 202 − 3.96 = 198.04
years. But didn’t it take only 3.96 years on the Earth clock for us to get there?

Remember, the 3.96 years of outward time is the time that the outgoing rocket observer
sees on the Earth clock. 198.04 years is what the incoming rocket observer sees on the Earth
clock. They are NOT in the same inertial frame! The jump from outgoing to incoming inertial
frame causes a difference in what the rocket observer sees. This is because the outgoing and
incoming inertial rocket frames have different notions of simultaneity!

Simultaneity is important: In the outbound rocket frame, we say that we arrived at
Canopus and checked the Earth clock at the same time. But those events are not simultaneous
in the Earth frame. Those events are also not simultaneous in the incoming rocket frame.

The fact that we had to jump from on inertial frame to another makes our rocket trip
special, thus breaking the symmetry between the paradox of “Earth sees rocket moving but
rocket sees Earth moving.”

Each of the three inertial frames, Earth, outgoing rocket, and incoming rocket are equally
valid. It’s our changing from one frame to another that jars the simultaneity of measurements
and distinguishes the rocket trip from simply sitting on Earth.

The jump from frame to frame does require an acceleration. During this time, we’re no
longer in an inertial frame, thus SR does not necessarily apply. Does this mean that we need
General Relativity to explain the paradox? No, not really. We just need to change inertial
frames very slowly. Approximate the “jump” by a set of small steps between several inertial
frames.
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