INTRODUCTION TO RELATIVITY

Winter 2018-2019
Prof. Michael S. Vogeley
Homework Assignment 4 Solutions
Spacetime ch.L, problems 6 (a only), 7, 8

6. Transformation of Angles

(a) In the rocket frame, the meter stick lies at angle ϕ^{\prime} with respect to the x^{\prime} axis. In the rocket frame $\Delta x^{\prime}=(1 \mathrm{~m}) \cos \phi^{\prime}$ and $\Delta y^{\prime}=(1 \mathrm{~m}) \sin \phi^{\prime}$. In the laboratory frame, the stick appears contracted along the direction of travel, thus $\Delta x=\Delta x^{\prime} / \gamma=(1 \mathrm{~m}) \cos \phi^{\prime} / \gamma$. There is no change tranverse to the direction of travel, $\Delta y=\Delta y^{\prime}=(1 \mathrm{~m}) \sin \phi^{\prime}$. The angle with the lab frame x axis is larger than in the rocket frame, $\tan \phi=\Delta y / \Delta x=$ $\gamma \Delta y^{\prime} / \Delta x^{\prime}$, so $\phi=\tan ^{-1}\left(\gamma \tan \phi^{\prime}\right)$. The length of the meter stick in the lab frame d is given by $d^{2}=(\Delta x)^{2}+(\Delta y)^{2}=\left[(1 \mathrm{~m}) \cos \phi^{\prime} / \gamma\right]^{2}+\left[(1 \mathrm{~m}) \sin \phi^{\prime}\right]^{2}$. A little algebra yields $d=(1 \mathrm{~m}) \sqrt{1-v^{2} \cos ^{2} \phi^{\prime}}$.

7. Transformation of y-velocity

In the rocket frame, the particle moves at $v_{y}^{\prime}=\Delta y^{\prime} / \Delta t^{\prime}$. Assume that the rocket moves at $v_{r e l}$ in the x direction relative to the lab frame. Apply the Lorentz transformation: No effect on distances in the transverse dimension, so in the lab frame $\Delta y=\Delta y^{\prime}$. But we do have to transform the time, $\Delta t=\gamma \Delta t^{\prime}$. Thus, the y -velocity in the lab frame is $v_{y}=\Delta y / \Delta t=$ $\Delta y^{\prime} /\left(\gamma \Delta t^{\prime}\right)=\sqrt{1-v_{r e l}^{2}} v_{y}^{\prime}$. In the rocket frame, the particle has $v_{x}^{\prime}=0$. But in the lab frame, it moves $\Delta x=v_{\text {rel }} \Delta t$, thus $v_{x}=v_{r e l}$.

8. Transformation of velocity direction

As suggested in the problem, solve this by transforming the space and time intervals. In the rocket frame, in time Δt^{\prime} the particle moves in the y^{\prime} direction an amount

$$
\Delta y^{\prime}=v^{\prime} \sin \phi^{\prime} \Delta t^{\prime}
$$

and moves in the x^{\prime} direction an amount

$$
\Delta x^{\prime}=v^{\prime} \cos \phi^{\prime} \Delta t^{\prime}
$$

Now transform Δy^{\prime} and Δx^{\prime} into the lab frame: There is no change in the transverse displacement,

$$
\Delta y=\Delta y^{\prime}
$$

but the displacement along the direction of travel and the time does change:

$$
\Delta x=\gamma \Delta x^{\prime}+\gamma v_{r e l} \Delta t^{\prime}
$$

The tangent of the angle in the lab frame is then

$$
\tan \phi=\frac{\Delta y}{\Delta x}=\frac{\Delta y^{\prime}}{\gamma \Delta x^{\prime}+\gamma v_{r e l} \Delta t^{\prime}}
$$

Plug in the expressions for Δy^{\prime} and Δx^{\prime} in the rocket frame from above,

$$
\tan \phi=\frac{v^{\prime} \sin \phi^{\prime} \Delta t^{\prime}}{\gamma\left(v^{\prime} \cos \phi^{\prime} \Delta t^{\prime}\right)+\gamma v_{r e l} \Delta t^{\prime}}
$$

The Δt^{\prime} cancels in numerator and denominator and you can also factor out v^{\prime} to yield

$$
\phi=\tan ^{-1}\left(\frac{\sin \phi^{\prime}}{\gamma\left(\cos \phi^{\prime}+v_{r e l} / v^{\prime}\right)}\right)
$$

This problem differs from problem 6 because this involves the motion of a particle, rather than the appearance of an object. In the limit of very large $v_{r e l}$, the argument of $\tan ^{-1}$ goes to zero, thus $\phi \rightarrow 0$. This makes sense because the x displacement becomes huge compared to the y displacement in fixed time. In problem 6 , as $v_{r e l} \rightarrow \infty$, the argument of $\tan ^{-1}$ becomes large, thus $\phi \rightarrow 90^{\circ}$

