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Spacetime ch.L, problems 6 (a only), 7, 8

6. Transformation of Angles

(a) In the rocket frame, the meter stick lies at angle φ′ with respect to the x′ axis. In
the rocket frame ∆x′ = (1 m) cosφ′ and ∆y′ = (1 m) sinφ′. In the laboratory frame, the
stick appears contracted along the direction of travel, thus ∆x = ∆x′/γ = (1 m) cosφ′/γ.
There is no change tranverse to the direction of travel, ∆y = ∆y′ = (1 m) sinφ′. The
angle with the lab frame x axis is larger than in the rocket frame, tanφ = ∆y/∆x =
γ∆y′/∆x′, so φ = tan−1(γ tanφ′). The length of the meter stick in the lab frame d is
given by d2 = (∆x)2 + (∆y)2 = [(1 m) cosφ′/γ]2 + [(1 m) sinφ′]2. A little algebra yields
d = (1 m)

√
1− v2 cos2 φ′.

7. Transformation of y-velocity
In the rocket frame, the particle moves at v′y = ∆y′/∆t′. Assume that the rocket moves at
vrel in the x direction relative to the lab frame. Apply the Lorentz transformation: No effect
on distances in the transverse dimension, so in the lab frame ∆y = ∆y′. But we do have
to transform the time, ∆t = γ∆t′. Thus, the y-velocity in the lab frame is vy = ∆y/∆t =

∆y′/(γ∆t′) =
√

1− v2relv′y. In the rocket frame, the particle has v′x = 0. But in the lab
frame, it moves ∆x = vrel∆t, thus vx = vrel.

8. Transformation of velocity direction
As suggested in the problem, solve this by transforming the space and time intervals. In the
rocket frame, in time ∆t′ the particle moves in the y’ direction an amount

∆y′ = v′ sinφ′∆t′

and moves in the x’ direction an amount

∆x′ = v′ cosφ′∆t′

Now transform ∆y′ and ∆x′ into the lab frame: There is no change in the transverse dis-
placement,

∆y = ∆y′

but the displacement along the direction of travel and the time does change:

∆x = γ∆x′ + γvrel∆t
′

The tangent of the angle in the lab frame is then

tanφ =
∆y

∆x
=

∆y′

γ∆x′ + γvrel∆t′

Plug in the expressions for ∆y′ and ∆x′ in the rocket frame from above,

tanφ =
v′ sinφ′∆t′

γ(v′ cosφ′∆t′) + γvrel∆t′
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The ∆t′ cancels in numerator and denominator and you can also factor out v′ to yield

φ = tan−1
(

sinφ′

γ(cosφ′ + vrel/v′)

)

This problem differs from problem 6 because this involves the motion of a particle, rather
than the appearance of an object. In the limit of very large vrel, the argument of tan−1 goes
to zero, thus φ→ 0. This makes sense because the x displacement becomes huge compared
to the y displacement in fixed time. In problem 6, as vrel → ∞, the argument of tan−1

becomes large, thus φ→ 90◦
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