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Homework Assignment 4 Solutions
Spacetime ch.L, problems 6 (a only), 7, 8

6. Transformation of Angles

(a) In the rocket frame, the meter stick lies at angle ¢’ with respect to the 2z’ axis. In
the rocket frame Az’ = (1m)cos¢’ and Ay’ = (1m)sin¢’. In the laboratory frame, the
stick appears contracted along the direction of travel, thus Az = Az’/y = (1m) cos ¢’ /.
There is no change tranverse to the direction of travel, Ay = Ay’ = (1m)sin¢’. The
angle with the lab frame z axis is larger than in the rocket frame, tan¢ = Ay/Az =
yAY' JAx', so ¢ = tan"!(ytan¢’). The length of the meter stick in the lab frame d is
given by d*> = (Az)? + (Ay)? = [(1m)cos ¢’ /v]*> + [(1m)sin ¢']2. A little algebra yields
d= (1m)y/T= 7 cos? .

7. Transformation of y-velocity

In the rocket frame, the particle moves at v;, = Ay'/At". Assume that the rocket moves at
Urer IN the x direction relative to the lab frame. Apply the Lorentz transformation: No effect
on distances in the transverse dimension, so in the lab frame Ay = Ay’. But we do have
to transform the time, At = yA#. Thus, the y-velocity in the lab frame is v, = Ay/At =

Ay [(vAt') = /1 = w2 v,. In the rocket frame, the particle has v/, = 0. But in the lab
frame, it moves Az = v, At, thus v, = ;.

8. Transformation of velocity direction
As suggested in the problem, solve this by transforming the space and time intervals. In the
rocket frame, in time At the particle moves in the y' direction an amount

Ay’ = v sin ¢' At
and moves in the x' direction an amount
Az' = v cos ¢’ At/

Now transform Ay’ and Az’ into the lab frame: There is no change in the transverse dis-
placement,
Ay = Ay

but the displacement along the direction of travel and the time does change:
Azr = yAD + v, At
The tangent of the angle in the lab frame is then

¢ Ay Ay
angp = — =
Az VAL + YU At

Plug in the expressions for Ay’ and Az’ in the rocket frame from above,
v’ sin ¢’ At/

tan ¢ =
¢ (v cos ¢ At') + v At
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The At’ cancels in numerator and denominator and you can also factor out v’ to yield

L sin ¢’
¢ = tan (y(cos o+ vml/v’)>

This problem differs from problem 6 because this involves the motion of a particle, rather
than the appearance of an object. In the limit of very large v,;, the argument of tan~! goes
to zero, thus ¢ — 0. This makes sense because the x displacement becomes huge compared
to the y displacement in fixed time. In problem 6, as v,,; — oo, the argument of tan—!
becomes large, thus ¢ — 90°



