
PHYSICS 233: INTRODUCTION TO RELATIVITY
Winter 2018-2019

Prof. Michael S. Vogeley
Homework Assignment 2 Solutions

Spacetime Physics chapter 2, problems 4, 9, 10, 11, 13.

NOTE: In the word problems, you must justify your answers. Simply answering “yes”
or “no” is not sufficient. You must always explain why, just as you must always provide
calculations to back up your numerical answers. The answers to the odd-numbered problems
are in the book; copying those answers is not a very good way to learn the material.

4. Synchronization by traveling clock?

(a) Can Mr. Englesburg synchronize his clocks any way he wants? Of course not. Incorrect
methods for “synchronization” will cause him to make observations that are not easily rec-
onciled with those of observers in other inertial frames. He can check his method of synchro-
nization by a simple observation: He looks at each clock through a telescope and compares
the time on the clock to the time on his wristwatch. The time on the distant clock should be
behind (earlier than) his wristwatch by exactly the light travel time from him. For example, a
clock that is 100m away had better appear slow by t = 100m/(3×108ms−1) = 3.33×10−7 s.

(b) No, Big and Little Ben are not synchronized. When the moving clock reaches Little Ben,
the elapsed time on the moving clock will be different from the elapsed time on Big Ben, thus
Little Ben will be incorrectly set. Why? From the frame of Big and Little Ben, the moving
clock runs slow (remember “time dilation” means that the length of time between clock ticks
always seems longer in frames in which the clock is not at rest).

(c) If the moving clock flies at v = 105ms−1, then it takes t = 109m/(105ms−1) = 104 s
to travel between Big and Little Ben, as measured in the frame of the Bens. The spacetime
interval between the two events, moving clock passes Big and moving clock passes Little Ben,
is (working in time and distance units of seconds here) t2 − x2 = (104 s)2 − (109m/(3 ×
108ms−1)2 = 108 s2 − 11 s2. This must equal the spacetime interval in the moving clock
frame, in which both events occur at the same place, t′2 − x′2 = t′2 − (0)2 = (108 − 11) s2.
Do the algebra and find that t′ − t = −5.5 × 10−4 s = −0.55 × 10−3 s. When the moving
clock passes Little Ben and sets it, it will be running 0.55 millisecond slow relative to Big
Ben.

(d) At 100 times faster, v = 107ms−1, the travel time in the Bens’ frame is t = 109m/(107ms−1) =
102 s. Again using the spacetime interval, the time elapsed in the moving clock frame is
t′2 = t2 − x2 = (102 s)2 − 11 s2. Again, do the algebra and find that t′ − t = −5.5 × 10−2,
55.0 milliseconds slow. This is starting to get noticeable.

(e) Does it matter? That depends on how accurately the clocks must be synchronized. Given
a specification for the accuracy of the synchronization, we can always move the moving clock
slowly enough to achieve the desired accuracy (carry the clock on a turtle’s back...).

9. Rising Railway Coach

(a) The ball bearings will move toward each other, decreasing their separation, because there
is a sideways relative acceleration from the Earth.
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(b) With one ball bearing above the other, they will move apart because the gravitational
acceleration on the bearing nearer the Earth is larger than on the higher (further from Earth)
bearing, thus there is a relative acceleration between them.

(c) No. The magnitude of the two effects described above, the bearings drawing closer
together in the first case, and apart in the second case, depend only one the distance of the
train from the center of the Earth, not on whether the train is falling up or down. For the
same reason, you will not notice any change when the train stops rising and starts falling.

10. Test Particle?

(a) The acceleration on the smaller mass is a = F/m = (6.67×10−11m3 s−2 kg−1)(10 kg)/(0.1m)2 =
6.67 × 10−8ms−2. At constant acceleration a for time t, an object moves a distance
x = at2/2. Thus, in 3 minutes the smaller mass moves x = (6.67× 10−8ms−2)(180 s)2/2 =
1.1× 10−3m. Thus, it moves by 1 mm in just under 3 minutes.

(b) Ball bearings vary in size and thus in weight. I’ll do this for a bearing that weighs 10
grams, or m = 0.01 kg. They begin a distance r = 20m apart. The gravitational acceleration
of one bearing on another is a = F/m = (6.67 × 10−11m3 s−2 kg−1)(0.01 kg)/(20m)2 =
1.7 × 10−15ms−2. In 8 seconds, it will move x = at2/2 = (1.7 × 10−15ms−2)(8 s)2/2 =
5.4× 10−14m. Not likely that we’d notice this.

11. Communications Storm

Through his telescope (e.g., via an optical flash from the Sun that travels at light speed),
the astronomer sees evidence for an incoming burst of charged particles that will disrupt
communications. It takes 3 minutes, or 180 seconds, to switch to the secure underground
system on Earth. It takes 500 seconds for the optical flash to reach Earth. For the burst
of particles to reach Earth with enough time to prepare, the particles can take no less than
t = 500 s + 180 s to arrive. They travel 500 light-seconds in at least 680 seconds of time,
thus they travel at speed no greater than v = 500/680 = 0.735c

13. Deflection of Starlight

(a) A photon of light feels the Sun’s gravity for an effective time that is roughly the diameter
of the Sun divided by the speed of light, thus teff ≈ 1.4× 109m/(3.0× 108ms−1) = 4.67 s.
If the light just grazes the Sun’s surface, then the acceleration felt by a photon is a =
GMSun/(dSun/2)

2 = (6.67 × 10−11m3 s−2 kg−1)(2 × 1030 kg)/(0.7 × 109m)2 = 272m s−2.
The net velocity of the “fall” of the photon is then v = at = (272m s−2)(4.67 s) = 1271ms−1.

(b) The photon moves at vy = 1271ms−1 and vx = 3 × 108ms−1. For small angles, as
measured in radians, θ ≈ vy/vx = 4.2× 10−6, which is 2.4× 10−4 degrees.
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