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Prof. Michael S. Vogeley
Homework assignment 1 Solutions

Spacetime ch.1, problems 4a,b,c, 5, 8, 11, 12 (on pages 21-24)

4. Rocket emits two flashes of light
Here we use the invariance of the spacetime interval d2 = (ct)2 − l2, to compute the

missing quantity. This invariance of spacetime intervals implies (ctrocket)
2 − (lrocket)

2 =
(ctlab)

2−(llab)2. Here the distances are given in light-seconds, so we’ll use distance measured in
light-seconds and time measured simply in seconds, thus (trocket)

2−(lrocket)2 = (tlab)
2−(llab)2.

The flashes of light are always at the same place in the rocket frame, so lrocket = 0. In each
case, write down the equivalence of the spacetime intervals and rearrange the equation to
solve for the missing value.

(a) (trocket)
2 = (tlab)

2 − (llab)
2 = (10.72 s)2 − (5.95 s)2 = 79.52 s2, thus trocket = 8.92 s.

(b) (tlab)
2 = (trocket)

2 + (llab)
2 = (20.00 s)2 + (99.00 s)2 = 10201 s2, thus tlab = 101.00 s.

(c) (llab)
2 = (tlab)

2 − (trocket)
2 = (72.90 s)2 − (66.80 s)2 = 852.17 s2, thus llab = 29.19 s.

5. Two firecrackers in the lab
Again, we use the invariant spacetime interval to infer the observations in different frames

of reference, (trocket)
2 − (lrocket)

2 = (tlab)
2 − (llab)

2. This time the two events occur at the
same place in the lab, llab = 0, but at different places in the rocket frame. Just to keep you
paying attention, here we work in time units of years – so it’s easiest in this case to work with
distance in light years. Remember, the speed of light in these units is just c = 1 light-year
per year.

(a) (lrocket)
2 = (trocket)

2 − (tlab)
2 = (5 y)2 − (3 y)2 = (16 y)2, thus lrocket = 4y

(b) In the rocket frame, the site of the exploding firecrackers travels 4 y of space in 5 y of
time, so the relative velocity of the frames is 4/5 the speed of light.

8. Light-speed limits on computing
One limit on the speed of a computer is the rate at which information moves around inside

it. Information can never travel faster than the speed of light!

(a) One megaflop is 106 floating point operations per second, or one calculation every 10−6 s.
Let’s assume that, for each such calculation, the information must travel from the RAM to
CPU and back. If it takes exactly 10−6 s to make the trip, then the longest possible round
trip, assuming that the signal propagates at the speed of light in a vacuum, is 2l = ct =
(3.0 × 108ms−1)(10−6 s) = 300m, so the maximum distance is l = 150m. If the signal
travels through the computer at merely half the speed of light, then the distance must be
half as long.

(b) One gigaflop is 109 calculations per second, or one every 10−9 s. Redo the calculation
from (a) and we find that the distance must be 103 times shorter, or l = 0.15m, or 15 cm
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(c) One teraflop is 1021 calculations per second, or one every 10−12 s. Redo the calculation
from (a) and we find that the distance must be 106 times shorter, or l = 1.5×10−4m, merely
0.15 mm.

(d) Suppose that our computational task is “trivially” parallelizable, so that we simply divide
the number of calculations among a large number of equivalent processors. If the calculation
time within each CPU is significantly longer than the time to move data and instructions from
the “boss” process to the “slave” processors and back, then indeed we can achieve a gain in
speed that is nearly proportional to the number of slave processors. But, if the calculation
requires significant “interprocess” communication between the boss and slaves and/or among
the slaves, then the speed of parallel computing can be dominated by the information travel
time within the computer. The efficiency of dividing the task among processors can be
significantly smaller, depending on the ratio of interprocess communication time to CPU
calculation time. Another issue for parallel computing is the geometry of the arrangement of
processors. If we pack the processors together as tightly as possible, in a roughly spherical
assembly with the boss processor at the center, then the average interprocessor distance is
proportional to the inverse cube of the density of processors l ∝ n−1/3, where n is the number
of processors per m3. However, it’s hard to keep such a computer properly cooled (and hot
computers run slower), so one must resort to lower-dimensional arrangements, which spread
the processors further apart. Note that the famous Cray supercomputers have the shape of a
torus.

11. Fast-moving particles last longer, µ mesons
In one half-life of a particle, half of a group of such particles decay. Imagine a burst of

µ mesons, called muons, is created in the upper atmosphere and that a pack of them move
together at the same speed directly downward, their numbers steadily declining as they near
the Earth’s surface. In one half-life, the number of muons decreases by a factor 1/2. After
N half-lives, the remaining number is proportional to (1/2)N . Only because of the shorter
travel time as seen in the muon frame do any of these particles reach sea level.

(a) If their velocity is very close to the speed of light, then the muons reach the Earth in
t = (60× 103m)/3.0× 108ms−1 = 2.0× 10−4 s.

(b) In the muon’s rest frame (traveling with them on their descent), their half-life is thalf =
1.5 × 10−6 s. If this half-life were the same for the Earth observers, then they would count
N = (2.0×10−4 s)/(1.5×10−6 s) = 133 half-lives. In that case a mere (1/2)133 = 9.18×10−41

of the muons would reach other. In other words, none of them.

(c) If 1/8 of the muons reach sea level, then only 3 half-lives have elapsed, 1/8 = (1/2)3.

(d) In the frame of the muon, which is falling freely toward the Earth, its creation in the
atmosphere and impact on Earth occur in the same place.

(e) From (c), three half-lives elapsed in the muon’s frame, so it’s time interval is simply
tmuon = 3(1.5× 10−6 s) = 4.5× 10−6 s. The space interval is zero, so the spacetime interval
is the same as the time interval.

12. Fast-moving particles last longer, π+ mesons
These particles decay much faster than muons, so you have to observe them quickly!
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(a) If there were no time dilation due to SR, then a pack of pions moving at the speed of
light could travel a maximum of l = cthalf = (3.0× 108ms−1)(18× 10−9 s) = 5.4m before
their number were halved.

(b) Use the invariance of spacetime intervals and some algebra. Start with (ctpion)
2 −

(lpion)
2 = (ctlab)

2 − (llab). The events in question are the creation of the pions and their
arrival at a point where they have traveled after one half-life in the pion frame. We know that
lpion = 0, since the pions don’t move in their own frame. We also know that the lab observer
sees the pions travel llab = 0.9978ctlab in time tlab. Thus, for two events separated by thalf and
lpion = 0 in the pion frame, (cthalf )

2 = (ctlab)
2 − (0.9978ctlab)

2. Divide out the factors of c

and rearrange as t2half = t2lab(1−(0.9978)2). Thus, tlab = thalf/
√
1− (0.9978)2 = 15.08thalf .

The time elapsed in the lab frame is 15.08 times longer than in the pion frame, therefore the
distance traveled is 15.08 times as long.
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