Mixing MPI and CUDA

Mixing MPI (C) and CUDA (C++) code requires some care during linking because of differences between the C and C++ calling conventions and runtimes. A helpful overview of the issues can be found at How to Mix C and C++.

One option is to compile and link all source files with a C++ compiler, which will enforce additional restrictions on C code. Alternatively, if you wish to compile your MPI/C code with a C compiler and call CUDA kernels from within an MPI task, you can wrap the appropriate CUDA-compiled functions with the extern keyword, as in the following example.

These two source files can be compiled and linked with both a C and C++ compiler into a single executable using:

mpicc -c main.c -o main.o
nvcc -c multiply.cu -o multiply.o
mpicc main.o multiply.o -L/usr/local/cuda/lib64 -lcudart

The CUDA/C++ compiler nvcc is used only to compile the CUDA source file, and the MPI C compiler mpicc is user to compile the C code and to perform the linking

01. /* multiply.cu */
02. 
03. #include <cuda.h>
04. #include <cuda_runtime.h>
05. 
06. __global__ void __multiply__ (const float *a, float *b)
07. {
08. const int i = threadIdx.x + blockIdx.x * blockDim.x;
09.     b[i] *= a[i];
10. }
11. 
12. extern "C" void launch_multiply(const float *a, const *b)
13. {
14.     /* ... load CPU data into GPU buffers a_gpu and b_gpu */
15. 
16.     __multiply__ <<< ...block configuration... >>> (a_gpu, b_gpu);
17. 
18.     safecall(cudaThreadSynchronize());
19.     safecall(cudaGetLastError());
20. 
21.     /* ... transfer data from GPU to CPU */

Note the use of extern "C" around the function launch_multiply which instructs the C++ compiler (nvcc in this case) to make that function callable from the C runtime. The following C code shows how the function could be called from an MPI task.

01. /* main.c */
02. 
03. #include <mpi.h>
04. 
05. void launch_multiply(const float *a, float *b);
06. 
07. int main (int argc, char **argv)
08. {
09.        int rank, nprocs;
10.     MPI_Init (&argc, &argv);
11.     MPI_Comm_rank (MPI_COMM_WORLD, &rank);
12.     MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
13. 
14.     /* ... prepare arrays a and b */
15. 
16.     launch_multiply (a, b);
17. 
18.     MPI_Finalize();
19.        return 1;
20. }