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Chapter 4 

CUDA Memories 
 
 
 
 
So far, we have learned to write a CUDA kernel function which can be invoked by a 

massive number of threads. The data to be processed by these threads are first transferred 

from the host memory to the device global memory. The threads then access their portion 

of the data from the global memory using block and thread IDs. We have also learned the 

more details of the assignment and scheduling of threads for execution. Although this is a 

very good start, these simple CUDA kernels will likely achieve only a small fraction of the 

potential speed of the underlying hardware. This is due to the fact that global memory, 

which is typically implemented with Dynamic Random Access Memory (DRAM), tends to 

have long access latencies (hundreds of clock cycles) and limited access bandwidth. While 

having many threads available for execution can theoretically tolerate long memory access 

latencies, one can easily run into a situation where traffic congestion in the global memory 

access paths prevents all but very few threads from making progress, thus rendering 

multiple Streaming Multiprocessors idle. In order to circumvent such congestion, CUDA 

provides a plethora of additional types of memories that can filter out a majority of data 

requests to the global memory. In this chapter, you will learn to use such memories to 

boost the execution efficiency of CUDA kernels. 

4.1. Importance of Memory Access Efficiency 

The effect of memory access efficiency can be illustrated by calculating the expected 

performance level of the simple matrix multiplication kernel code in Figure 3.4, replicated 

in Figure 4.1. The most important part of the kernel in terms of execution time is the for 

loop that performs inner product calculation. In every iteration of this loop, two global 

memory accesses are performed for one multiplication and one addition. Thus, the ratio of 

floating point calculation to global memory access operation is 1 to 1, or 1.0. We will refer 

to this ratio as the compute to global memory access (CGMA) ratio, defined as the number 

of floating-point calculations performed for each access to the global memory within a 

region of a CUDA program. 
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global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockId.y * TILE_WIDTH + threadId.y;
// Calculate the column idenx of Pd and N

Int Col = blockId.x * TILE_WIDTH + threadId.x;

Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row][k] * Nd[k][Col];

Pd[Row][Col] = Pvalue;

}

Figure 4.1 Revised Matrix Multiplication Kernel using multiple blocks.
 

 

CGMA has major implications on the performance of a CUDA kernel. For example, the 

GeForce 8800GTX processor supports 86.4 Giga (10
9
) Bytes per second, or 86.4 GB/s, of 

global memory access bandwidth. With a CGMA of 1.0 and 4 bytes in each single-

precision floating-point datum, one can expect that the matrix multiplication kernel will 

execute at no more than 21.6 Giga Floating Point Operations per Cycle (GFLOPS), since 

each floating point operation requires four bytes of global memory data and 86.4/4=21.6. 

While 21.6 GFLOPS is a respectable number, it is only a tiny fraction of the peak 

performance of 367 GFLOPS for GeForce 8800GTX. We will need to increase the CGMA 

ratio in order to achieve a higher level of performance for the kernel.  

4.2. CUDA Device Memory Types 
Each CUDA device has several memories that can be used by programmers to achieve 

high CGMA ratio and thus high execution speed in their kernels. Figure 4.2 shows these 

CUDA device memories as implemented in the GeForce 8800GTX hardware. At the 

bottom of the picture, we see global memory and constant memory. These are the 

memories that the host code can write (W) and read (R) by calling API functions. We have 

already introduced global memory in Chapter 2. The constant memory allows read-only 

access by the device and provides faster and more parallel data access paths for CUDA 

kernel execution than the global memory. 

 

Above the thread execution boxes in Figure 4.2 are registers and shared memories. 

Variables that reside in these memories can be accessed at very high speed in a highly 

parallel manner. Registers are allocated to individual threads; each thread can only access 

its own registers. A kernel function typically uses registers to hold frequently accessed 

variables that are private to each thread. Shared memories are allocated to thread blocks; 

all threads in a block can access variables in the shared memory locations allocated to the 

block. Shared memories are efficient means for threads to cooperate by sharing the results 

of their work. 
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• Each thread can:

– Read/write per-thread 

registers

– Read/write per-thread local 

memory

– Read/write per-block 

shared memory

– Read/write per-grid global 

memory

– Read/only per-grid

constant memory
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Thread (0, 0)
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Thread (1, 0)
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Block (1, 0)
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Thread (0, 0)
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Thread (1, 0)

Registers
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Figure 4.2 GeForce 8800GTX Implementation of  CUDA Memories

 
 

Table 1 shows the CUDA syntax for declaring program variables into the various device 

memories. Each such declaration also gives its declared CUDA variable a scope and 

lifetime. Scope identifies the range of threads that can access the variable: by a single 

thread only, by all threads of a block, or by all threads of the entire grid. If a variable’s 

scope is a single thread, a private version of the variable will be created for each and every 

thread; every thread can only access its own local version of the variable. For example, if a 

kernel declares a variable whose scope is a thread and it is launched with one million 

threads, one million versions of the variable will be created so that each thread initializes 

and uses its own version of the variable.  

 

Table 1. CUDA Variable Type Qualifiers

applicationgridconstant__device__ __constant__ int ConstVar;

applicationgridglobal__device__ int GlobalVar;

kernelblockshared__device__ __shared__ int SharedVar;

kernelthreadglobalAutomatic array variables

kernelthreadregisterAutomatic variables other than arrays

LifetimeScopeMemoryVariable declaration

 
Lifetime specifies the portion of program execution duration when the variable is available 

for use: either within a kernel’s invocation or throughout the entire application. If a 

variable’s lifetime is within a kernel invocation, it must be declared within the kernel 

function body and will be available for use only by the kernel’s code. If the kernel is 

invoked several times, the contents of the variable are not maintained across these 

invocations. Each invocation must initialize the variable in order to use them. On the other 

hand, if a variable’s lifetime is throughout the entire application, it must be declared 

outside of any function body. The contents of the variable are maintained throughout the 

execution of the application and available to all kernels. 
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As shown in Table 1, all automatic variables except for arrays declared in kernel and 

device functions are placed into registers. We will refer to variables that are not arrays as 

scalar variables. The scopes of these automatic variables are within individual threads. 

When a kernel function declares an automatic variable, a private copy of that variable is 

generated for every thread that executes the kernel function. When a thread terminates, all 

its automatic variables also cease to exist. In Figure 4.1, variables tx, ty, and Pvalue are all 

automatic variables and fall into this category. Note that accessing these variables is 

extremely fast and parallel but one must be careful not to exceed the limited capacity of the 

register storage in the hardware implementations. We will address this point in Chapter 5. 

 

Automatic array variables are not stored in registers. Instead, they are stored into the global 

memory and incur long access delays and potential access congestions. The scopes of these 

arrays are, same as automatic scalar variable, within individual threads. That is, a private 

version of such array is created and used for every thread. Once a thread terminates its 

execution, the contents of its automatic array variables also cease to exist. Due to the slow 

nature of automatic array variables, one should avoid using such variables. From our 

experience, one seldom needs to use automatic array variables in kernel functions and 

device functions. 

 

If a variable declaration is preceded by keywords “__shared__’’ (each “__’’ consists of 

two “_’’ characters), it declares a shared variable in CUDA. One can also add an optional 

“__device__” in front of “__shared__” in the declaration to achieve the same effect. Such 

declaration must reside within a kernel function or a device function. The scope of a shared 

variable is within a thread block, that is, all threads in a block see the same version of a 

shared variable. A private version of the shared variable is created for and used by each 

thread block during kernel execution. The lifetime of a shared variable is within the 

duration of the kernel. When a kernel terminates its execution, the contents of its shared 

variables cease to exist. Shared variables are an efficient means for threads within a block 

to collaborate with each other. Accessing to shared memory is extremely fast and highly 

parallel. CUDA programmers often use shared memory to hold the portion of global 

memory data that are heavily used in an execution phase of kernel. One may need to adjust 

the algorithms used in order to create execution phases that heavily focus on small portions 

of the global memory data, as we will demonstrate shortly with matrix multiplication. 

 

If a variable declaration is preceded by keywords “__constant__’’ (each “__’’ consists of 

two “_’’ characters) it declares a constant variable in CUDA. One can also add an optional 

“__device__” in front of “__constant__” to achieve the same effect. Declaration of 

constant variables must reside outside any function body. The scope of a constant variable 

is all grids, meaning that all threads in all grids see the same version of a constant variable. 

The lifetime of a constant variable is the entire application execution. Constant variable are 

often used for variables that provide input values to kernel functions. Constant variables 

are stored in the global memory but are cached for efficient access. With appropriate 
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access patterns, accessing constant memory is extremely fast and parallel. Currently, the 

total size of constant variables in an application is limited at 65,536 bytes. One may need 

to break up the input data volume to fit within this limitation, as we will illustrate in 

Chapter 5. 

 

A variable whose declaration is preceded only by the keyword “__device__” (each “__’’ 

consists of two “_’’ characters), is a global variable and will be placed in global memory. 

Accesses to a global variable are very slow. However, global variable are visible to all 

threads of all kernels. Their contents also persist through the entire execution. Thus, global 

variables can be used as a means for threads to collaborate across blocks. One must, 

however, be aware of the fact that there is currently no way to synchronize between threads 

from different thread blocks or to ensure data consistency across threads when accessing 

global memory other than terminating the current kernel execution.  Therefore, global 

variables are often used to pass information from one kernel execution to another kernel 

execution.  

 

Note that there is a limitation on the use of pointers with CUDA variables declared into 

device memories. Pointers can only be used to point to data object in the global memory. 

There are two typical ways in which pointers usages arise in kernel and device functions. 

First, if an object is allocated by a host function, the pointer to the object is initialized by 

cudaMalloc() and can be passed to the kernel function as a parameter. For example, the 

parameters Md, Nd, and Pd in Figure 4.1 are such pointers. The second type of usage is to 

assign the address of a variable declared in the global memory to a pointer variable. For 

example, the statement {float* ptr = &GlobalVar;} assigns the address of GlobalVar 

into an automatic pointer variable ptr. 

4.3. A Strategy to Reduce Global Memory Traffic 
We have an intrinsic tradeoff in the use of device memories in CUDA: global memory is 

large but slow whereas the shared memory is small but fast. A common strategy is 

partition the data into subsets called tiles so that each tile fits into the shared memory. The 

term tile draws on the analogy that a large wall (i.e., the global memory data) can often be 

covered by tiles (i.e., subsets that each can fit into the shared memory). An important 

criterion is that the kernel computation on these tiles can be done independently of each 

other. Note that not all data structure can be partitioned into tiles given an arbitrary kernel 

function.  

 

The concept of tiling can be illustrated with the matrix multiplication example. Figure 4.3 

shows a small example of matrix multiplication using multiple blocks in Figure 4.1. This 

example assumes that we use four 2X2 blocks to compute the Pd matrix. Figure 4.3 

highlights the computation done by the four threads of block(0,0). These four threads 

compute Pd0,0, Pd1,0, Pd0,1, and Pd1,1. 
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Figure 4.3 A small example of matrix multiplication using multiple blocks
 

Figure 4.4 shows the global memory accesses done by all threads in block0,0. Note that 

each thread accesses four elements of Md and four elements of Nd during its execution. 

Among the four threads highlighted, there is a significant overlap of their accesses to Md 

and Nd. For example, thread0,0 and thread1,0 both access Md1,0 as well as the rest of row 0 

of Md. In Figure 4.1, the kernel is written so that both threads access these Md elements 

from the global memory. If we manage to have thread0,0 and thread1,0 to collaborate so that 

these Md elements are only loaded from global memory once, we can reduce the total 

number of accesses to the global memory by half. In general, we can see that every Md and 

Nd element are accessed exactly twice during the execution of block0,0. Therefore, if we 

can have all the four threads to collaborate in their accesses to global memory, we can 

reduce the traffic to the global memory by half. 

Md3,1 * Nd1,3

Md2,1 * Nd1,2

Md1,1 * Nd1,1

Md0,1 * Nd1,0

Pd1,1

thread1,1
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Md1,1 * Nd0,1

Md0,1 * Nd0,0

Pd0,1

thread0,1

Md3,0 * Nd1,3Md3,0 * Nd0,3

Md2,0 * Nd1,2Md2,0 * Nd0,2

Md1,0 * Nd1,1Md1,0 * Nd0,1

Md0,0 * Nd1,0Md0,0 * Nd0,0

Pd1,0

thread1,0

Pd0,0

thread0,0

Access

order

Figure 4.4 Global memory accesses performed by threads in block0,0  
 

The reader should be able to verify that the potential reduction of global memory traffic in 

matrix multiplication is proportional to the dimension of the blocks used. With NxN 

blocks, the potential reduction of global memory traffic would be N. That is, if we use 
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16x16 blocks, one can potentially reduce the global memory traffic to 1/16 through 

collaboration between threads. 

 

We now present an algorithm where threads collaborate to reduce the traffic to the global 

memory. The basic idea is to have the threads to collaboratively load Md and Nd elements 

into the shared memory before they individually use these elements in their dot product 

calculation. Keep mind that the size of the shared memory is quite small and one must be 

careful not to exceed the capacity of the shared memory when loading these Md and Nd 

elements into the shared memory. This can be accomplished by dividing the Md and Nd 

matrices into smaller tiles. The size of these tiles is chosen so that they can fit into the 

shared memory. In the simplest form, the tile dimensions equal those of the block, as 

illustrated in Figure 4.5.  

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Figure 4.5 Tiling Md and Nd to utilize shared memory
 

In Figure 4.5, we further divide Md and Nd into 2X2 tiles. The dot product calculations 

performed by each thread are now divided into phases. In each phase, all threads in a block 

collaborate to load a tile of Md and a tile of Nd into the shared memory. This is done by 

having every thread in a block to load one Md element and one Nd element into the shared 

memory, as illustrated in Figure 4.6. Each row of Figure 4.6 shows the execution activities 

of a thread. We only need to show the activities of threads in block0,0; the other blocks all 

have similar behavior. The shared memory locations for the Md elements are Mds and Nd 

elements Nds. At the beginning of Phase 1, the four threads of block0,0 collaboratively 

loads the a tile of Md into shared memory: thread0,0  loads Md0,0 into Mds0,0, thread1,0 loads 

Md1,0 into Mds1,0, thread0,1 loads Md0,1 into Mds0,1, and thread1,1 loads Md1,1 into Mds1,1. A 

tile of Nd is also loaded in a similar manner.  

 

After the two tiles of Md and Nd are loaded into the shared memory, these values are used 

in the calculation of the dot product. Note that each value in the shared memory is used 

twice. For example, the Md1,1 value, loaded by Thread1,1 into Mds1,1, is used twice, once 

by thread0,1 and once by thread1,1. By loading each global memory value into shared 

memory so that it can be used multiple times, we reduce accesses to the global memory. In 
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this case, we reduce the number of accesses to the global memory by half. The reader 

should verify that the reduction is by a factor of N if the tiles are NxN elements. 
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Figure 4.6 Execution phases of a tiled matrix multiplication algorithm

 
Note that the calculation of each dot product in Figure 4.6 is now performed in two phases. 

In each phase, products of two pairs of the input matrix elements are accumulated into the 

Pvalue variable. In this example, the dot products are done in 2 phases. In an arbitrary case 

where the input matrix is of dimension N and the tile size is TILE_WIDTH, the dot 

product would be performed in N/TILE_WIDTH phases. The creation of these phases is 

key to the reduction of accesses to the global memory. With each phase focusing on a 

small subset of the input matrix values, the threads can collaboratively load the subset into 

the shared memory and use the values in the shared memory to satisfy the input needs of 

the phase of calculations.  

 

Note also that the Mds and Nds locations are re-used to hold the input values. In each 

phase, the same locations are used to hold the subset of Md and Nd elements used in the 

phase. This allows a much smaller shared memory to screen away most of the accesses to 

global memory. This is due to the fact that each phase focuses on a small subset of the 

input matrix elements. Such focused access behavior is called locality. When an algorithm 

exhibit locality, there is an opportunity to use small, high-speed memories to screen away 

most accesses to the global memory. We will return to the concept of locality in Chapter 5. 

 

We are now ready to present the tiled kernel function that uses shared memory to reduce 

the traffic to global memory. This kernel shown in Figure 4.7 implements the phases 

illustrated in Figure 4.6.  In Figure 4.7, Line 1 and Line 2 declare Mds as a shared memory 

variable. Recall that the scope of shared memory variables is a block. Thus, all threads of a 

block have access to the same Mds and Nds arrays. This is important since all threads in a 
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block must have access to the Md and Nd values loaded into Mds and Nds by each other so 

that they can avoid accessing global memory. 

 

global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.   int Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[m*TILE_WIDTH + tx][Row];

10. Nds[tx][ty] = Nd[Col][m*TILE_WIDTH + ty];

11.   for (int k = 0; k < TILE_WIDTH; ++k)

12.       Pvalue += Mds[tx][k] * Nds[k][ty];

13.   Pd[Row][Col] = Pvalue;

}

}

Figure 4.1 Tiled Matrix Multiplication Kernel using shared memories.
 

Lines 3 and 4 save the threadId and blockId values into automatic variables and thus into 

registers for fast access. Recall that automatic non-array variables are placed into registers. 

Their scope is in each individual thread. That is, one private version of tx, ty, bx, and by is 

created by the run-time system. They will reside in registers that are accessible by one 

thread. They are initialized with the threaded and blockId values and used many times 

during the lifetime of thread. Once the thread ends, the values of these variables also cease 

to exist.  

 

Lines 5 and 6 identify the row index and column index of the Pd element that the thread is 

to produce. As shown in Figure 4.8, the column (x) index of the Pd element to be produced 

by a thread can be calculated as bx*TILE_WIDTH+tx. This is because each block covers 

TILE_WIDTH elements in the x dimension. A thread in block bx would have bx blocks 

before it that will cover bx*TILE_WIDTH elements of Pd. Another tx trheads within the 

same block would cover another tx elements of Pd. Thus the thread with bx and tx should 

be responsible for covering the Pd element whose x index is bx*TILE_WIDTH+tx. For the 

example of Figure 4.5, the x index of the Pd element to be calculated by thread1,0 of 

block0,1 is 0*2+1 = 1. Similarly, the y index can be calculated as by*TILE_WIDTH+ty. In 

Figure 4.5, the y index of the Pd element to be calculated by thread1,0 of block0,1 is 1*2+0 = 

2. Thus, the Pd element to be produced by this thread is Pd1,2.  
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Figure 4.8 Calculation of the matrix indices in tiled multiplication
 

Line 8 of Figure 4.7 shows the loop that iterates through all the phases of calculating the 

final Pd element. Each iteration of the loop corresponds to one phase of the calculation 

shown in Figure 4.6. The m variable indicates the number of phases that have already been 

done for the dot product. Recall that each phase uses one tile of Md and one tile of Nd 

elements. Therefore, at the beginning of each phase, m*TILE_WIDTH pairs of Md and Nd 

elements have been processed by previous phases.  

 

Recall that all threads in a grid execute the same kernel function. The threadId variable 

allows them to identify the part of the data they are to process. Also recall that the thread 

with by=blockId.y and ty=threaded.y is to process row (by*TILE_WIDTH+ty) of Md, as 

shown at the left side of in Figure 4.8. Line 5 stores this number into the Row variable of 

each thread. Likewise, the thread with bx=blockId.x and tx=threadId.x is to process 

column (bx*TILE_WIDTH+tx) of Nd, as shown at the top side of Figure 4.8.  Line 6 

stores this number into the Col variable of each trhead. This will be used when the threads 

load Md and Nd elements into the shared memory. 

 

In each phase, Line 9 loads the appropriate Md element into the shared memory. Since we 

already know the row index of Md and column index of Nd elements to be processed by 

the thread, we will focus on the column index of Md and row index of Nd. As shown in 

Figure 4.8, each block has TILE_WIDTH
2
 threads that will collaborate to load 

TILE_WIDTH
2
 Md elements into the shared memory. Thus, all we need to do is to assign 

each thread to load one Md element. This is conveniently done using the block and thread 

IDs. Note that the beginning index of the section of Md elements to be loaded is 
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m*TILE_WIDTH. Therefore, an easy approach is to have every thread to load an element 

from that point on identified by the thread ID. This is precisely what we have in Line 9, 

where each thread loads Md[m*TILE_WIDTH+tx][Row]. Since the value of Row is a 

linear function of ty, each of the TILE_WIDTH
2
 threads will load a unique Md element 

into the shared memory. Altogether, these threads will load the orange square subset of Md 

shown in Figure 4.8. The reader should use the small example in Figure 4.5 and Figure 4.6 

to verify that the address calculation works correctly. 

 

Once the tiles of Md and Nd are loaded in Mds and Nds, the loop in Line 11 performs the 

phase of the dot product based on these elements. The progression of the loop for 

thread(tx,ty) is shown in Figure 4.8, with the direction of the Md and Nd data usage 

marked with k, the loop variable in Line 11. Note that the data will be accessed from Mds 

and Nds, the shared memory location holding these Md and Nd elements. 

 

The benefit of the tiled algorithms is substantial. For matrix multiplication, the global 

memory accesses are reduced by a factor of TILE_WIDTH. If one uses 16X16 tiles, we 

can reduce the global memory accesses by a factor of 16. This reduction allows the 

86.4GB/s global memory bandwidth to serve a much larger floating point computation rate 

than the original algorithm. More specifically, the global memory bandwidth can now 

support ((86.4/4)*16) = 345.6 GFLOPS, very close to the peak floating-point performance 

of the GeForce 8800 GTX processor. This effectively removes the global memory 

bandwidth as the major limiting factor of matrix multiplication performance. 

4.4. Memory as a Limiting Factor of Paralleism  
While CUDA registers, shared memories, and constant memories can be extremely 

effective in reducing the number of accesses to the global memory, one must be careful not 

to exceed the capacity of these memories. Each processor implementation offers a limited 

amount of CUDA memories, which limits the number threads that can simultaneously 

reside in the Streaming Multiprocessors for a given application. In general, the more 

memory locations each thread requires, the fewer the number of threads can reside in each 

SM, and thus the fewer number of threads that can reside in the entire processor. 

 

In the GeForce 8800 GTX implementation, each SM has 8K registers, which amounts to 

128K registers for the entire processor. While this is a very large number, it only allows 

each thread to use a very limited number of registers. Recall that each SM can 

accommodate up to 768 threads. In order to achieve this maximal, each thread can use only 

8K/768= 10 registers. If each thread uses 11 registers, the number of threads in each SM 

will be reduced. Such reduction is done at the block granularity. For example, if each block 

contains 256 threads, the reduction of threads will be done by reducing 256 threads at a 

time. Thus, the next lower number of threads from 768 would be 512, a 1/3 reduction of 

threads that can simultaneously reside in each SM. This can greatly reduce the number of 

warps available for scheduling, thus reducing the processor’s ability to find useful work in 

the presence of long-latency operations. 
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Shared memories can also limit the number of threads assigned to each SM. In the 

GeForce 8800 GTX processor, there are 16K bytes of shared memory in each SM. Keep in 

mind that shared memory is used by blocks. Recall that each SM can accommodate up to 8 

blocks. In order to reach this maximum, each block must not use more than 2K bytes of 

shared memory. If each block uses more than 2K bytes of memory, the number of blocks 

that can reside in each SM is such that the total number of shared memories used by these 

blocks cannot exceed 16K bytes. For example, if each block uses 5K bytes of shared 

memory, no more than three blocks can be assigned to each SM.  

 

For the matrix multiplication example, the shared memory can become a limiting factor. 

For a tile size of 16X16, each block needs a 16X16X4 = 1K bytes of storage of Mds. 

Another 1KB is needed for Nds. Thus each block uses 2K bytes of shared memory. The 

16K bytes of shared memory allows 8 blocks to simultaneous reside in an SM. Since this is 

the maximum allowed by the threading hardware, shared memory is not a limiting factor 

for this tile size. If we chose 32X32 tiles, each block needs 32*32*4*2 = 8K bytes of 

shared memory. Thus, only two blocks would be allowed to reside in each SM.  

 

4.5. Summary 
In summary, CUDA defines registers, shared memory, and constant memory that can be 

accessed at higher speed and in a more parallel manner than the global memory. Using 

these memories effectively will likely require re-design of the algorithm, We use matrix 

multiplication as an example to illustrate tiled algorithms, a popular strategy to enable 

effective use of shared memories. We demonstrate that with 16X16 tiling, global memory 

accesses are no longer the major limiting factor for matrix multiplication performance. It 

is, however, important for CUDA programmers to be aware of the limited sizes of these 

special memories. Their capacities are implementation dependent. Once their capacities are 

exceeded, they become limiting factors for the number of threads that can be assigned to 

each SM. 


