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Chapter 6 

Floating Point Considerations 
 
 
In the early days of computing, floating point arithmetic capability was found only in 

mainframes and supercomputers. Although many microprocessors designed in the 1980's 

started to have floating point coprocessors, their floating-point arithmetic speed was about 

three orders of magnitude slower than that of mainframes and supercomputers. With 

advances in microprocessor technology, many microprocessors designed in the 1990's, 

such as Intel Pentium III and AMD Athlon, started to have high performance floating point 

capabilities that rival supercomputers. High speed floating point arithmetic has become a 

standard feature for microprocessors today. As a result, it has also become important for 

application programmers to understand and take advantage of floating point arithmetic in 

developing their applications. In particular, we will focus on the accuracy of floating point 

arithmetic, the precision of floating point number representation, and how they should be 

taken into consideration in parallel computation. 

 

6.1. Floating Point Format 
 

The IEEE Floating Point Standard is an effort for the computer manufacturers to conform 

to a common representation and arithmetic convention for floating point data. Most, if not 

all, of the computer manufacturers in the world have accepted this standard. In particular, 

virtually all microprocessors designed in the future will either fully conform to or almost 

fully conform to the IEEE Floating Point Standard. Therefore, it is important for 

application developers to understand the concept and practical considerations of this 

standard. 

 

A floating point number system starts with the representation of a numerical value as bit 

patterns. In the IEEE Floating Point Standard, a numerical value is represented in three 

groups of bits: sign (S), exponent (E), and mantissa (M). Each (S, E, M) pattern uniquely 

identifies a numeric value according to the following formula: 

 

value = (-1)
S 

* M * {2
E
}, where 1.0 ≤ M < 2.0     (1) 

 

The interpretation of S is simple: S=0 means a positive number and S=1 a negative 

number. Mathematically, any number, including -1, when raised to the power of 0, results 
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in 1. Thus the value is positive. On the other hand, when -1 is raised to the power of 1, it is 

-1 itself. With a multiplication by -1, the value becomes negative. The interpretation of M 

and E bits are, however, much more complex. We will use the following example to help 

explain the interpretation of M and E bits. 

 

Assume for the sake of simplicity that each floating point number consists of a 1-bit sign, 

3-bit exponent, and 2-bit mantissa. We will use this hypothetical 6-bit format to illustrate 

the challenges involved in encoding E and M. As we discuss these values, we will 

sometime need to express number as either in decimal place value or in binary place value. 

Numbers expressed in decimal place value will have subscript D and those as binary place 

value will have subscript B. For example, 0.5D (5* 10 
-1 

since the place to the right of the 

decimal point carries a weight of 10
-1

) is the same as 0.1B (1*2 
-1 

since the place to the right 

of the decimal point carries a weight of 2 
-1

). 

Normalized representation of M 
 

Formula (1) requires that 1.0B ≤ M < 10.0B, which makes the mantissa value for each 

floating point number unique. For example, the only one mantissa value allowed for 0.5D is 

M =1.0: 

 

0.5D  = 1.0B * 2
-1

 

 

Another potential candidate would be 0.1B * 2
0
, but the value of mantissa would be too 

small according to the rule. Similarly, 10.0B * 2
-2

 is not legal because the value of the 

mantissa is too large. In general, with the restriction that 1.0B≤ M < 10.0B, every floating 

point number has exactly one legal mantissa value. The numbers that satisfy this restriction 

will be referred to as normalized numbers. Because all mantissa values that satisfy the 

restriction are of the form 1.XX, we can omit the “1.” part from the representation. 

Therefore, the mantissa value of 0.5 in a 2-bit mantissa representation is 00, which is 

derived by omitting “1.” from 1.00. This makes a 2-bit mantissa effectively a 3-bit 

mantissa. In general, with IEEE format, an n-bit mantissa is effectively an (n+1)-bit 

mantissa. 

 

Excess encoding of E 
 

If n bits are used to represent the exponent E, the value 2
n-1

-1 is added to the two's 

complement representation for the exponent to form its excess representation. A two’s 

complement representation is a system where the negative value of a number can be 

derived by first complementing every bit of the value and add one to the result.  In our 3-

bit exponent representation, there are three bits in the exponent. Therefore, the value 2
3-1

-1 

= 011 will be added to the 2’s complement representation of the exponent value. The 

following table shows the 2’s complement representation and the excess presentation of 

each decimal exponent value. In our example, the exponent for 0.5D is -1. The two’s 
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complement representation of -1 can be derived by first complementing 001, the 

representation of 1, into 110 and then adding 001 to get 111. The excess presentation adds 

another 011 to the 2’s complement representation, as shown in the table, which results in 

010. 

 

2’s complement Decimal value Excess-representation 

000 0 011 

001 1 100 

010 2 101 

011 3 110 

100 (reserved pattern) 111 

101 -3 000 

110 -2 001 

111 -1 010 

Figure 1 Excess-3 encoding, sorted by 2’s complement ordering 

The advantage of excess representation is that an unsigned comparator can be used to 

compare signed numbers. As shown in Figure 2, the excess-3 code increases 

monotonically from –3 to 3. The code from –3 is 000 and that for 3 is 110. Thus, if one 

uses an unsigned number comparator to compare excess-3 code for any number from –1 to 

3, the comparator gives the correct comparison result in terms of which number is larger, 

smaller, etc. For example, if one compares excess-3 codes 001 and 100 with an unsigned 

comparator, 001 is smaller than 100. This is the right conclusion since the values that they 

represent, -2 and 1, have exactly the same relation. This is a desirable property for 

hardware implementation since unsigned comparators are smaller and faster than signed 

comparators. 

 

2’s complement Decimal value Excess-3 

100 (reserved pattern) 111 

101 -3 000 

110 -2 001 

111 -1 010 

000 0 011 

001 1 100 

010 2 101 

011 3 110 

Figure 2 Excess-3 encoding, sorted by excess-3 ordering 

 

 

Now we are ready to represent 0.5D with our 6-bit format: 

 

0.5D = 0 010 00,  where S = 0, E = 010, and M = (1.)00 
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That is, the 6-bit representation for 0.5D is 001000.  

 

With normalized mantissa and excess-coded exponent, the value of a number with an n-bit 

exponent is 

 

(-1) 
S 

* 1.M * 2 
(E- (2 ^( n-1))+ 1)

 

 

6.2. Representable Numbers 
 

The representable numbers of a number format are the numbers that can be exactly 

represented in the format. For example, if one uses a 3-bit unsigned integer format, the 

representable numbers would be: 

 

000 0 

001 1 

010 2 

011 3 

100 4 

101 5 

110 6 

111 7 

Figure 3 Representable numbers of a 3-bit unsigned format 

 

Neither  -1 nor 9 can be represented in the format given above. We can draw a number line 

to identify all the representable numbers, as shown in Figure 4 where all representatble 

numbers of the 3-bit unsigned integer format are marked with stars. 

 

 

 

 

Figure 4 representable numbers of a 3-bit unsigned integer format 

 

The representable numbers of a floating point format can be visualize in a similar manner. 

In Table 1, we show all the representable numbers of what we have so far and two 

variations. We use a 5-bit format to keep the size of the table manageable. The format 

consists of 1-bit S, 2-bit E (excess-1 coded), and 2-bit M (with “1.” part omitted). The no-

zero column gives the representable numbers of the format we discussed thus far. Note that 

with this format, 0 is not one of the representatble numbers. 

 

0 7 1 4 2 3 5 6 -1 9 8 
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 No-zero Abrupt underflow Denorm 

E M S=0 S=1 S=0 S=1 S=0 S=1 

00 2
-1

 -(2
-1

) 0 0 0 0 

01 2
-1

+1*2
-3

 -(2
-1

+1*2
-3

) 0 0 1*2
-2

 -1*2
-2

 

10 2
-1

+2*2
-3

 -(2
-1

+2*2
-3

) 0 0 2*2
-2

 -2*2
-2

 

 

00 

11 2
-1

+3*2
-3

 -(2
-1

+3*2
-3

) 0 0 3*2
-2

 -3*2
-2

 

00 2
0
 -(2

0
) 2

0
 -(2

0
) 2

0
 -(2

0
) 

01 2
0
+1*2

-2
 -(2

0
+1*2

-2
) 2

0
+1*2

-2
 -(2

0
+1*2

-2
) 2

0
+1*2

-2
 -(2

0
+1*2

-2
) 

10 2
0
+2*2

-2
 -(2

0
+2*2

-2
) 2

0
+2*2

-2
 -(2

0
+2*2

-2
) 2

0
+2*2

-2
 -(2

0
+2*2

-2
) 

 

01 

11 2
0
+3*2

-2
 -(2

0
+3*2

-2
) 2

0
+3*2

-2
 -(2

0
+3*2

-2
) 2

0
+3*2

-2
 -(2

0
+3*2

-2
) 

00 2
1
 -(2

1
) 2

1
 -(2

1
) 2

1
 -(2

1
) 

01 2
1
+1*2

-1
 -(2

1
+1*2

-1
) 2

1
+1*2

-1
 -(2

1
+1*2

-1
) 2

1
+1*2

-1
 -(2

1
+1*2

-1
) 

10 2
1
+2*2

-1
 -(2

1
+2*2

-1
) 2

1
+2*2

-1
 -(2

1
+2*2

-1
) 2

1
+2*2

-1
 -(2

1
+2*2

-1
) 

 

10 

11 2
1
+3*2

-1
 -(2

1
+3*2

-1
) 2

1
+3*2

-1
 -(2

1
+3*2

-1
) 2

1
+3*2

-1
 -(2

1
+3*2

-1
) 

11 Reserved pattern 

Table 1 Representable numbers of no-zero, abrupt underflow, and denorm formats 

 

A look at how these representable numbers populate the number line, as shown in Figure 5, 

provides further insights about these representable numbers. In Figure 5, we show only the 

positive representable numbers. The negative numbers are symmetric to their positive 

counterparts on the other side of 0. 

 

 

 

 

Figure 5. Representable numbers of the no-zero representation 

 

Three things stand out. First, 0 is not representable in this format. Because 0 is one of the 

most important numbers, not being able to represent 0 in a number representation system is 

a serious deficiency. Second, the representable numbers become closer to each other 

towards the neighborhood of 0. This is a desirable behavior because as the absolute value 

of these numbers become smaller, it is more important to represent them more accurately. 

Having the representable numbers closer to each other makes it possible to represent 

numbers more accurately. Unfortunately this trend does not hold for the very vicinity of 0, 

which leads to the third point: there is a gap of representable numbers in the vicinity of 0. 

This is because the range of normalized mantissa precludes 0. This is another serious 

deficiency. The representation introduces significantly larger errors when representing 

numbers between 0 and 0.5 compared to the errors for the larger numbers between 0.5 and 

1.0. 

0 1 2 3 4 
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One method that has been used to accommodate 0 into a normalized number system is the 

abrupt underflow convention, which is illustrated by the second column of Table 1. 

Whenever E is 0, the number is interpreted as 0. In our 5-bit format, this method takes 

away eight representable numbers (four positive and four negative) in the vicinity of 0 and 

makes them all 0. Although this method makes 0 representable, it does create an even 

larger gap between representable numbers in 0's vicinity, as shown in Figure 6. It is 

obvious, when compared with Figure 5, the gap of representable numbers has been 

enlarged significantly with the vicinity of 0. This is very problematic since many numeric 

algorithms rely on the fact that the accuracy of number representation is higher for the very 

small numbers near zero. These algorithms generate small numbers and eventually use 

them as denominators. The errors for these small numbers can be greatly magnified in the 

division process. 

 

 

 

 

Figure 6 Representable numbers of the abrupt underflow format 

 

The actual method adopted by the IEEE standard is called denormalization. The method 

relaxes the normalization requirement for numbers very close to 0. That is, whenever E=0, 

the mantissa is no longer assumed to be of the form 1.XX. Rather, it is assumed to be 

0.XX. In general, if the n-bit exponent is 0, the value is 

 

0.M * 2 
- 2 ^(n-1)

 
+ 2

 

 

For example, in Table 1, the denormalized representation 00001 has exponent value 00 and 

mantissa value 01. Using the denromalized formula, the value it represents is 0.01*2
0 

= 2
–2

. 

Figure 7 shows the representable numbers for the denormalization format. The 

representation now has a uniformly spaced representable numbers in the close vicinity of 0. 

This eliminates the undesirable gap in the previous two methods.  

 

 

Figure 7. Representable numbers of a denormalization format. 

We are now ready to discuss the concept of precision. The precision of a floating point 

representation is measured by the maximal error that we can introduce to a floating point 

number by reprensenting that number as one of the representable numbers. The smaller the 

error is, the higher the precision. In Figure 7, the error instrduced by a number 

representation is always smaller than 0.25D, which occurs if we choose the largest 

representative number that is smaller than the number we would like to represent. 

Obviously, the precision is a floating point representation can be improved by adding more 

0 1 2 
3 4 

0 1 2 3 
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bits to mantissa. Adding one bit to the representation in Figure 7 would improve the 

precision by reducing the maximal error by half. Thus, we say that a number system has 

higher precision when it uses more bits for mantissa. 

 

6.3. Special Bit Patterns and Precision 
 

The actual IEEE format has one more special bit pattern. When all exponent bits are 1s, the 

number represented is an infinity value if the mantissa is 0 or a Not a Number (NaN) if the 

mantissa is not 0. All special bit patterns of the IEEE floating point format are shown in 

the following table. 

 

exponent mantissa meaning 

11…1 ≠ 0 NaN 

11…1 =0 (-1)
S 

* ∞ 

00…0 ≠0 denormalized 

00…0 =0 0 

 

All other numbers are normalized floating-point numbers. Single precision numbers have 

1-bit S, 8-bit E, and 23-bit M. Double precision numbers have 1-bit S, 11-bit E, and 52-bit 

M. Since a double precision number has 29 more bits for mantissa, the largest error for 

representating a number is reduced to 1/2
29 

of that of the single precision format! 

 

All representable numbers fall between -∞ (negative infinity) and +∞ (positive infinite). 

An ∞ can be created by overflow, e.g., divided by zero. Any representable number divided 

by +∞ or -∞ results in 0. 

 

NaN (Not a Number) is generated by operations whose input values do not make sense, for 

example, 0/0, 0*∞, ∞/∞, ∞ - ∞. They are also used to for data that have not be properly 

initialized in a program. There are two types on NaN’s in the IEEE standard: signaling and 

quiet.  

 

Signaling NaN causes an exception when used as input to arithmetic operations. For 

example the operation 1.0 + signaling NaN raises an exception. Signaling NaN’s are used 

in situations where the programmer would like to make sure that the program execution be 

interrupted whenever any NaN values are used in floating point computations. These 

situations usually mean that there is something wrong with the execution of the program. 

In mission critical applications, the execution cannot continue until the validity of the 

execution can be verified with a separate means. For example, software engineers often 

mark all the uninitialized data as signaling NaN. This practice ensures the detection of 

using uninitialized data during program execution. 
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Quiet NaN generates a quiet NaN when used as input to arithmetic operations. For 

example, the operation (1.0 + quiet NaN) generates a quiet NaN. Quiet NaN’s are typically 

used in applications where the user can review the output and decide if the application 

should be re-run with a different input for more valid results. When the results are printed, 

Quite NaN’s are printed as “NaN” so that the user can spot them in the output file easily. 

6.4. Arithmetic Accuracy and Rounding of Mantissa 
Now that we have a good understanding of the IEEE floating point format, we now move 

to the concept of arithmetic accuracy. The accuracy of a floating point arithmetic operation 

is measured by the maximal error introduced by the operation. The smaller the error is, the 

higher the accuracy. The most common source of error in floating point arithmetic is when 

the operation generates a result that cannot be exactly represented and thus requires 

rounding. Rounding occurs if the mantissa of the result value needs too many bits to be 

represented exactly. The cause of rounding is typically pre-shifting in floating point 

arithmetic. When two input operands to a floating-point addition or subtraction have 

different exponents, the mantissa of the one with the smaller exponent is typically right-

shifted until the exponents are equal. As a result, the final result can have more bits than 

the format can accommodate. 

 

This can be illustrated with a simple example based on the 5-bit representation in Table 1. 

Assume that we need to add 1.00*2
-2

 (0, 00, 01) to 1.00*2
1 

(0, 10, 00), that is, we need to 

perform 1.00*2
1
 + 1.00*2

-2
. The ideal result would be 1.001 * 2

1
. However, we can easily 

see that this ideal result is not a representable number in a 5-bit representation. Thus, the 

best one can do is to generate the closest representable number, which is 1.01 * 2
1
. By 

doing so, we introduce an error, 0.001 *2
1
, which is half the place value of the least 

significant place. We refer to this as 0.5 ULP (Units in the Last Place). If the hardware is 

designed to perform arithmetic and rounding operations perfectly, the most error that one 

should introduce should be no more than 0.5 ULP. This is the accuracy achieved by the 

addition and subtraction operations in G80/280. 

 

In practice, some of the arithmetic hardware units, such as division and transcendental 

functions, are typically implemented with iterative approximation algorithms. If the 

hardware does not perform sufficient number of iterations, the result may have an error 

larger than 0.5 ULP. For example, the division in G80/280 can introduce an error that is 

twice the place value of the least place of the mantissa. 

6.4. Algorithm Considerations 
Numerical algorithms often need to sum up a large number of values. For example, the dot 

product in matrix multiplication needs to sum up pair-wise products of input matrix 

elements. Ideally, the order of summing these values should not affect the final total since 

addition is an associative operation. However, with finite precision, the order of summing 

these values can affect the accuracy of the final result. For example, if we need to add four 

numbers in our 5-bit representation: 1.00*2
0
 +1.00*2

0
 + 1.00*2

-2 
+ 1.00*2

-2
.  
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If we add up the numbers in strict sequential order, we have the following sequence of 

operations: 

 

1.00*2
0
 +1.00*2

0
 + 1.00*2

-2 
+ 1.00*2

-2 
= 1.00*2

1
 + 1.00*2

-2 
+ 1.00*2

-2  

= 1.00*2
1
 + 1.00*2

-2 
= 1.00*2

1 

 

Note that in the second step and third step, the smaller operand simply disappears because 

they are too small compared to the larger operand. The pre-shifting of mantissa produces a 

zero value for the smaller operand. 

 

Now, let’s consider a parallel algorithm where the first two values are added and the 

second two operands are added in parallel. The algorithm than add up the pair-wise sum: 

 

(1.00*2
0
 +1.00*2

0
) + (1.00*2

-2 
+ 1.00*2

-2 
)
 
= 1.00*2

1
 + 1.00*2

-1  

= 1.01*2
1 

 

Note that the results are different from the sequential result! This is because the sum of the 

third and fourth values is large enough that it remains non-zero after pre-shifting. This 

discrepancy between sequential algorithms and parallel algorithms often surprises 

application developers who are not familiar with floating point precision and accuracy 

considerations. Although we showed a scenario where a parallel algorithm produced a 

more accurate result than a sequential algorithm, the reader should be able to come up with 

a slightly different scenario where the parallel algorithm produces a less accurate result 

than a sequential algorithm. Experienced application developers either make sure that the 

variation in the final result can be tolerated or to ensure that the data is grouped in a way 

that the parallel algorithm results in the most accurate results. 


