
 1

Chapter 5

Performance Considerations

Although a CUDA kernel can run correctly on any CUDA device, its execution speed can

vary greatly depending on the resource constraints of each device. In this chapter, we will

discuss the major dimensions of resource constraints in an actual CUDA device and how

they can constrain the level of parallel execution in this device. In order to achieve his/her

goals, a programmer often has to find ways to achieve a required level of performance that

is higher than that of an initial version of the application. In different applications, different

constraints may dominate and become the limiting factors. One can improve the

performance of an application on a particular CUDA device, sometimes dramatically, by

trading one resource usage for another. This strategy works well if the resource constraint

thus alleviated was actually the dominating constraint before the strategy was applied and

the one thus exacerbated does not have worse effects on parallel execution. Without such

understanding, performance tuning would be a guess work; plausible strategies may or

may not lead to performance enhancements. Beyond insights into these resource

constraints, this chapter further offers principles and case studies designed to cultivate

intuition about the type of algorithms that can result in high performance execution CUDA

devices. It is also establishes idioms and ideas that will likely lead to good performance

improvements during your performance tuning efforts.

5.1. More on Thread Execution
Let’s first discuss the aspects of thread execution that can limit performance. Recall that

launching a CUDA kernel generates grid of threads that are organized into a two-level

hierarchy. At the top level, a grid consists of a one- or two-dimensional array of blocks. At

the bottom level, each block, in turn, consists of a one-, two-, or three-dimensional array of

threads. In Chapter 3, we discussed the fact that blocks can execute in any order relative to

each other, which allows for transparent scalability in parallel execution of CUDA kernels.

However, we did not say much about the execution timing of threads within each block.

Conceptually, one should assume that threads in a block can execute in any order with

respect to each other. Barrier synchronizations should be used whenever we want to ensure

all threads have completed a common phase of their execution before any of them start the

next phase. The correctness of executing a kernel should not depend on the fact that certain

threads will execute in synchrony with each other. Having said this, we also want to point

out that due to various hardware cost considerations, the current generation of CUDA

devices actually does bundle multiple threads for execution. Such implementation strategy

 2

leads to performance limitations for certain types of kernel function code constructs. It is

advantageous for application developers to change these types of constructs to other

equivalent forms that perform better.

The G80/G280 implementation bundles several threads for execution. Each block is

partitioned into warps. This implementation technique helps to reduce hardware cost and

enable some optimizations in servicing memory accesses. In the foreseeable future, we

expect that warp partitioning will remain as a popular implementation technique. However,

the size of warp can easily vary from implementation to implementation. In G80/G280,

each warp consists of 32 threads. We will use the G80/G280 implementation to explain

warp partitioning for the rest of this chapter.

Thread blocks are partitioned into warps based on thread IDs. If a thread block is organized

into a one-dimensional array, i.e., only threadIdx.x is used, the partition is straightforward.

Thread IDs within a warp are consecutive and increasing. For warp size of 32, warp 0

starts with thread 0 and ends with thread 31, warp 1 starts with thread 32 and ends with

thread 63. In general, warp n starts with thread 32*n and ends with thread 32(n+1)-1. For a

block whose number of threads is not a multiple of 32, the last warp will be padded with

extra threads to fill up the 32 threads. For example, if a block has 48 threads, it will be

partitioned into 2 warps, and its warp 1 will be padded with 16 extra threads.

For blocks that consist of multiple dimensions of threads, the dimensions will be projected

into a linear order before partitioning into warps. The linear order is determined by lining

up the row with larger y and z coordinates after those with lower ones. That is, if a block

consists of two dimensions of threads, one would form the linear order by placing all

threads whose threadIdx.y is 1 after those whose threadIdx.y is 0. Threads whose

threadIdx.y is 2 will be placed after those whose threadIdx.y is 1, and so on.

T2,0

T1,1

T1,0T0,0

T0,1

T3,0

T2,1 T3,1

T2,0T1,0T0,0 T3,0 T1,1T0,1 T2,1 T3,1 T1,2T0,2 T2,2 T3,2

T1,2T0,2 T2,2 T3,2

T1,3T0,3 T2,3 T3,3

T1,3T0,3 T2,3 T3,3

linearized order

Figure 5.1. Placing threads into linear order

 3

Figure 5.1, shows an example of placing threads of a two dimensional block into linear

order. The upper part shows the two-dimensional view of the block. Each thread is shown

as Tx,y , x being the threadIdx.x and y being threadIdx.y for the thread. The lower part

shows the linear view of the block. The first four threads are those threads whose

trheadIdx.y is 0; they are placed with increasing threadIdx.x values. The next four threads

are those trheads whose threadIdx.y is 1. They are also placed with their increasing

threadIdx.x values. For this example, all 16 threads form half a warp. The warp will be

padded with another 16 threads to complete a 32-thread warp. Imagine a 2 dimensional

block with 8X8 threads. The 64 threads will form 2 warps. The first warp start from T0,0

and ends with T3,7. The second warp starts with T4,0 and ends with T7,7. It would be a useful

exercise to draw out the picture as an exercise.

For a three dimensional block, we first place all threads whose threadIdx.z is 0 into the

linear order. Among these threads, they are treated as a 2-dimensional block as shown in

Figure 5.1. All threads whose threadIdx.z is 1 will then be placed into the linear order, and

so on. A three dimensional 4X8X2 (4 in the x dimension, 8 in the y dimension, and 2 in the

z dimension), the 64 threads will be partitioned into 2 warps, with T0,0,0 through T3,7,0 in the

first warp and T0,0,1 through T3,7,1 in the second warp.

At any point in time, the hardware selects and executes one warp at a time. An instruction

is run for all threads in the same warp, before moving to the next instruction. This style of

execution is motivated by hardware cost constraints: it allows the cost of fetching and

processing an instruction to be amortized among a large number of threads. It works well

when all threads within a warp follow the same control flow path when working their data.

For an if-then else construct, the execution works well when either all threads execute the

then part or all execute the else part. When threads within a warp take different control

flow paths, that is when some threads execute the then part and others execute the else part,

the simple execution style no longer works well. In such situation, the execution of the

warp will require multiple passes through these divergent paths. One pass will be needed

for those threads that follow the then part and another pass for those that follow the else

part. These passes are sequential to each other, thus will add to the execution time.

When threads in the same warp follow different paths of control flow, we say that these

threads diverge in their execution. Divergence can arise in other constructs. For example, if

threads execute a loop whose number of iterations can vary across threads, one additional

pass must be taken for each case among the threads. For example, if threads in a warp

execute the same for loop whose loop bound can be 6, 7, 8, or 9 iterations. All threads will

finish the first 6 iterations together. One pass will be used to execute all threads that need

the 7
th

 iteration. One more pass will be used to execute all threads that need the 8
th

iteration. Yet another pass will be used to execute those that need the 9
th

 iteration.

An if-the-else construct can result in thread divergence is when its decision condition is

based on thread ID. For example, the statement “if (threadIdx.x > 2) {}” causes the threads

to follow two divergent control flow paths. Threads 0, 1, and 2 follow a different path than

 4

threads 3, 4, 5, etc. Similarly, if a loop can cause thread divergence if its loop condition is

based on thread ID. Such usages arise naturally in some important parallel algorithms. We

will use a reduction algorithm to illustrate this point.

A reduction algorithm extracts a single value from an array of values. The single value

could be the sum, the maximal value, or the minimal value among all elements. All these

types of reductions share the same computation structure. A reduction can be easily done

by sequentially going through every element of the array. When an element is visited, the

action to take depends on the type of reduction being performed. For a sum reduction, the

value of the element being visited at the current step, or the current value, is added to a

running sum. For a maximal reduction, the current value is compared to a running maximal

value of all the elements visited so far. If the current value is larger than the running

maximal, the current element value becomes the running maximal value. For a minimal

reduction, the value of the element currently being visited is compared to a running

minimal. If the current value is smaller than the running minimal, the current element value

becomes the running minimal. The algorithm ends when all the elements are visited.

When there are a large number of elements in the array, the time needed to visit all

elements of an array becomes large enough to motivate parallel execution. A parallel

reduction algorithm typically resembles that of a soccer tournament. In fact, the

elimination process of the world cup is a reduction of “maximal” where the maximal is

defined as the team that “beats” all other teams. The tournament “reduction” is done by

multiple rounds. The teams are divided into pairs. During the first round, all pairs play in

parallel. Winners of the first round advance to the second round, whose winners advance to

the third round, etc. With 16 teams entering a tournament, the 8 winners will emerge from

the first round, 4 winners the second round, 2 winners the third round, and 1 final winner

the fourth round. It should be easy to see that even with 1024 teams, it takes only 10

rounds to determine the final winner. The trick is to have enough soccer fields to hold the

512 games in parallel during the first round, 256 games in the second round, 128 games in

the third round, and so on. With enough fields, even with sixty thousand teams, we can

determine the final winner in just 16 rounds. Of course, one would need to have enough

soccer fields and enough officials to accommodate the thirty thousand games in the first

round, etc.

Figure 5.2 shows a kernel function that performs sum reduction. The original array is in the

global memory. Each thread block reduces a section of the array by loading the elements of

the section into the shared memory and performing parallel reduction. The reduction in

done in place, which means the elements in the shared memory will be replaced by partial

sums. Each iteration of the while loop in the kernel function implements a round of

reduction. The syncthreads() statement in the while loop ensures that all threads are ready

to enter the next iteration before any thread is allowed to do so. Therefore, all threads that

enter the second iteration will be using the values produced in the first iteration. After the

first round, the even elements will be replaced by the partial sums generated in the first

round. After the second round, the elements whose indices are multiples of four will be

 5

replaced with the partial sums. After the final round, the total sum of the entire section will

be in element 0.

1. __shared__ float partialSum[]

2. unsigned int t = threadIdx.x;

3. for (unsigned int stride = 1;

4. stride < blockDim.x; stride *= 2)

5. {

6. __syncthreads();

7. if (t % (2*stride) == 0)

8. partialSum[t] += partialSum[t+stride];

9 }

Figure 5.2 A simple sum reduction kernel.

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

Figure 5.3 Execution of the sum reduction kernel.

In Figure 5.2, the Line 3 initializes the stride variable to 1. During the first iteration, the if
statement in Line 7 is used to select only the even threads to perform addition between two

neighboring elements. The execution of the kernel is illustrated in Figure 5.3. The threads

and array elements are shown in the as columns and the iterations are shown as rows. As

shown in row 1 in Figure 5.3, the even elements of the array now hold the pair-wise partial

sums. Before the second iteration, the value of the stride variable in doubled to 2. During

the second iteration, only those threads whose indices are multiples of four, shown as

orange and yellow columns in Figure 5.3, will execute the add statement. Each thread

 6

generates a partial sum that covers four elements, as shown in the row 2 in Figure 5.3.

With 512 elements in each section, the kernel function will generate the total for the entire

section after 9 iterations.

The kernel in Figure 5.3 clearly has thread divergence. During the first iteration of the

loop, only those threads whose threadIdx.x are even will execute the add statement. One

pass will be needed to execute these threads and one additional pass will be needed to

execute those that do not execute the add statement. In each successive iteration, fewer

threads will execute the add statement but two passes will be still needed to execute all the

threads. This divergence can be reduced with a slight change to the algorithm.

1. __shared__ float partialSum[]

2. unsigned int t = threadIdx.x;

3. for (unsigned int stride = blockDim.x;

stride > 1; stride >> 1)

4. {

5. __syncthreads();

6. if (t < stride)

7. partialSum[t] += partialSum[t+stride];

8. }

Figure 5.4 A kernel with fewer thread divergence

Figure 5.4 shows a modified kernel with a slightly different algorithm for sum reduction.

Instead of adding neighbor elements in the first round, it adds elements that are half a

section away from each other during the first round. It does so by initializing the stride to

be half the size of the section. All pairs added during the first round are half the section

size away from each other. After the first iteration, all the pair-wise sums are stored in the

first half of the array. The loop divides the stride by 2 before entering the next iteration.

This is done by shifting the stride value to the right by one bit, a much less expensive way

to implement divide by 2 than a real integer division.

Figure 5.5 illustrates the execution of the revised kernel. During the first iteration, all

threads whose threadIdx.x value are less than half of the size of the section execute the add

statement. For a section of 512 elements, Threads 0 through 255 execute the add statement

during the first iteration while threads 256 through 511 do not. The pair-wise sums are

stored in elements 0 through 255 after the first iteration. Since the warps consists of 32

threads with consecutive threadIdx.x values, all threads in warps 1 through warp 8 execute

 7

the add statement whereas warps 9 through warp 15 execute all skip the add statement.

Since all threads in each warp take the same path, there is no thread divergence!

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

Thread 1 Thread 2 Thread 14 Thread 15

Figure 5.5 Execution of the revised algorithm

5.2. Global Memory Performance
One of the most important dimensions of CUDA kernel performance is accessing data in

the global memory. CUDA applications exploit massive data parallelism that comes from

processing as massive amount of data simultaneously. Therefore, CUDA applications

typically process a massive amount of data within a short period of time. In particular, a

CUDA kernel must be able to access a massive amount of data from the global memory

within a very short period of time. In Chapter 4, we discussed tiling techniques that utilize

shared memories to reduce the total amount of data that must be accessed by a collection of

threads in the thread block. In this Chapter, we will further discuss memory coalescing

techniques that can more effectively move data from the global memory into shared

memories and registers. Memory coalescing techniques are often used in conjunction with

tiling techniques to allow CUDA devices to reach their performance potential in the

presence of limited data access bandwidth of the global memory.

Global memory in a CUDA system is typically implemented with Dynamic Random

Access Memories, or DRAMs. Data bits are stored in DRAM cells that are very weak

capacitors, where the presence or absence of a tiny amount of electrical charge

distinguishes between 0 and 1. Reading data from a DRAM cell that contains a 1 requires

the weak capacitor to share its tiny amount of charge to a sensor and set off a detection

mechanism that determines whether a sufficient amount of charge is present in the

capacitor. Because this is a very slow process, modern DRAMs use a parallel process to

increase their rate of data access. Each time a location is to be accessed, many consecutive

 8

locations that includes the requested location are accessed. Many sensors are provided in

each DRAM chip and they work in parallel, each sensing the contents of a bit location

within these consecutive locations. Once detected by the sensors, the data from all these

consecutive locations can then be transferred at very high speed to the processor. If an

application can make use of data from multiple, consecutive locations before moving on to

other locations, the DRAMs can supply the data at much higher rate than if a truly random

sequence of locations were accessed. In order to achieve anywhere close to the advertised

84.6GB/sec global memory bandwidth for G80, a kernel must arrange its data accesses so

that each request to the DRAMs is for a large number of consecutive DRAM locations.

Recognizing the organization of modern DRAMs, G80/280 designs employ a technique

that allows the programmers to achieve high global memory access efficiency by

organizing memory accesses of threads to exhibit favorable access patterns. This technique

takes advantage of the fact that threads in a warp execute the same instruction at any given

point in time. When all threads in a warp execute a load instruction, the hardware detects

whether the threads access consecutive global memory locations. That is, the most

favorable access pattern is achieved when the same instruction for all threads in a warp

accesses consecutive global memory locations. In this case, the hardware combines, or

coalesces, all these accesses into a consolidated access to the DRAMs that requests all

consecutive locations involved. For example, for a given load instruction of a warp, if

thread 0 accesses global memory location N, thread 1 location N+1, thread 2 location N+2,

etc, all these accesses will be coalesced, or combined into a single request for all

consecutive locations when accessing the DRAMs. Such coalesced access allows the

DRAMs to deliver data at a rate close to the maximal global memory bandwidth.

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

No coalesced coalesced

Figure 5.6 Memory access patterns for coalescing.

Figure 5.6 illustrates the favorable vs. unfavorable C program matrix data access patterns

for memory coalescing. In part (a), illustrates the data access pattern of a loop where each

thread reads a row of matrix Md. Assume that threads in a warp read adjacent rows. That

is, during iteration 0, threads in warp 0 read element 0 of rows 0 through 31. During

iteration 1, these same threads read element 1 of rows 0 through 31. None of the accesses

will be coalesced. A more favorable access pattern is shown in Figure 5.6(b), where each

thread reads a column of Nd. During iteration 0, threads in warp 0 reads element 1 of

columns 0 through 31. All these accesses will be coalesced. In order to understand why the

 9

pattern in 5.6(b) is more favorable than that in 5.6(b), we need to understand how these

matrix elements are placed into the global memory.

All locations in the global memory form a single, consecutive address space. That is, every

location in the global memory has a unique address. This is analogous to a very long street

where every house has a unique address. For example, if the global memory contains 1,024

locations, these locations will be accessed by address 0 through 1023. The G208 can have

up to 4GB (2
32

) locations; the addresses range from 0 to 2
32

 – 1. All variables of a CUDA

program are placed into this linear address space and will be assigned an address.

Matrix elements are placed into the linearly addressed locations according to the row

major convention. That is, the elements of row 0 of a matrix are first placed in order into

consecutive locations. They are followed by the elements of row 1 of the matrix, and so on.

In other words, all elements in a row are placed into consecutive locations and entire rows

are placed one after another. The term row major refers to the fact that the placement of

data preserves the structure of rows, all adjacent element in a row are placed into

consecutive locations in the address space. This is illustrated with an example in Figure

5.7, where the 16 elements of a 4X4 matrix M are placed into linearly addressed locations.

The four elements of row 0 are first placed in their order of appearance in the row.

Elements in row 1 are then placed, followed by elements of row 2, followed by elements of

row 3. It should be clear that M0,0 and M0,1, though appear to be consecutive in the two

dimensional matrix, are placed four locations away in the linearly addressed memory.

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

linearized order in increasing address

Figure 5.7 Placing matrix elements into linear order

Now that we understand the placement of matrix elements into global memory, we are

ready to understand the favorable vs. unfavorable matrix data access patterns in Figure 5.6.

Figure 5.8 shows an example of the favorable access pattern in accessing a 4X4 matrix.

The arrow in the top portion of the Figure shows the access pattern of the kernel code for

one thread. The accesses are generated by a loop where threads in a warp access element 0

 10

of the columns in the first iteration. As shown in the bottom portion of Figure 5.8, these

elements are in consecutive locations in the global memory. The hardware detects that

these accesses are to consecutive locations in the global memory and coalesces these

accesses into a consolidated access. This allows the DRAMs to supply data at high rate.

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Load iteration 1

T1 T2 T3 T4

Load iteration 2

Access

direction in

Kernel

code

…

Figure 5.8 A coalesced access pattern.

Figure 5.9 shows an example of matrix data access pattern that are not coalesced. The

arrow in the top portion of the figure shows that the kernel code for each thread accesses

elements of a row in sequence. The accesses are generated by a loop where threads in

Warp 0 access element 0 of the columns during the first iteration. As shown in the bottom

portion of Figure 5.9, these elements are in locations that are four elements away from

each other. As a result, the hardware will determine that accesses to these elements cannot

be coalesced. As a result, when a kernel loop iterates through a row, the accesses to global

memory are much less efficient than the case where a kernel iterates through a column.

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Load iteration 1

T1 T2 T3 T4

Load iteration 2

Access

direction in

Kernel

code

…

Figure 5.9 An un-coalesced access pattern.

 11

If the algorithm intrinsically requires a kernel code to iterate through data within rows, one

can use the shared memory to enable memory coalescing. The technique is illustrated in

Figure 5.10 for matrix multiplication. Each thread reads a row from Md, a pattern that

cannot be coalesced. A tiled algorithm can be used to enable coalescing. As described in

Section 4, threads of a block first cooperatively load the tiles into the shared memory. Care

can be taken to ensure that these tiles are loaded in a coalesced pattern. Once the data is in

shared memory, they can be accessed either on a row basis or a column basis without any

performance penalty because the shared memories are implemented as intrinsically high-

speed on-chip memory that does not require coalescing to achieve high data access rate.

Md Nd

W
ID

T
H

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Figure 5.10 Using shared memory to enable coalescing.

However, one has to take care so that the loading of tiles from global memory to shared

memory is coalesced. We replicate Figure 4.7 here as Figure 5.11, where the matrix

multiplication kernel loads two tiles of matrix Md and Nd into the shared memory. Note

that each thread in a thread block is responsible for loading one Md element and one Nd

element into Mds and Nds in each iteration of the for loop defined in line 8. Recall that

there are TILE_WIDTH
2
 threads involved in each tile. The threads use threadIdx.y and

threadIdx.y to determine the element of each matrix to load.

For Md, the index calculation for each thread uses m to locate the left end of the tile. Each

row of the tile is then loaded by TILE_WIDTH threads whose thread IDs differ in the x

dimension. Since these threads have consecutive threadIdx.x values, they are in the same

warp. Also, recall that elements in the same row are placed into consecutive locations of

the global memory. The hardware detects that these threads in the same warp access

consecutive locations in the global memory and combine them into a coalesced access.

In the case of Nd, the index calculation for each thread uses m to locate the upper end of

the tile. Each row of the thread is then also loaded by TILE_WIDTH threads whose thread

IDs differ only in the x dimension. Once again, these threads are in the same warp because

they have consecutive trheadIdx.x values. The hardware detects that these threads in the

 12

same warp access consecutive location in the global memory and combine them into a

coalesced access.

© David Kirk / NVIDIA and Wen-mei W. Hwu 11

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row][m*TILE_WIDTH + tx];

10. Nds[ty][tx] = Nd[m*TILE_WIDTH + ty][Col];

11. __Syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14. Pd[Row][Col] = Pvalue;

}

}

Figure 5.10 Tiled Matrix Multiplication Kernel using shared memories.

The reader shall find it useful to draw a picture base don the kernel code in Figure 5.10 and

identify the threadIdx.y and threadIdx.x values of the thread that loads each element of the

tile. Lines 5, 6, 9, 10 in Figure 5.10 form a frequently used programming pattern for

loading elements into shared memory in tiled algorithms. We would also like to encourage

the reader to analyze the data access pattern by the dot-product loop in lines 12 and 13.

Note that the threads in a warp do not access consecutive location of Mds. This is not a

problem since Mds is in shared memory, which does not require coalescing to achieve high

speed data access.

5.3. Dynamic Partitioning of SM Resources
The execution resources in a Streaming Multiprocessor, or SM, include registers, thread

block slots, and thread slots. These resources are dynamically partitioned and assigned to

threads to support their execution. In Chapter 3, we have seen that each SM has 768 thread

slots, each of which can accommodate one thread. These thread slots are partitioned and

assigned to thread blocks during runtime. If each thread block consists of 256 threads, the

768 threads slots are partitioned and assigned to three blocks. In this case, each SM can

accommodate up to three thread blocks due to limitations on thread slots. If each thread

block contains 128 threads, the 768 thread slots are partitioned and assigned to 6 thread

blocks. The ability to dynamically partition the thread slots among thread blocks makes the

streaming multiprocessors versatile. They can either execute many thread blocks each of

which consists of few threads or execute few thread blocks each of which consists of many

threads. This is in contrast to a fixed partitioning method where each block receives a fixed

amount of resource regardless of their real needs. Such fixed partitioning results in wasted

 13

thread slots when a block has few threads and fails to support blocks that require more

thread slots than the fixed partition allows.

Dynamic partitioning of resources can result in subtle interactions between resource

limitations, which in turn cause underutilization of resources. Such interactions can occur

between block slots and thread slots. If each block has 64 threads, the 768 thread slots can

be partitioned and assigned to 12 blocks. However, since there are only 8 block slots in

each SM, only 8 blocks will be allowed. This means that only 512 of the thread slots will

be utilized. Therefore, to fully utilize both the block slots and thread slots, one needs at

least 96 threads in each block.

The register file is another dynamically partitioned resource. The number of registers in

each CUDA device is not specified in the language and varies across implementations. In

G80, there is an 8192-entry register file in each SM. These registers are used to hold

frequently used programmer and compiler-generated variables to reduce their access

latency and to conserve memory bandwidth. As we mentioned in Chapter 4, the automatic

variables declared in a CUDA kernel are placed into registers. Some kernels may use lots

of automatic variables and others may use few of them. Thus, one should expect that some

kernels require many registers and some require fewer. By dynamically partitioning the

registers among blocks, the SM can accommodate more blocks if they require few registers

and fewer blocks if they require more registers. One does, however, need to be aware of

potential interactions between register limitations and other resource limitations.

Figure 5.12 Interaction of resource limitations

In the matrix multiplication example, assume that the kernel code uses 10 registers per

thread. If we have 16X16 thread blocks, how many threads can run on each SM? We can

answer this question by first calculate the number of registers needed for each block, which

is 10*16*16= 2560. The number of registers required by three blocks is 7680, which is

under the 8,120 limit. Adding another block would require 10240 registers, which exceeds

 14

the limit. Therefore, as shown in Figure 5.12(a), the register limitation allows 3 blocks that

altogether have 768 threads to run on each SM, which also fits within the limit of 8 block

slots and 768 thread slots.

Now assume that the programmer declares another automatic variable in the kernel and

bump the number of registers used by each thread to 11. Assuming the same 16X16

blocks, each block now requires 11*16*16 = 2,816 registers. The number of registers

required by three blocks is now 8,448, which exceeds the register limitation. As shown in

Figure 5.12(b), the SM deals with this situation by reducing the number of blocks by one,

thus reducing the number of registered required to 5,632. This, however, reduces the

number of threads running on an SM from 768 to 512. That is, by using one extra

automatic variable, the program saw a 1/3 reduction in the thread-level parallelism in G80

execution! This is sometimes a referred to as a “performance cliff” where a slight increase

in resource usage can result in dramatic reduction in parallelism and performance

achieved.

In some cases, adding an automatic variable may allow the programmer to improve the

execution speed of individual threads by initiating time consuming memory accesses early,

as we will explain in more detail later in this chapter. The improvement within each thread

may be sufficient to overcome the loss of thread-level parallelism. For example, assume

that in the original kernel, there are four independent instructions between a global

memory load and its use. In G80, each instruction takes 4 clock cycles to process. So the 4

independent instructions give a 16 cycle slack for the memory access. With a 200-cycle

global memory latency, we need to have at least 200/(4*4) = 14 warps available for zero-

overhead scheduling to keep the execution units fully utilized.

Assume that the additional register allows the programmer or the compiler to use a

program transformation technique to increase the number of independent instructions from

4 to 8. These independent instructions give 1 32 cycle slack for the memory access. With

the same 200-cycle global memory latency, we now only need 200/(4*8) = 7 warps

available for zero-overhead scheduling to keep the execution units fully utilized. That is,

even though we just reduced the number of blocks from 3 to 2, and thus the number of

warps from 24 to 16, we may have enough warps to fully utilize the execution units in each

SM. Thus, the performance may actually increase! A programmer typically needs to

experiment with each alternative and choose the best performing code. This can be a labor

intensive, tedious process. Ryoo et al have proposed a methodology for automating the

experimentation process to reduce the programming efforts required to reach an optimal

arrangement for each variety of CUDA hardware [RyooCGO2008].

5.4. Data Prefetching
One of the most important resource limitations for parallel computing in general is that

global memory has limited bandwidth in serving data accesses and these accesses take a

long time to complete. The tiling techniques for using shared memory address the problem

 15

of limited global memory bandwidth. The CUDA threading model tolerates long memory

access latency by allowing some warps to make progress while others wait for their

memory access results. While this is a very powerful mechanism, it may not be sufficient

in some cases where all threads are waiting for their memory access results. Such a

situation can arise if all threads have very small number of independent instructions

between memory access instructions and the consumer of the data accessed.

Loop {

Load current tile to shared

memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}

Figure 5.13 Data Prefetching.

(a) Without prefetching (b) With prefetching

A useful, complementary solution to the problem is to prefetch the next data elements

while consuming the current data elements, which increases the number of independent

instructions between the memory accesses and the consumers of the data accessed.

Prefetch techniques are often combined with tiling to simultaneously address the problems

of limited bandwidth and long latency. We show such a combined approach in Figure 5.13.

The algorithm in Figure 5.13(a) corresponds to the tiled matrix multiplication kernel in

Figure 5.10. Lines 9 and 10 in Figure 5.10 correspond to “load current tile to shared

memory” in Figure 5.13(a). This is the part that loads data from global memory into shared

memory. The dot-product code (lines 12 and 13) in Figure 5.10 correspond to “compute

current tile” in Figure 5.13(a). This is the part that consumes the loaded data. Note that

there is no substantial activity between the two parts. That is, there are few independent

instructions between these two parts.

Figure 5.13(b) shows a prefetch version of matrix multiplication kernel. This technique

allocates twice the amount of shared memory for each tile, one holds the tile currently

being processed and one holds the tile to be processed next. Before we enter the while

loop, we load the first tile into the registers. Once we enter the loop, we move the loaded

data into shared memory. Since this is a consumer of the loaded data, the threads will

likely need to be put to sleep, waiting for its loaded data while other threads make

progress. When the first tile of data arrive, threads in the block pass the barrier

synchronization and deposit the tile data from their registers to the shared memory. When

 16

all threads of a block complete depositing their data, they pass the barrier synchronization

point and begin to load the next tile into their registers. The key is that the next tile data

loaded is not immediately consumed. Rather, the current block is processed from the

shared memory by the dot-product loop of lines 12 and 13 in Figure 5.10.

When the loop iterates, the “next tile” in the current iteration becomes “current tile” of the

next iteration. Thus, the deposit of the “current tile” into the shared memory corresponds to

the “next tile” loaded in the previous iteration. The execution of the dot-product loop

provides many independent instructions between the two parts. This reduces the amount of

time the threads will need to wait for their global memory access data.

We would like to encourage the reader to revise the kernel in Figure 5.10 to use prefetch.

A cost of the data prefetch is that that it uses two additional automatic variables (registers).

As we discussed in Section 5.3, using additional registers can reduce the number of blocks

that can run on an SM. However, this technique can still win if it significantly reduces the

amount of time each thread waits for its global memory load data.

5.5. Instruction Mix
In current generation CUDA GPUs, each processor core has limited instruction processing

bandwidth. Every instruction consumes instruction processing bandwidth, whether it is a

floating point calculation instruction, a load instruction, or a branch instruction. Figure

5.14(a) shows the dot-product loop of the matrix multiplication kernel. The loop incurs

extra instructions to update loop counter k and performs conditional branch at the end of

each iteration. Furthermore, the use of loop counter k to index the Ms and Ns matrices

incurs address arithmetic instructions. These instructions compete against floating point

calculation instructions for the limited instruction processing bandwidth.

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

(a) loop incurs overhead instructions

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];

(b) loop unrolling eliminates overhead

Figure 5.14 Loop unrolling improves instruction mix

For example, the kernel loop in 5.14(a) executes 2 floating point arithmetic instructions,

one loop branch instruction, two address arithmetic instructions, and one loop counter

increment instruction. That is, only 1/3 of the instructions executed are floating-point

 17

calculation instructions. With limited instruction processing bandwidth, this instruction

mixture limits the achievable performance to no more than 1/3 of the peak bandwidth.

A common way to improve the instruction mix is to unroll the loop, as shown in Figure

5.14(b). Given a tile size, one can simply unroll all the iterations and simply express the

dot product computation as one long multiply-add expression. This eliminates the branch

instruction and the loop counter update. Furthermore, since the indices are constants rather

than K, the compiler can use the addressing mode offsets of the load instructions to

eliminate address arithmetic instructions. As a result, the long expression can execute at

close to peak performance!

Ideally, loop unrolling should be automatically done by the compiler. This is one of the

areas where compiler technology will likely be improved rapidly in the near future. Until

the tools mature, many programmers will still unroll loops in their source code to achieve

high performance.

5.6. Thread Granularity
An important algorithmic decision in performance tuning is the granularity of threads. It is

often advantageous to put more work into each thread and use fewer threads. Such

advantage arises when some redundant work exists between threads. Figure 5.14 illustrates

such an opportunity in matrix multiplication. The tiled algorithm in Figure 4.8 uses one

thread to compute one element of the output Pd matrix. This requires a dot product

between on row of Md and one column of Nd.

© David Kirk / NVIDIA and Wen-mei W. Hwu

Urbana, Illinois, August 18-22, 2008
15

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Pdsub

Figure 5.14 Increased thread granularity

with rectangular tiles.

The opportunity of thread granularity adjustment comes from the fact that multiple threads

redundantly load each Md row. As shown in Figure 5.14, the calculation of two Pd

 18

elements in adjacent tiles uses the same Md row. With the original tiled algorithm, the

same Md row is redundantly loaded by the two thread blocks assigned to generate these

two Pd tiles. One can eliminate this redundancy by merging the two thread blocks into one.

Each thread in the new thread block now calculates two Pd elements. This is done by

revising the kernel so that each two dot-products are computed by the kernel. Both dot

products use the same Mds row but different Nds columns. This reduces the global

memory access by ¼. It also increases the number of independent instructions in the case

of a prefetch algorithm in Figure 5.13 since there are two dot-products calculated between

the loading of the tiles into registers and depositing these tiles into shared memories.

The potential downside is that the new kernel now uses more registers and shared memory.

Thus the number of blocks that can be running on each SM may decrease. It also reduces

the total number of thread blocks by half, which may result in insufficient amount of

parallelism for matrices of smaller dimensions. For G80/G280, we found that combining

four adjacent horizontal blocks to compute for adjacent horizontal tiles gives the best

performance for a 2048x2048 matrix multiplication.

5.7. Experimental Performance Tuning
The combined effects of various performance enhancement techniques on the matrix

multiplication kernel are shown in Figure 5.14. The dimensions covered are tiling size,

loop unrolling, data prefetching, and thread granularity. We can make at least four

observations.

0

20

40

60

80

100

120

140

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

1x1 1x2 1x4 1x1 1x2 1x4

8x8 tiles 16x16 tiles

unroll 1

unroll 2

unroll 4

complete

unroll

C
a
n

n
o

t
ru

n

Optimizations

Figure 5.15 Effects of Performance Improvement Techniques

First, the tile size plays a major role in the performance. Until the tile size reaches 16X16,

neither loop unrolling nor data prefetch helps. This is reflected by the fact that all eight

bars in granularity bracket are of the same height. For small tile sizes such as 8x8, the

saturated global memory bandwidth so severely limits the execution performance that

transformations such as loop unrolling and data prefetching simply do not matter. On the

 19

other hand, since rectangular tiling can reduce global memory accesses, one would expect

that it should improve performance. That is, 1x2 rectangular tiling reduces the global

memory access by ¼ and resulted and 1X4 tiling by 3/8. Note that 1X8 would have

reduced the global traffic by only 7/16, a diminishing return that makes it much less

attractive than using a larger tile size. The reductions in global memory accesses indeed

help improve the performance shown in Figure 5.15.

Second, once the tile size becomes sufficiently large, 16X16 in this case, to alleviate the

saturation of global memory bandwidth, loop unrolling and data prefetching become much

more important. In most cases, complete unrolling the loop can result in more than 20%

performance improvement.

The third observation is that while data prefetching is very beneficial for 1x1 tiling, it does

not help much for 1x2 rectangular tiling. In fact, for 1x4 rectanular tiling, the register usage

by one block of data prefetching kernel exceeded the total number of registers in the SM.

This makes the code not executable in G80! This is a good illustration that as one applies

multiple techniques to a kernel, these techniques will likely interact by reducing the

resources available to other techniques.

Finally, the appropriate combinations of performance tuning techniques can make a

tremendous difference in the performance achieved by the matrix multiplication kernel. In

Figure 5.15, the speed of the kernel executing on G80 increased from 18 GFOPS to 120

GLOPS! However, the programming efforts required to search through these combinations

is currently quite large. Much work is being done in both academia and industry to reduce

the amount of programming efforts needed to achieve these performance improvements

with automation tools.

