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Chapter 7 

Application Case Study –  

Quantitative MRI Reconstruction 

 
 

 

Application case studies teach computational thinking and programming in a concrete 

manner. They also help demonstrate how the individual techniques fit into a top-to-bottom 

development process. Most importantly, they help us to visualize the practical use of these 

techniques in solving problems. In this chapter, we start with the background and problem 

formulation of a relatively simple application. We show that parallel execution does not 

only speedup the existing approaches, but also allows applications experts to pursue 

approaches that are known to provide benefit but were previously ignored due to their 

excessive computational requirements.  We then use an example algorithm and its 

implementation source code from such an approach to illustrate how a developer can 

systematically determine the kernel parallelism structure, assign variables into CUDA 

memories, steer around limitations of the hardware, validate results, and assess the impact 

of performance improvements.  

 

7.1. Application Background 
 

Magnetic resonance imaging (MRI) is commonly used by the medical community to safely 

and non-invasively probe the structure and function of biological tissues in all regions of 

the body. Images that are generated using MRI have made profound impact in both clinical 

and research settings. MRI consists of two phases, acquisition (scan) and reconstruction. 

During the acquisition phase, the scanner samples data in the k-space domain (i.e. the 

spatial-frequency domain or Fourier transform domain) along a predefined trajectory. 

These samples are then transformed into the desired image during the reconstruction phase. 

 

The application of MRI is often limited by high noise levels, significant imaging artifacts, 

and/or long data acquisition times. In clinical settings, short scan times not only increase 

scanner throughput but also reduce patient discomfort, which tends to mitigate motion-

related artifacts. High image resolution and fidelity are important because they enable 

earlier detection of pathology, leading to improved prognoses for patients. However, the 

goals of short scan time, high resolution, and high signal-to-noise ratio (SNR) often 
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conflict; improvements in one metric tend to come at the expense of one or both of the 

others. One needs new, disruptive technological breakthroughs to be able to 

simultaneously improve on all of three dimensions. This study presents a case where 

massively parallel computing provides such a disruptive breakthrough. 

 

The reader is referred to MRI textbooks [Liang] for the physics principles behind MRI. For 

this case study, we will focus on the computational complexity in the reconstruction phase 

as affected by the k-space sampling trajectory.  The k-space sampling trajectory used by 

the MRI scanner can significantly affect the quality of the reconstructed image, the time 

complexity of the reconstruction algorithm, and the time required for the scanner to acquire 

the samples. In general, the MRI reconstruction problem is defined by equation (1),  

 

                                        (1) 

Where m(r) is the reconstructed image, s(k) is the measured k-space data, and W(k) is the 

weighting function that accounts for non-uniform sampling. That is, W(k) decreases the 

influence of data from k-space regions where a higher density of samples points are taken.  

 

If data are acquired by measuring at uniformly spaced Cartesian grid points in the k-space, 

then this weighting function is a constant and can thus be factored out of the summation in 

(1). As a result, the reconstruction of m(r) becomes an inverse Fast Fourier Transform 

(FFT) on s(k), an extremely efficient computation method.  A collection of data measured 

at such uniformed spaced Cartesian grid points is referred as a Cartesian scan trajectory. 

Fig. 7.1(a) depicts a Cartesian scan trajectory. Because Cartesian scan trajectory allows 

image reconstruction to be performed quickly and efficiently as an inverse FFT on the 

acquired data, it is the approach used in most clinical MRI scanners today.  

Cartesian Scan Data Spiral Scan Data

Gridding1

FFT LS
(a) (b) (c)

Figure 7.1. Scanner k-space trajectories and their associated reconstruction 

strategies: (a) Cartesian trajectory with FFT reconstruction, (b) Spiral (or non-

Cartesian trajectory in general) followed by gridding to enable FFT 

reconstruction, (c) spiral (non-Cartesian) trajectory with linear solver based 

reconstruction.  
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Although the inverse FFT reconstruction of Cartesian scan data is computationally 

efficient, Cartesian scan trajectories often require longer scanner time than non-Cartesian 

trajectories. This stems from the fact that the number of trajectories required to satisfy 

Nyquist criterion in k-space sampling is different for different trajectory shapes. Non-

Cartesian scan trajectories like spirals (shown in Figure 7.1(c)), radial lines (projection 

imaging) and rosettes cover the k-space much more efficiently. For instance, one needs 

fewer spiral trajectories than Cartesian trajectories to cover the same area in the k-space, 

thus reducing the scan time for spiral trajectories. The reduction of trajectories taken 

translates into less scan time, and thus improved patient comfort and reduced motion 

related artifacts. Furthermore, when time-dependent phenomena like bolus-spreading or 

movement of the heart need to be scanned, one must reduce the scan time for generating 

each video frame to achieve a frame rate needed to produce usable videos.  

 

Image reconstruction from non-Cartesian trajectory data presents both challenges and 

opportunities. The main challenge arises from the fact that the W(k) function in (1) is not a 

constant function for non-Cartesian trajectory data and thus can no longer be factored out 

of the summation. Therefore, one can no longer perform reconstruction by directly 

applying an inverse FFT to the k-space sample. In a commonly used approach called 

gridding, the samples are first interpolated onto a uniform Cartesian grid and then 

reconstructed using the FFT (see Fig. 7.1(b)). Earlier gridding methods used simple 

bilinear interpolation to map the data onto a Cartesian grid. However, simple bilinear 

interpolation suffered from extra artifacts and low accuracy. Thus, a popular method for 

the reconstruction of non-Cartesian k-space data has been to (re)grid the data onto a 

Cartesian grid via a convolution approach. Each of the data points, which lie along some 

trajectory in k-space, is convolved with a gridding kernel, and the result sampled and 

accumulated on a Cartesian grid. Convolution is quite computationally intensive. Studies 

have shown that that for standard gridding parameters, the reconstruction is approximately 

six times longer than that of Cartesian sampled data and can make the reconstruction on a 

CPU too long for clinical use. Accelerating gridding computation on many-core processors 

enables the application of the current FFT approach to non-Cartesian trajectory data. Since 

we will be examining a convolution-style computation in chapter 8, we will not cover it 

here. 

 

An interesting opportunity arises when we rethink the entire reconstruction process. The 

use of non-Cartesian trajectory allows the scanner to take more samples at a given time 

budget and can potentially improve SNR. However, inverse FFT satisfies no optimality or 

bound criterion, does not model imaging physics. In applications where the pixels in the 

reconstructed image are used to provide general diagnosis impression and their numerical 

values are not used for critical diagnosis decisions, gridding followed by inverse FFT 

offers a cost-effective solution. However, it does not take advantage of the potential 

offered by increased amount of sample data to enable more applications where the 

reconstructed image pixel values are used for critical diagnosis decisions. 
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By contrast, iterative, statistically optimal image reconstruction methods can more 

accurately model imaging physics and bound the noise error in each image pixel value. 

This allows the reconstructed image pixel values to be used for measuring subtle 

phenomenon such as tissue chemical anomalies before they become anatomical pathology. 

However, such iterative reconstructions have been impractical for large-scale 3D problems 

due their excessive computational requirements compared inverse FFT. Recently, these 

reconstructions have become viable in clinical settings when accelerated on GPUs. In 

particular, we will show that an iterative reconstruction algorithm that explicitly models 

imaging physics used to take hours using a high-end sequential CPU but takes only 

minutes using G80 for a image of moderate resolution, a delay acceptable in clinical 

settings.  

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

Figure 7.2. The use of non-cartesian k-space sample trajectory and accurate linear-

solver based reconstruction enables new MRI modalities with exciting medical 

applications. The faster scan time allows acquisition of more samples required to 

collect in-vivo concentration data on less abundant substance such as sodium in 

human tissues. The variation or shifting of sodium concentration gives early signs of 

disease development or tissue death. An example of sodium map of a human brain 

shown in this Figure can be used to give early indication of brain tumor tissue 

responsiveness to chemo-therapy protocols, enabling individualized medicine.
 

The availability of fast, robust, and statistically optimal image reconstruction methods for 

non-Cartesian k-space trajectories enables new MRI modalities. The typical medical use of 

MRI today studies the human anatomical structures by mapping out the concentration 

levels of water in human tissues. The progress a disease development or treatment is 

measured by the anatomical changes such as enlargement or shrinkage of tumors. One can, 

however, measure much earlier progress that precedes the anatomical changes by 

measuring the concentration changes of sodium, a heavily regulated substance in normal 

human cells. Such a measurement is shown in Figure 7.2. Because sodium and other 

interesting chemical substance for medical applications are much less abundant than water 

molecules in human tissues, a reliable measurement of sodium concentration needs a 

drastic increased k-space coverage in order to achieve an acceptable level of SNR in the 

resulting image. The increased coverage requirement motivates the use of multiple 

scanners as well as non-Cartesian data trajectories in order to keep the scanning time 

reasonable for patients. Iterative, statistically optimal reconstruction methods are needed to 

deploy physics models needed to correctly stitch together the data from multiple scanners 

and to bound the noise error for each pixel point so that the pixel values are accurate 

measurements of the sodium level for early assessment of disease progress. 
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7.2. Iterative Reconstruction 
Haldar and Liang proposed a linear solver based iterative reconstruction algorithm for non-

Cartesian scan data, as shown in Fig. 7.1(c). The algorithm allows for explicit modeling 

and compensation for the physics of the scanner data acquisition process, and can thus 

reduce the artifacts in the reconstructed image. It is, however, computational intensive. The 

reconstruction time on high-end sequential CPUs has been hours for moderate-resolution 

images and thus impractical in clinical use. The objective here is to use the massive 

parallelism in GPUs to reduce the reconstruction time to a matter of seconds so that one 

can begin to deploy the new MRI modalities such as sodium imaging in clinical settings. 

 

Figure 7.3 shows a quasi-Bayesian estimation problem formulation of the linear-solver 

based reconstruction approach, where ρ is a vector containing voxel values for the 

reconstructed image, F is a matrix that models the physics of imaging process, d is a vector 

of data samples from the scanner, and W is a matrix that can incorporate prior information 

such as anatomical constraints. In clinical settings, the anatomical constraints represented 

in W are derived from one or more high resolution, high-SNR water molecule scans of the 

patient. These water molecule scans reveal features such as the location of anatomical 

structures. The matrix W is derived from these reference images. The problem is to solve 

for ρ given all the other matrices and vectors. 

Compute FHF + λWHW

Acquire Data

Compute FHd

Find ρ

Figure 7.3. An iterative linear solver based approach to reconstruction of 

no-Cartesian k-space sample data

dFWWFF HHH =+ ρλ )(

 
 

On the surface, the computational solution to the problem formulation in Figure 7.3 should 

be very straightforward. It involves matrix-matrix multiplications and addition (F
H
*F 

+λW
H
W), matrix-vector multiplication (F

H
 * d), matrix inversion (F

H
*F +λW

H
W)

-1
, and 

finally matrix-matrix multiplication ((F
H
*F +λW

H
W)

-1
 * F

H
d). However, the sizes of the 

matrices make the solution extremely time consuming.  F
H 

 and F are 3D matrices whose 

dimensions are determined by the resolution of the reconstructed image ρ.  Even in a 
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modest resolution 128
3
-voxel reconstruction, computation of F

H
*F +λW

H
W can take days 

to complete on a high-end CPU. For a more desirable resolution of 512
3
-voxel 

reconstruction, the matrix-matrix multiply will take 4
4
 = 64 times the time. Fortunately, the 

computation of F
H
*F +λW

H
W does not have to be repeated for each data acquisition. It 

needs to be done only once for a scanner set up for a patient. However, due to the extreme 

long latency of the computation, it is still desirable to speed up the F
H
*F +λW

H
W 

computation to minimize the inconvenience of scanner setup for each patient. The 

acceleration of the F
H
*F +λW

H
W computation can be found in Stone, et al [Stone 2008]. 

 

The matrix-vector multiply to calculate F
H
d takes about one order of magnitude less time 

than F
H
*F +λW

H
W but can still take about three hours for a 128

3
-voxel reconstruction on a 

high-end sequential PCU. Since F
H
d needs to be computed for every image acquisition, it 

is critical to reduce its computation to minutes. We will show the details of this process. As 

it turns out, the core computational structure of F
H
*F +λW

H
W is identical to that of F

H
d. 

As a result, the same methodology can be used to accelerate the computation of both. 

 

The inversion of the F
H
*F +λW

H
W matrix can be prohibitively expensive due to the sheer 

size of the inverted matrix. For a 128
3
–voxel reconstruction, the inverted matrix contains 

well over four trillion complex-valued elements (the number of elements in the inverted 

matrix equals the square of the number of voxels in the reconstructed image). An iterative 

method for matrix inversion, such as the conjugate gradient (CG) algorithm, is therefore 

preferred. The conjugate gradient algorithm reconstructs the image by iteratively solving 

the equation in Figure 7.3 for ρ. During each iteration, the CG algorithm updates the 

current image estimate ρ to improve the value of the quasi-Bayesian cost function. The 

computational efficiency of the CG technique is largely determined by the efficiency of 

matrix–vector multiplication operations involving F
H
*F +λW

H
W and ρ, as these operations 

are required during each iteration of the CG algorithm. Fortunately, matrix W often has a 

sparse structure that permits efficient multiplication by W
H
W, and matrix F

H
F has a 

convolution structure that enables efficient matrix multiplication via the FFT. As a result, 

the “find ρ” step in Figure 7.3 is much less computationally intensive than F
H
d, and 

accounting only less than 1% of the execution of the reconstruction of each image on a 

sequential CPU. As a result, we will leave it out of the parallelization scope and focus on 

F
H
d in this chapter. We will however, revisit its status at the end of the chapter. 
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7.3. Computing FHd  

for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computationFigure 7.4 Computation of Q and FHD

 
Figure 7.4 shows a sequential C implementation of the computations for the core step of 

F
H
*F +λW

H
W (Part (a)) and that for F

H
d (Part (b)).  It should be clear from a quick glance 

at Figure 7.4(a) and 7.4(b) that the core step of F
H
*F +λW

H
W and F

H
d have identical 

structure. Both computations start with an outer loop, which encloses an inner loop. The 

only differences are the particular calculation done in each loop body and the fact that the 

core step of F
H
*F +λW

H
W involves a much larger number of sample points (M), thus a 

much longer execution time. Thus it suffices to discuss one of them. We will focus on F
H
d, 

since this is the one that will need to be run for each image being reconstructed. 

 

A quick glance at Figure 7.4(b) shows that the C implementation of F
H
d is an excellent 

candidate for acceleration on the GPU because it exhibits substantial data-parallelism. The 

algorithm first computes the real and imaginary components of Mu at each sample point in 

the k-space, then computes the real and imaginary components of F
H
d at each voxel in the 

image space. The value of F
H
d at any voxel depends on the values of all k-space sample 

points. However, no voxel elements of F
H
d depend on any other elements of F

H
d. 

Therefore, all elements of F
H
d can be computed in parallel. Specifically, all iterations of 

the outer loop can be done in parallel and all iterations of the inner loop can be done in 

parallel. The calculations of the inner loop, however, have a dependence on the calculation 

done in the same iteration of the outer loop. 

 

Despite the algorithm’s abundant inherent parallelism, potential performance bottlenecks 

are evident. First, in the loop that computes the elements of F
H
d, the ratio of floating-point 

operations to memory accesses is at best 3:1 and at worst 1:1. The best case assumes that 
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the sin and cos trigonometry operations are computed using five-element Taylor series 

that require 13 and 12 floating-point operations, respectively. The worst case assumes that 

each trigonometric operation is computed as a single operation in hardware. As we have 

seen in Chapter 4, a floating-point to memory access ratio of 16:1 or more is needed for the 

kernel to be not limited by memory bandwidth. Thus, the memory accesses will clearly 

limit the performance of the kernel unless the ratio is drastically increased. 

 

Second, the ratio of FP arithmetic to FP trigonometry functions is only 13:2. Thus, GPU-

based implementation must tolerate or avoid stalls due to long-latency sin and cos 

operations. Without a good way to reduce the cost of trigonometry functions, the 

performance will likely be dominated by the time spent in these functions. 

 

We are now ready to take the steps in converting F
H
d from sequential C code to CUDA 

kernel. 

 

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.5 First version of the FHd kernel. The kernel will not 

execute correctly due to conflicts between threads in wiring 

into rFhD and iFhD arrays.  

Step 1: Determine the kernel parallelism structure 
 

The conversion of a loop into a CUDA kernel is conceptually straightforward. Since all 

iterations of the outer loop of Figure 7.4(b) can be executed in parallel, we can simply 

convert the outer loop into a CUDA kernel by assigning its iterations to CUDA threads. 

Figure 7.5 shows the kernel from such a straightforward conversion. Each thread 

implements an iteration of the original outer loop. The original outer loop has M iterations, 

and M can be in the millions. We obviously need to have multiple thread blocks to 

generate enough threads to implement all these iterations. 
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To make performance tuning easy, we declare a constant FHD_THREADS_PER_BLOCK 

that defines the number of threads in each thread block when we invoke the cmpFHd 

kernel. Thus, we will use M/FHD_THREADS_PER_BLOCK for the grid size and 

FHD_THREADS_PER_BLOCK for block size for kernel invocation. Within the kernel, 

each thread calculates the original iteration of the outer loop that it is assigned to cover 

using the formula: blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x.  For 

example, assume that there are 65,536 k-space samples and we decided to use 512 threads 

per block. The grid size at kernel innovation would be 65536/512=128 blocks. The block 

size would be 512. The calculation of m for each thread would be equivalent to 

blockIdx.x*512 + threadIdx. 

 

While the kernel of Figure 7.5 exploits ample parallelism, it suffers from a major problem: 

all threads write into all voxel elements. This means that the kernel must use the atomic 

operations in the global memory in the inner loop in order to keep threads from trashing 

each other’s contributions to the voxel value. This can seriously affect the performance of 

kernel. Note that as is, the code will not even execute correctly. We need to explore other 

options. 

 
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

Figure 7.6 Loop fission on the FHd computation. 

 
From a quick inspection of Figure 7.4(b), we see that the F

H
d calculation can be split into 

two separate loops, as shown in Figure 7.6 using a technique called loop fission or loop 

splitting. This transformation takes the body of a loop and splits it into two loops. In the 

case of F
H
d, the outer loop consists of two parts: the statements before the inner loop and 

the inner loop. As shown in Figure 7.6(b), we can perform loop fission on the outer loop 

by placing the statements before the inner loop into a loop and the inner loop into a second 
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loop. The transformation changes the execution order of the two parts of the original outer 

loop. In the original outer loop, both parts of the first iteration execute before the second 

iteration. After fission, the first part of all iterations will execute; they are then followed by 

the second part of all iterations. The reader should be able to verify that this change of 

execution order does not affect the execution results for F
H
d. This is because the execution 

of the first part of each iteration does not depend on the result of the second part of any 

preceding iterations of the original outer loop. Loop fission is a transformation often done 

by advanced compilers that are capable of analyzing the (lack of) dependence between 

statements across loop iterations. 

 
__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{ 

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

Figure 7.7  cmpMu kernel  
With loop fission, the F

H
d computation is now done in two steps. The first step is a single-

level loop that calculates the rMu and iMu elements for use in the second loop. The second 

step corresponds to the loop that calculates the F
H
d elements based on the rMu and iMu 

elements calculated in the first step. Each loop can now be converted into a CUDA kernel. 

The two CUDA kernels will execute sequentially. Since the second loop needs to use the 

results from the first loop, separating these two loops into two kernels that execute in 

sequence does not sacrifice any parallelism.  

 

The cmpMu kernel in Figure 7.7 implements the first loop. The conversion of the first loop 

from sequential C code to a CUDA kernel is straightforward: each thread implements one 

iteration of the original C code. Since the M value can be very big, reflecting the large 

number of k-space samples, such a mapping can result in a large number of threads. Since 

each thread block can have only up to 512 threads, we will need to use multiple blocks to 

allow the large number of threads. This can be accomplished by having each thread block 

to contain a number of threads, specified by MU_THREADS_PER_BLOCK in Figure 

7.4(c), and employ M/MU_THREADS_PER_BLOCK blocks needed to cover all M 

iterations of the original loop. For example, if there are 65,536 k-space samples, the kernel 

could be invoked with a configuration of 512 threads per block and 65536/512=128 

blocks. This is done by assigning 512 to MU_THREADS_PER_BLOCK and using 

MU_THREADS_PER_BLOCK as block size and M/MU_THREADS_PER_BLOCK as 

grid size during kernel innovation. 

 

Within the kernel, each thread can identify the iteration assigned to it using its blockIdx 

and threadIdx values. Since the threading structure is one dimensional, only blockIdx.x and 

threadIdx.x need to be used. Because each block covers a section of the original iterations, 

the iteration covered by a thread is blockIdx.x*MU_THREADS_PER_BLOCK + 

threadIdx. For example, assume that MU_THREADS_PER_BLOCK=512. The thread 
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with blockIdx.x=0 and threadIdx.x=37 covers the 37
th

 iteration of the original loop, 

whereas the thread with blockIdx.x=5 and threadIdx.x=2 covers the 2,562
nd

 (5*512+2) 

iteration of the original loop. Using this iteration number to access the Mu, Phi, and D 

arrays ensures that the arrays are covered by the threads in the same way they were 

covered by the iterations of the original loop. Because every thread writes into its own Mu 

element, there is no potential conflict between any of these threads. 

 

Determining the structure of the second kernel requires a little more work. An inspection 

of the second loop in Figure 7.4(b) shows that there are at least three options in designing 

the second kernel. In the first option, each thread corresponds to one iteration of the inner 

loop.  This option creates the most number of threads and thus exploits the most amount of 

parallelism. However, the number of threads would be N*M, with both N in the range of 

millions and M in the range of hundred thousands. Their product would result in too many 

threads in the grid.  

 

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.8 Second option of the FHd kernel

 
A second option is to use each thread to implement an iteration of the outer loop. This 

option employs fewer threads than the first option. Instead of generating N*M threads, this 

option generates M threads. Since M corresponds to the number of k-space samples and a 

large number of samples, on the order of a hundred thousand, are typically used to 

calculate F
H
d, this option still exploits a large amount of parallelism. However, this kernel 

suffers the same problem as the kernel in Figure 7.5. The problem is that each thread will 

write into all voxels, thus creating an extremely large number of conflicts between threads. 

As is the case of Figure 7.5, the code in Figure 7.8 will not correctly without adding atomic 

operations that will signicantly slow down the execution. Thus, this option does not work 

well. 

 

A third option is to use each thread to compute one voxel elemt. This requires interchange 

the inner and outer loops and then use each thread to implement an iteration of the new 

outer loop. This is shown in Figure 7.9. Loop interchange is necessary because the loop 

being implemented by the threads must be the outer loop. Loop inter change makes each of 
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the new outer loop iteration to process a voxel element. Loop interchange is permissible 

here because all iterations of both levels of loops are independent of each other. They can 

be executed in any order relative to one another. Loop interchange, which changes the 

order of the iterations, is allowed when these iterations can be executed in any order. This 

option generates N threads. Since N corresponds to the number voxels in the reconstructed 

image, the N value can be very large for higher-resolution images. For a 128
3 

images, there 

are 128
3
 = 2,097,152 threads, resulting in a large amount of parallelism. For higher 

resolutions, such as 512
3
, we may need to invoke multiple kernels, each kernel generates 

the value of a subset of the voxels. Note these threads now all accumulate into their own 

rFhD and iFhd elements. There is no conflict between threads. These threads can run 

totally in parallel. This makes the third option the best choice among the three options. 

 
for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (b) after loop interchange

Figure 7.9 Loop interchange of the FHD computation  
 

The kernel derived from the interchanged loops is shown in Figure 7.10. The threads are 

organized into a two-level structure. Each thread covers an iteration of the new outer (n) 

loop: blockIdx.x*FHD_THREADS_PER_BLOCK + threadIdx.x. Once this iteration (n) 

value is identified, the thread executes the inner loop based on that n value. This kernel can 

be invoked by having each thread block to contain a number of threads, specified by a 

global constant FHD_THREADS_PER_BLOCK. Assuming N is the variable that gives 

the number of voxels in the reconstructed image, N/FHD_THREADS_PER_BLOCK 

blocks cover all N iterations of the original loop. For example, if there are 65,536 k-space 

samples, the kernel could be invoked with a configuration of 512 threads per block and 

65536/512=128 blocks. This is done by assigning 512 to FHD_THREADS_PER_BLOCK 

and using FHD_THREADS_PER_BLOCK as block size and 

N/FHD_THREADS_PER_BLOCK as grid size during kernel innovation. 
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.10 Third option of the FHd kernel

 

Step 2: Getting Around the Memory Bandwidth Limitation 

The simple cmpFhD kernel in Figure 7.10 will provide limited speedup due to memory 

bandwidth limitations. A simple analysis shows that the execution is limited by the low 

compute to memory access ratio of each thread. In the original loop, each iteration 

performs at least 14 memory accesses: kx[m], ky[m], kz[m], x[n], y[n], z[n], rMu[m] 

twice, iMu[m] twice, rFhD[n] read and write, and iFhD[n] read and write. Meanwhile, 

about 13 floating point multiple, add, or trigonometry operations are performed in each 

iteration. Therefore, the compute to memory access ratio is approximately 1, which is too 

low according to the analysis in Chapter 4. 

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.11 Using registers to reduce memory accesses in the FHd kernel
 

We can immediately improve the compute-to-memory-access ratio by assigning some of 

the array elements to registers. As we discussed in Chapter 4, this can be done via 
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automatic variables. A quick review of the kernel in Figure 7.10 shows that for each 

thread, the same x[n]. y[n], and z[n] elements are used across all iterations of the for 

loop. This means that we can load these elements into automatic variables before the 

execution enters the loop. The kernel can then use the automatic variables inside the loop, 

thus converting global memory accesses to register accesses. Furthermore, the loop 

repeatedly reads from and writes into rFhD[n] and iFhD[n]. We can have the iterations to 

read from and write into two automatic variables and only write the contents of these 

automatic variables into rFhD[n] and iFhD[n] after the execution exits the loop. The 

resulting code is shown in Figure 7.11. By increasing the number of register usage by 5 for 

each thread, we have reduced the memory access done by each iteration from 14 to 7. 

Thus, we have improved the compute to memory access ratio from 13:14 to 6:14. This is a 

very good improvement and a good use of the precious register resource. 

 

Recall that the register usage can limit the number of blocks that can run in an SM. By 

increasing the register usage by 5, we really increase the register usage of thread blocks by 

5*FHD_THREADS_PER_BLOCK. Assuming that we have 128 threads per block, we just 

increased the block register usage by 640. Since each SM can accommodate a combined 

register usage of 8912 registers among all blocks assigned to it, we need be careful that any 

further increase of register usage can begin to limit the number of blocks that can be 

assigned to an SM. 

 

We need to further improve the compute to memory access ratio to something closer 10:1. 

We need to further eliminate global memory accesses in the cmpFHD kernel. The next 

candidates to consider are the k-space samples kx[m], ky[m] and kz[m]. These array 

elements are accessed differently than the x[n], y[n] and z[n] elements: different elements 

of kx, ky and kz is accessed in each iteration of the loop in Figure 7.11. This means that we 

cannot load each k-space element into an automatic variable register and access that 

automatic variable off a register through all the iterations. So, the registers will not help 

here. However, we should notice that the k-space elements are not modified by the kernel. 

This means that we might be able to place the k-space elements into the constant memory. 

Perhaps the cache for the constant memory can eliminate most of the memory accesses.  

 

A simple analysis of the loop in Figure 7.11 reveals that the k-space elements are indeed 

excellent candidates for constant memory. The index used for accessing kx, ky, and kz is 

m, which is independent of threadIdx. This means that all threads in a warp will be 

accessing the same element of kx, ky, and kz. This is the ideal accessing pattern for cached 

constant memory: every time an element is brought into the cache, it will be used at least 

by all threads in a warp which is 32 in G80. This means that for every 32 accesses to the 

constant memory, at least 31 of them will be served by the cache. This allows the cache 

effectively eliminate about 96% of the accesses to the constant memory. Better yet, each 

time when a constant is accessed from the cache, it can be broadcast to all the threads in a 

warp. This means that no delays are incurred due to any bank conflicts in the access to the 

cache. This makes constant memory as efficient as registers when accessing k-space 

elements. 
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There is, however, a technical issue involved in placing the k-space elements into the 

constant memory. Recall that constant memory has a capacity of 64KB. However, the size 

of the k-space samples can be much larger, in the order of hundreds of thousands or even 

millions. A typical way of working around the limitation of constant memory capacity is to 

breakdown a large data set to be placed into the constant memory into 64KB chunks. The 

developer must re-organize the kernel so that the kernel will be invoked multiple times, 

with each invocation of the kernel consuming only a 64KB chunk of the large data set. 

This turns out to be quite easy for the cmpFHD kernel. 

__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpy(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice); 

cudaMemcpy(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cudaMemcpy(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>> 

();

}

Figure 7.12 Chunking k-space data to fit into constant memory.  
A careful examination of the loop in Figure 7.11 reveals that all threads will be 

sequentially marching through the k-space arrays. For large data sets, the loop in the kernel 

simply iterates more times. This means that we can divide up the loop into sections, with 

each section processing a chunk of the k-space elements that fit into the 64KB capacity of 

the constant memory. The host code now invokes the kernel multiple times. Each time the 

host invokes the kernel, it places a new chunk into the constant memory before calling the 

kernel function. This is illustrated in Figure 7.12. 

 

In Figure 7.12, the cmpFHd kernel is called from a loop. The code assumes that kx, ky, 

and kz are in the host memory. The dimension of these kx, ky, and kz are given by M. At 

each iteration, the host code calls the cudaMalloc() function to transfer a chunk of the k- 

space data into the device constant memory. The kernel is then invoked to process the 

chunk. Note that when M is not a perfect multiple of CHUNK_SIZE, the host code will 

need to have an additional round of cudaMemcpy and one more kernel invocation to finish 

the remaining k-space data. 
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.13 Revised FHd kernel to use constant memory  
Figure 7.13 shows the revised kernel that accesses the k-space data from constant memory. 

Note that pointes to kx, ky, and kz are no longer in the parameter list of the kernel 

function. Since we cannot use pointers to access variables in the constant memory, the 

kx_c, ky_c, and kz_c arrays are accessed as global variables declared under __constant__ 

keyword as shown Figure 7.12. By accessing these elements from the constant cache, the 

kernel now has effectively only 4 global memory accesses to the rMu and iMu arrays. The 

compiler will typically recognize that the four array accesses are made to only two 

locations. It will only perform two global accesses, one to rMu[m] and one to iMu[m]. The 

values will be stored in temporary register variables for use in the other two. This makes 

the final number of memory accesses to 2. The computer to memory access ratio is down 

to 14:2, or 7:1. This is still not quite the desired 10:1 ratio but is sufficiently high that the 

memory bandwidth limitation is no longer the only factor that limits performance. As we 

will see, we can perform a few other optimizations that make computation more efficient 

and further improve performance. 

(a) k-space data stored in separate arrays. (b) k-space data stored in an array 

whose elements are structs.

Figure 7.14 Effect of k-space data layout on constant cache efficiency.

 
If we ran the code in Figures 12 and 13, we would have found out that the performance 

enhancement was not as high as we expected. As it turns out, the code shown in these 
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figures does not result in as much memory bandwidth reduction as we expected. The 

reason is that the constant cache does not perform very well for the code. This has to do 

with the design of the constant cache and the memory layout of the k-space data. As shown 

in Figure 14, each constant cache entry is designed to store multiple consecutive words. 

This design reduces the overhead of bookkeeping in the hardware design. If multiple data 

elements that are used by each thread are not in consecutive words, as illustrated in Figure 

14(a), they will end up taking up multiple cache entries. Due to cost constraints, the 

constant cache has only a very small number of entires. As shown in Figure 12 and 13, the 

k-space data is stored in three arrays: kx_c, ky_c, and kz_c. During each iteration of the 

loop, three entries of the constant cache is needed to hold the trhee k-space element being 

processed. Since different warps can be at very different iterations, they may require many 

entries altogether. As it turns out, the G80 cache capacity was not sufficient to provide 

sufficient number of entries for all the warps active in an SM. 

struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpy(k_c,k,12*CHUNK_SIZE, cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>> 

();

}

Figure 7.15 adjusting k-space data layout to improve cache efficiency

 
The problem of inefficient use of cache entries has been well studied in the literature and 

can be solved by adjusting the memory layout of the k-space data. The solution is 

illustrated in Figure 14(b) and the code based on this solution in Figures 15. Rather than 

having the x, y, and z components of the k-space data to be stored in three separate arrays, 

the solution stores these components in an array whose elements are structs. The 

declaration of the array is shown on top of Figure 15. By storing the x, y, and z 

components in the three fields of an array element, the developer forces these components 

to be stored in consecutive locations of the constant memory. Therefore, all three 

components used by an iteration can now fit into one cache entry, reducing the number of 

entries needed to support the execution of all the active warps. Note that since we have 

only one array to hold all k-space data, we can just use one cudaMemcpy to copy the entire 

chunk to the device constant memory. The size of the transfer is adjusted from 

4*CHUNK_SIZE to 12*CHUNK_SIZE to reflect the transfer of all the three components 

in one cudaMemcpy call. 
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.16 Adjusting the k-space data memory layout in the FHd kernel

 
With the new data structure layout, we also need to revise the kernel so that the access is 

done according to the new layout. The new kernel is shown in Figure 7.16. Note that kx[m] 

has become k[m].x, ky[m] has become k[m].y, and so on.  
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = __cos(expFhD);  

float sArg = __sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.17 using hardware __sin() and __cos() functions.
 

Step 3: Using hardware trigonometry functions 

As we discussed in Chapter 5, CUDA offers hardware mathematic functions that offer 

much higher throughput than their software counter parts. These functions are 

implemented in the SFU (Super Function Units) in G80. The procedure for using these 

functions is quite easy. In the case of the cmpFHd kernel, what we need to do is to change 

the calls to sin and cos functions into their hardware versions: __sin and __cos. Because, 

these functions are called in a heavily executed loop body, we expect that the change will 

result in very significant performance improvement. The resulting cmpFHd kernel is 

shown in Figure 7.17. 
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Figure 7.18 metrics used to validate the accuracy of hardware functions.

I0 is perfect image. I is reconstructed image. 

PSNR is Peak signal-to-noise ratio, SNR is Signal-to-noise ratio.  
 

We need to, however, be careful about the reduced accuracy when switching from software 

functions to hardware functions. As we discussed in Chapter 6, Hardware implementation 

currently have slightly less accuracy than software libraries. In the case of MRI, we need to 

make sure that the hardware implementation passes test cases that measure the Signal to 

Noise Ration (SNR) of the resulting image, as shown in Figure 7.18. The testing process 

involves a “perfect” image (I0). We then use a reverse process to generate a corresponding 
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“scanned” k-space data that is actually synthesized. The synthesized scanned data is then 

processed by the proposed reconstruction system to generate a reconstructed image (I). The 

value of the voxels in the images are then plugged into the MSE, PSNR, and SNR formula 

in Figure 7.18.  

Figure 7.19 Validation of floating-point

precision and accuracy of the different 

FHd implementations.

 
 

The criteria for passing the test depend on the application that the image is intended for. In 

our case, we worked with the MRI clinical experts to ensure that the SNR changes due to 

hardware functions is well within the accepted limits for their applications. In applications 

where the images are used by physicians to form impression of injury or disease 

evaluation, one also needs to have visual inspection of the image quality. Figure 7.19 

shows the visual comparison of the original “true” image. It then shows that the SNR 

achieved CPU double precision and single precision implementation both achieve 27.6 dB, 

an well acceptable level for the application. A visual inspection also shows that the 

reconstructed image indeed correspond well with the original image. 

 

The advantage of iterative reconstruction compared to a simple bilinear interpolation 

gridding/FFT is also obvious in Figure 7.19. The image reconstructed with the simple 

gridding/FFT has an SNR of only 16.8 dB, substantially lower than that of the iterative 

reconstruction method. A visual inspection of the gridding/FFT image shows that there is 

severe artifact that can significantly impact the usability of the image for diagnosis 

purposes. 

 

When we move from double precision to single precision arithmetic on the CPU, there was 

no measurable degradation of SNR, which remains at 27.6 dB. When we move the trig 

function from software library to the hardware units, we observed a negligible degradation 
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of SNR, from 27.6 dB to 27.5 dB. A visual inspection shows that the reconstructed image 

does not have significant artifact compared to the original image. 

 

Step 4: Experimental Performance Tuning 

Up to this point, we have not determined the appropriate values for the configuration 

parameters for the kernel. For example, we need to determine the best number of threads 

for each block. On one hand, using a large number of threads in a block is needed to reach 

thread capacity of each SM given that up to eight blocks can be assigned to each SM. On 

the other hand, having more threads in each block increases the register usage of each 

block and can reduce the number of blocks that can fit into an SM. Some possible values 

of number of threads per block are 32, 64, 128, 256, and 512. One can also consider non-

power-of-two numbers. 

 

One also needs to determine the number of scan points per grid. All the scan point data 

consumed by a grid must fit into the 64KB constant memory. This is 16K single precision. 

Since each scan point requires three single-precision floating point data, we can have up to 

4K scan points if we want to use power-of-two scan points in each grid for convenient loop 

control. Some possible numbers are 32, 64, 128, 256, 1024, 2048, and 4096.  

 

Another kernel configuration parameter is the number of times one should unroll the body 

of the for loop. On one hand, unrolling the loop can reduce the number of overhead 

instructions, and potentially reduce the number of clock cycles to process each k-space 

sample data. On the other hand, too much unrolling can increase the usage of registers and 

reduce the number of blocks that can fit into an SM. 

 

Note that these configurations are not independent of each other. Increasing one parameter 

value can potentially use the resource that could be used to increase another parameter 

value. As a result, one needs to evaluate these parameters jointly in an experimental 

manner. That is, one may need to change the source code for each joint configuration and 

measure the run time. There can be a large number of source code versions to try. In the 

case of F
H
D, the performance improves about 20% by systematically searching all the 

combinations and choosing the one with the best measured runtime, as compared to a 

heuristic tuning search effort that explore some promising trends. 

7.4. Final Evaluation 
To obtain a reasonable baseline, we implemented two versions of FHd on the CPU. Version 

CPU.DP uses double-precision for all floating-point values and operations, while version CPU.SP 

uses single-precision. Both CPU versions are compiled with Intel’s icpc (version 10.1) using flags -

O3 -msse3 -axT -vec-report3 -fp-model fast = 2, which (1) vectorizes the algorithm’s dominant 

loops using instructions tuned for the Core 2 architecture, and (2) links the trigonometric operations 

to fast, approximate functions in the math library. Based on experimental tuning with a smaller data 

set, the inner loops are unrolled by a factor of four and the scan data is tiled to improve locality in 

the L1 cache. 
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Figure 7.20 Summary of Performance improvements

 
Each GPU version of FHd is compiled using nvcc -O3 (CUDA version 1.1) and executed on a 1.35 

GHz Quadro FX 5600. The Quadro card is housed in a system with a 2.4 GHz dual-socket, dual-

core Opteron 2216 CPU. Each core has a 1 MB L2 cache. The CPU versions use pthreads to 

execute on all four cores of 2.66 GHz Core 2 Extreme quad-core CPU, which has peak theoretical 

capacity of 21.2 GFLOPS per core and a 4 MB L2 cache. The CPU versions perform substantially 

better on the Core 2 Extreme quad-core than on the dual-socket, dual-core Opteron. 

 

All reconstructions use the GPU version of the linear solver, which executes 60 iterations on the 

Quadro FX 5600. Two versions of Q were computed on the Core 2 Extreme, one using double-

precision and the other using single-precision. The singleprecision Q was used for all GPU-based 

reconstructions and for the reconstruction involving CPU.SP, while the double-precision Q was 

used only for the reconstruction involving CPU.DP. As the computation of Q is not on the 

reconstruction’s critical path, we give Q no further consideration. 

 

To facilitate comparison of the iterative reconstruction with a conventional reconstruction, we also 

evaluated a reconstruction based on bilinear interpolation gridding and inverse FFT. Our version of 

the gridded reconstruction is not optimized for performance, but it is already quite fast. 

 

All reconstructions are performed on sample data obtained from a simulated, three-dimensional, 

non-Cartesian scan of a phantom image. There are 284,592 sample points in the scan data set, and 

the image is reconstructed at 1,283 resolution, for a total of 221 voxels. In the first set of 

experiments, the simulated data contains no noise. In the second set of experiments, we added 

complex white Gaussian noise to the simulated data. When determining the quality of the 

reconstructed images, the percent error and peak signal-to-noise ratio metrics are used. The percent 

error is the root-mean-square (RMS) of the voxel error divided by the RMS voxel value in the true 

image (after the true image has been sampled at 1283 resolution).  

 

The data (runtime, GFLOPS, and images) were obtained by reconstructing each image once with 

each of the implementations of the FHd algorithm described above. There are two exceptions to 

this policy. For GPU.Tune and GPU.Multi, the time required to compute FHd is so small that run-
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time variations in performance may become non-negligible. Therefore, for these configurations we 

computed F
H
d three times and reported the average performance.  

 

As shown in Figure 7.20, the total reconstruction time for the test image using bilinear interpolation 

gridding followed by inverse FFT takes only less than 0ne minute on a high-end sequential CPU. 

This confirms that there is little value in parallelizing this traditional reconstruction strategy. It is, 

however, obvious from Figure 7.19(2) that the resulting image exhibits an unacceptable level of 

artifact. 

 

The LS (CPU, DP) row shows the execution timing of reconstructing the test image using double-

precision floating-point arithmetic on the CPU. The timing shows that the core step (Q) of 

calculating F
H
*F +λW

H
W. The first observation is that the Q computation for a moderate 

resolution image based on a moderate sized data sample takes an unacceptable amount of 

time (more than 65 hours) on the CPU for setting up the system for a patient. Note that this 

time is eventually reduced to 6.5 minutes on the GPU with all the optimizations described 

in Section 7.3. The second observation is that the total reconstruction time of each image 

requires more than 8 hours, with only 1.59 minutes spent in the linear solver. This 

validates our decision to focus our parallelization effort on F
H
d. 

 

The LS(CPU, SP) row shows that we can reduce the execution time significantly when we 

covert the computation from double-precision floating-point arithmetic to single-precision 

on the CPU. This is because the SSE instructions have higher throughput, i.e., calculate 

more data elements per clock cycle when executing in single-precision mode. The 

execution times, however, are still unacceptable for practical use. 

 

The LS(GPU, naïve) row shows that a straightforward CUDA implementation can achieve 

a speedup about 10 times for Q and 8 times for the reconstruction of each image. This is a 

good speedup but the resulting execution times are still unacceptable for practical use.  

 

The LS(GPU, Cmem) row shows that significant further speedup is achieved by using 

registers and constant cache to get around the global memory bandwidth limitations. These 

enhancements achieve about 4X speedup over the naïve CUDA code! This shows the 

importance of achieving good compute to memory ratios in CUDA kernels. These 

enhancements bring the CUDA code to about 40X speedup over the single precision CPU 

code. 

 

The LS(GPU, CMem, SPU, exp) row shows the use of hardware trigonometry functions 

and experimental tuning together results in dramatic further speedup. A separate 

experiment, not shown here, shows that most of the speedup comes from hardware 

trigonometry functions. The total speedup over CPU single-precision code is very 

impressive: 357X for Q and 108X for the reconstruction of each image. 

 

An interesting observation is that in the end, the linear solver actually takes more time that 

F
H
d. This is because we have accelerated F

H
d dramatically (228X). What used to be close 

to 100% of the per image reconstruction time now accounts for less than 50%. Any further 



 

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 24 

acceleration will now require acceleration of the linear solver, a much more difficult type 

of computation for massively parallel execution. 

 

 

 

 

 


