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Chapter 5 

Performance Considerations 
 
 
Although a CUDA kernel can run correctly on any CUDA device, its execution speed can 

vary greatly depending on the resource constraints of each device. In this chapter, we will 

discuss the major dimensions of resource constraints in an actual CUDA device and how 

they can constrain the level of parallel execution in this device. In order to achieve his/her 

goals, a programmer often has to find ways to achieve a required level of performance that 

is higher than that of an initial version of the application. In different applications, different 

constraints may dominate and become the limiting factors. One can improve the 

performance of an application on a particular CUDA device, sometimes dramatically, by 

trading one resource usage for another. This strategy works well if the resource constraint 

thus alleviated was actually the dominating constraint before the strategy was applied and 

the one thus exacerbated does not have worse effects on parallel execution. Without such 

understanding, performance tuning would be a guess work; plausible strategies may or 

may not lead to performance enhancements.  Beyond insights into these resource 

constraints, this chapter further offers principles and case studies designed to cultivate 

intuition about the type of algorithms that can result in high performance execution CUDA 

devices. It is also establishes idioms and ideas that will likely lead to good performance 

improvements during your performance tuning efforts. 

 

5.1. More on Thread Execution 
Let’s first discuss the aspects of thread execution that can limit performance. Recall that 

launching a CUDA kernel generates grid of threads that are organized into a two-level 

hierarchy. At the top level, a grid consists of a one- or two-dimensional array of blocks. At 

the bottom level, each block, in turn, consists of a one-, two-, or three-dimensional array of 

threads. In Chapter 3, we discussed the fact that blocks can execute in any order relative to 

each other, which allows for transparent scalability in parallel execution of CUDA kernels. 

However, we did not say much about the execution timing of threads within each block. 

 

Conceptually, one should assume that threads in a block can execute in any order with 

respect to each other. Barrier synchronizations should be used whenever we want to ensure 

all threads have completed a common phase of their execution before any of them start the 

next phase. The correctness of executing a kernel should not depend on the fact that certain 

threads will execute in synchrony with each other. Having said this, we also want to point 

out that due to various hardware cost considerations, the current generation of CUDA 

devices actually does bundle multiple threads for execution. Such implementation strategy 
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leads to performance limitations for certain types of kernel function code constructs. It is 

advantageous for application developers to change these types of constructs to other 

equivalent forms that perform better. 

 

The G80/G280 implementation bundles several threads for execution. Each block is 

partitioned into warps. This implementation technique helps to reduce hardware cost and 

enable some optimizations in servicing memory accesses.  In the foreseeable future, we 

expect that warp partitioning will remain as a popular implementation technique. However, 

the size of warp can easily vary from implementation to implementation. In G80/G280, 

each warp consists of 32 threads. We will use the G80/G280 implementation to explain 

warp partitioning for the rest of this chapter. 

 

Thread blocks are partitioned into warps based on thread IDs. If a thread block is organized 

into a one-dimensional array, i.e., only threadIdx.x is used, the partition is straightforward. 

Thread IDs within a warp are consecutive and increasing. For warp size of 32, warp 0 

starts with thread 0 and ends with thread 31, warp 1 starts with thread 32 and ends with 

thread 63. In general, warp n starts with thread 32*n and ends with thread 32(n+1)-1. For a 

block whose number of threads is not a multiple of 32, the last warp will be padded with 

extra threads to fill up the 32 threads. For example, if a block has 48 threads, it will be 

partitioned into 2 warps, and its warp 1 will be padded with 16 extra threads. 

 

For blocks that consist of multiple dimensions of threads, the dimensions will be projected 

into a linear order before partitioning into warps. The linear order is determined by lining 

up the row with larger y and z coordinates after those with lower ones. That is, if a block 

consists of two dimensions of threads, one would form the linear order by placing all 

threads whose threadIdx.y is 1 after those whose threadIdx.y is 0. Threads whose 

threadIdx.y is 2 will be placed after those whose threadIdx.y is 1, and so on.  
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Figure 5.1. Placing threads into linear order 
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Figure 5.1, shows an example of placing threads of a two dimensional block into linear 

order. The upper part shows the two-dimensional view of the block. Each thread is shown 

as Tx,y , x being the threadIdx.x and y being threadIdx.y for the thread. The lower part 

shows the linear view of the block. The first four threads are those threads whose 

trheadIdx.y is 0; they are placed with increasing threadIdx.x values. The next four threads 

are those trheads whose threadIdx.y is 1. They are also placed with their increasing 

threadIdx.x values. For this example, all 16 threads form half a warp. The warp will be 

padded with another 16 threads to complete a 32-thread warp. Imagine a 2 dimensional 

block with 8X8 threads. The 64 threads will form 2 warps. The first warp start from T0,0 

and ends with T3,7. The second warp starts with T4,0 and ends with T7,7. It would be a useful 

exercise to draw out the picture as an exercise. 

 

For a three dimensional block, we first place all threads whose threadIdx.z is 0 into the 

linear order. Among these threads, they are treated as a 2-dimensional block as shown in 

Figure 5.1. All threads whose threadIdx.z is 1 will then be placed into the linear order, and 

so on. A three dimensional 4X8X2 (4 in the x dimension, 8 in the y dimension, and 2 in the 

z dimension), the 64 threads will be partitioned into 2 warps, with T0,0,0 through T3,7,0 in the 

first warp and T0,0,1 through T3,7,1 in the second warp. 

 

At any point in time, the hardware selects and executes one warp at a time. An instruction 

is run for all threads in the same warp, before moving to the next instruction. This style of 

execution is motivated by hardware cost constraints: it allows the cost of fetching and 

processing an instruction to be amortized among a large number of threads. It works well 

when all threads within a warp follow the same control flow path when working their data. 

For an if-then else construct, the execution works well when either all threads execute the 

then part or all execute the else part. When threads within a warp take different control 

flow paths, that is when some threads execute the then part and others execute the else part, 

the simple execution style no longer works well. In such situation, the execution of the 

warp will require multiple passes through these divergent paths. One pass will be needed 

for those threads that follow the then part and another pass for those that follow the else 

part. These passes are sequential to each other, thus will add to the execution time. 

 

When threads in the same warp follow different paths of control flow, we say that these 

threads diverge in their execution. Divergence can arise in other constructs. For example, if 

threads execute a loop whose number of iterations can vary across threads, one additional 

pass must be taken for each case among the threads. For example, if threads in a warp 

execute the same for loop whose loop bound can be 6, 7, 8, or 9 iterations. All threads will 

finish the first 6 iterations together. One pass will be used to execute all threads that need 

the 7
th

 iteration. One more pass will be used to execute all threads that need the 8
th

 

iteration. Yet another pass will be used to execute those that need the 9
th

 iteration. 

 

An if-the-else construct can result in thread divergence is when its decision condition is 

based on thread ID. For example, the statement “if (threadIdx.x > 2) {}” causes the threads 

to follow two divergent control flow paths. Threads 0, 1, and 2 follow a different path than 
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threads 3, 4, 5, etc.  Similarly, if a loop can cause thread divergence if its loop condition is 

based on thread ID. Such usages arise naturally in some important parallel algorithms. We 

will use a reduction algorithm to illustrate this point.  

 

A reduction algorithm extracts a single value from an array of values. The single value 

could be the sum, the maximal value, or the minimal value among all elements. All these 

types of reductions share the same computation structure. A reduction can be easily done 

by sequentially going through every element of the array. When an element is visited, the 

action to take depends on the type of reduction being performed. For a sum reduction, the 

value of the element being visited at the current step, or the current value, is added to a 

running sum. For a maximal reduction, the current value is compared to a running maximal 

value of all the elements visited so far. If the current value is larger than the running 

maximal, the current element value becomes the running maximal value. For a minimal 

reduction, the value of the element currently being visited is compared to a running 

minimal. If the current value is smaller than the running minimal, the current element value 

becomes the running minimal. The algorithm ends when all the elements are visited. 

 

When there are a large number of elements in the array, the time needed to visit all 

elements of an array becomes large enough to motivate parallel execution. A parallel 

reduction algorithm typically resembles that of a soccer tournament. In fact, the 

elimination process of the world cup is a reduction of “maximal” where the maximal is 

defined as the team that “beats” all other teams. The tournament “reduction” is done by 

multiple rounds. The teams are divided into pairs. During the first round, all pairs play in 

parallel. Winners of the first round advance to the second round, whose winners advance to 

the third round, etc. With 16 teams entering a tournament, the 8 winners will emerge from 

the first round, 4 winners the second round, 2 winners the third round, and 1 final winner 

the fourth round. It should be easy to see that even with 1024 teams, it takes only 10 

rounds to determine the final winner. The trick is to have enough soccer fields to hold the 

512 games in parallel during the first round, 256 games in the second round, 128 games in 

the third round, and so on. With enough fields, even with sixty thousand teams, we can 

determine the final winner in just 16 rounds. Of course, one would need to have enough 

soccer fields and enough officials to accommodate the thirty thousand games in the first 

round, etc.  

 

Figure 5.2 shows a kernel function that performs sum reduction. The original array is in the 

global memory. Each thread block reduces a section of the array by loading the elements of 

the section into the shared memory and performing parallel reduction. The reduction in 

done in place, which means the elements in the shared memory will be replaced by partial 

sums. Each iteration of the while loop in the kernel function implements a round of 

reduction. The syncthreads() statement in the while loop ensures that all threads are ready 

to enter the next iteration before any thread is allowed to do so. Therefore, all threads that 

enter the second iteration will be using the values produced in the first iteration. After the 

first round, the even elements will be replaced by the partial sums generated in the first 

round. After the second round, the elements whose indices are multiples of four will be 
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replaced with the partial sums. After the final round, the total sum of the entire section will 

be in element 0.  

1. __shared__ float partialSum[]

2. unsigned int t = threadIdx.x;

3. for (unsigned int stride = 1; 

4. stride < blockDim.x; stride *= 2) 

5. {

6.  __syncthreads();

7.  if (t % (2*stride) == 0)

8. partialSum[t] += partialSum[t+stride];

9  }

Figure 5.2 A simple sum reduction kernel.
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Figure 5.3 Execution of the sum reduction kernel.
 

 

In Figure 5.2, the Line 3 initializes the stride variable to 1. During the first iteration, the if 
statement in Line 7 is used to select only the even threads to perform addition between two 

neighboring elements. The execution of the kernel is illustrated in Figure 5.3. The threads 

and array elements are shown in the as columns and the iterations are shown as rows. As 

shown in row 1 in Figure 5.3, the even elements of the array now hold the pair-wise partial 

sums. Before the second iteration, the value of the stride variable in doubled to 2.  During 

the second iteration, only those threads whose indices are multiples of four, shown as 

orange and yellow columns in Figure 5.3, will execute the add statement. Each thread 
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generates a partial sum that covers four elements, as shown in the row 2 in Figure 5.3. 

With 512 elements in each section, the kernel function will generate the total for the entire 

section after 9 iterations. 

 

The kernel in Figure 5.3 clearly has thread divergence. During the first iteration of the 

loop, only those threads whose threadIdx.x are even will execute the add statement. One 

pass will be needed to execute these threads and one additional pass will be needed to 

execute those that do not execute the add statement. In each successive iteration, fewer 

threads will execute the add statement but two passes will be still needed to execute all the 

threads. This divergence can be reduced with a slight change to the algorithm. 

 

1. __shared__ float partialSum[]

2. unsigned int t = threadIdx.x;

3. for (unsigned int stride = blockDim.x; 

stride > 1;  stride >> 1) 

4. {

5.  __syncthreads();

6.   if (t < stride)

7.    partialSum[t] += partialSum[t+stride];

8. }

Figure 5.4 A kernel with fewer thread divergence

 
 

Figure 5.4 shows a modified kernel with a slightly different algorithm for sum reduction. 

Instead of adding neighbor elements in the first round, it adds elements that are half a 

section away from each other during the first round. It does so by initializing the stride to 

be half the size of the section. All pairs added during the first round are half the section 

size away from each other. After the first iteration, all the pair-wise sums are stored in the 

first half of the array. The loop divides the stride by 2 before entering the next iteration. 

This is done by shifting the stride value to the right by one bit, a much less expensive way 

to implement divide by 2 than a real integer division.  

 

Figure 5.5 illustrates the execution of the revised kernel. During the first iteration, all 

threads whose threadIdx.x value are less than half of the size of the section execute the add 

statement. For a section of 512 elements, Threads 0 through 255 execute the add statement 

during the first iteration while threads 256 through 511 do not. The pair-wise sums are 

stored in elements 0 through 255 after the first iteration. Since the warps consists of 32 

threads with consecutive threadIdx.x values, all threads in warps 1 through warp 8 execute 
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the add statement whereas warps 9 through warp 15 execute all skip the add statement. 

Since all threads in each warp take the same path, there is no thread divergence! 
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Figure 5.5 Execution of the revised algorithm

 

5.2. Global Memory Performance 
One of the most important dimensions of CUDA kernel performance is accessing data in 

the global memory. CUDA applications exploit massive data parallelism that comes from 

processing as massive amount of data simultaneously. Therefore, CUDA applications 

typically process a massive amount of data within a short period of time. In particular, a 

CUDA kernel must be able to access a massive amount of data from the global memory 

within a very short period of time. In Chapter 4, we discussed tiling techniques that utilize 

shared memories to reduce the total amount of data that must be accessed by a collection of 

threads in the thread block. In this Chapter, we will further discuss memory coalescing 

techniques that can more effectively move data from the global memory into shared 

memories and registers. Memory coalescing techniques are often used in conjunction with 

tiling techniques to allow CUDA devices to reach their performance potential in the 

presence of limited data access bandwidth of the global memory. 

 

Global memory in a CUDA system is typically implemented with Dynamic Random 

Access Memories, or DRAMs. Data bits are stored in DRAM cells that are very weak 

capacitors, where the presence or absence of a tiny amount of electrical charge 

distinguishes between 0 and 1. Reading data from a DRAM cell that contains a 1 requires 

the weak capacitor to share its tiny amount of charge to a sensor and set off a detection 

mechanism that determines whether a sufficient amount of charge is present in the 

capacitor. Because this is a very slow process, modern DRAMs use a parallel process to 

increase their rate of data access. Each time a location is to be accessed, many consecutive 
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locations that includes the requested location are accessed. Many sensors are provided in 

each DRAM chip and they work in parallel, each sensing the contents of a bit location 

within these consecutive locations. Once detected by the sensors, the data from all these 

consecutive locations can then be transferred at very high speed to the processor. If an 

application can make use of data from multiple, consecutive locations before moving on to 

other locations, the DRAMs can supply the data at much higher rate than if a truly random 

sequence of locations were accessed. In order to achieve anywhere close to the advertised 

84.6GB/sec global memory bandwidth for G80, a kernel must arrange its data accesses so 

that each request to the DRAMs is for a large number of consecutive DRAM locations. 

 

Recognizing the organization of modern DRAMs, G80/280 designs employ a technique 

that allows the programmers to achieve high global memory access efficiency by 

organizing memory accesses of threads to exhibit favorable access patterns. This technique 

takes advantage of the fact that threads in a warp execute the same instruction at any given 

point in time. When all threads in a warp execute a load instruction, the hardware detects 

whether the threads access consecutive global memory locations.  That is, the most 

favorable access pattern is achieved when the same instruction for all threads in a warp 

accesses consecutive global memory locations. In this case, the hardware combines, or 

coalesces, all these accesses into a consolidated access to the DRAMs that requests all 

consecutive locations involved. For example, for a given load instruction of a warp, if 

thread 0 accesses global memory location N, thread 1 location N+1, thread 2 location N+2, 

etc, all these accesses will be coalesced, or combined into a single request for all 

consecutive locations when accessing the DRAMs. Such coalesced access allows the 

DRAMs to deliver data at a rate close to the maximal global memory bandwidth. 

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

No coalesced coalesced

Figure 5.6 Memory access patterns for coalescing.

 
 

Figure 5.6 illustrates the favorable vs. unfavorable C program matrix data access patterns 

for memory coalescing. In part (a), illustrates the data access pattern of a loop where each 

thread reads a row of matrix Md. Assume that threads in a warp read adjacent rows. That 

is, during iteration 0, threads in warp 0 read element 0 of rows 0 through 31. During 

iteration 1, these same threads read element 1 of rows 0 through 31. None of the accesses 

will be coalesced. A more favorable access pattern is shown in Figure 5.6(b), where each 

thread reads a column of Nd. During iteration 0, threads in warp 0 reads element 1 of 

columns 0 through 31. All these accesses will be coalesced. In order to understand why the 
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pattern in 5.6(b) is more favorable than that in 5.6(b), we need to understand how these 

matrix elements are placed into the global memory. 

 

All locations in the global memory form a single, consecutive address space. That is, every 

location in the global memory has a unique address. This is analogous to a very long street 

where every house has a unique address. For example, if the global memory contains 1,024 

locations, these locations will be accessed by address 0 through 1023. The G208 can have 

up to 4GB (2
32

) locations; the addresses range from 0 to 2
32

 – 1. All variables of a CUDA 

program are placed into this linear address space and will be assigned an address. 

 

Matrix elements are placed into the linearly addressed locations according to the row 

major convention. That is, the elements of row 0 of a matrix are first placed in order into 

consecutive locations. They are followed by the elements of row 1 of the matrix, and so on. 

In other words, all elements in a row are placed into consecutive locations and entire rows 

are placed one after another. The term row major refers to the fact that the placement of 

data preserves the structure of rows, all adjacent element in a row are placed into 

consecutive locations in the address space. This is illustrated with an example in Figure 

5.7, where the 16 elements of a 4X4 matrix M are placed into linearly addressed locations. 

The four elements of row 0 are first placed in their order of appearance in the row. 

Elements in row 1 are then placed, followed by elements of row 2, followed by elements of 

row 3. It should be clear that M0,0 and M0,1, though appear to be consecutive in the two 

dimensional matrix, are placed four locations away in the linearly addressed memory. 
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M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

linearized order in increasing address

Figure 5.7 Placing matrix elements into linear order 

 
Now that we understand the placement of matrix elements into global memory, we are 

ready to understand the favorable vs. unfavorable matrix data access patterns in Figure 5.6. 

Figure 5.8 shows an example of the favorable access pattern in accessing a 4X4 matrix. 

The arrow in the top portion of the Figure shows the access pattern of the kernel code for 

one thread. The accesses are generated by a loop where threads in a warp access element 0 
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of the columns in the first iteration. As shown in the bottom portion of Figure 5.8, these 

elements are in consecutive locations in the global memory. The hardware detects that 

these accesses are to consecutive locations in the global memory and coalesces these 

accesses into a consolidated access. This allows the DRAMs to supply data at high rate. 
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M1,0M0,0

M0,1
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M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2
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M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3
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direction in 
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code
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Figure 5.8 A coalesced access pattern.

 
Figure 5.9 shows an example of matrix data access pattern that are not coalesced. The 

arrow in the top portion of the figure shows that the kernel code for each thread accesses 

elements of a row in sequence. The accesses are generated by a loop where threads in 

Warp 0 access element 0 of the columns during the first iteration. As shown in the bottom 

portion of Figure 5.9, these elements are in locations that are four elements away from 

each other. As a result, the hardware will determine that accesses to these elements cannot 

be coalesced. As a result, when a kernel loop iterates through a row, the accesses to global 

memory are much less efficient than the case where a kernel iterates through a column. 
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Figure 5.9 An un-coalesced access pattern. 
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If the algorithm intrinsically requires a kernel code to iterate through data within rows, one 

can use the shared memory to enable memory coalescing. The technique is illustrated in 

Figure 5.10 for matrix multiplication. Each thread reads a row from Md, a pattern that 

cannot be coalesced. A tiled algorithm can be used to enable coalescing. As described in 

Section 4, threads of a block first cooperatively load the tiles into the shared memory. Care 

can be taken to ensure that these tiles are loaded in a coalesced pattern. Once the data is in 

shared memory, they can be accessed either on a row basis or a column basis without any 

performance penalty because the shared memories are implemented as intrinsically high-

speed on-chip memory that does not require coalescing to achieve high data access rate. 
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Figure 5.10 Using shared memory to enable coalescing.

 
However, one has to take care so that the loading of tiles from global memory to shared 

memory is coalesced. We replicate Figure 4.7 here as Figure 5.11, where the matrix 

multiplication kernel loads two tiles of matrix Md and Nd into the shared memory. Note 

that each thread in a thread block is responsible for loading one Md element and one Nd 

element into Mds and Nds in each iteration of the for loop defined in line 8. Recall that 

there are TILE_WIDTH
2
 threads involved in each tile. The threads use threadIdx.y and 

threadIdx.y to determine the element of each matrix to load.  

 

For Md, the index calculation for each thread uses m to locate the left end of the tile. Each 

row of the tile is then loaded by TILE_WIDTH threads whose thread IDs differ in the x 

dimension. Since these threads have consecutive threadIdx.x values, they are in the same 

warp. Also, recall that elements in the same row are placed into consecutive locations of 

the global memory. The hardware detects that these threads in the same warp access 

consecutive locations in the global memory and combine them into a coalesced access. 

 

In the case of Nd, the index calculation for each thread uses m to locate the upper end of 

the tile. Each row of the thread is then also loaded by TILE_WIDTH threads whose thread 

IDs differ only in the x dimension. Once again, these threads are in the same warp because 

they have consecutive trheadIdx.x values. The hardware detects that these threads in the 
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same warp access consecutive location in the global memory and combine them into a 

coalesced access.  

© David Kirk / NVIDIA and Wen-mei W. Hwu 11

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.   float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row][m*TILE_WIDTH + tx];

10. Nds[ty][tx] = Nd[m*TILE_WIDTH + ty][Col];

11. __Syncthreads();

12.   for (int k = 0; k < TILE_WIDTH; ++k)

13.       Pvalue += Mds[ty][k] * Nds[k][tx];

14.   Pd[Row][Col] = Pvalue;

}

}

Figure 5.10 Tiled Matrix Multiplication Kernel using shared memories.
 

The reader shall find it useful to draw a picture base don the kernel code in Figure 5.10 and 

identify the threadIdx.y and threadIdx.x values of the thread that loads each element of the 

tile. Lines 5, 6, 9, 10 in Figure 5.10 form a frequently used programming pattern for 

loading elements into shared memory in tiled algorithms. We would also like to encourage 

the reader to analyze the data access pattern by the dot-product loop in lines 12 and 13. 

Note that the threads in a warp do not access consecutive location of Mds. This is not a 

problem since Mds is in shared memory, which does not require coalescing to achieve high 

speed data access. 

5.3. Dynamic Partitioning of SM Resources 
The execution resources in a Streaming Multiprocessor, or SM, include registers, thread 

block slots, and thread slots. These resources are dynamically partitioned and assigned to 

threads to support their execution. In Chapter 3, we have seen that each SM has 768 thread 

slots, each of which can accommodate one thread. These thread slots are partitioned and 

assigned to thread blocks during runtime. If each thread block consists of 256 threads, the 

768 threads slots are partitioned and assigned to three blocks. In this case, each SM can 

accommodate up to three thread blocks due to limitations on thread slots. If each thread 

block contains 128 threads, the 768 thread slots are partitioned and assigned to 6 thread 

blocks. The ability to dynamically partition the thread slots among thread blocks makes the 

streaming multiprocessors versatile. They can either execute many thread blocks each of 

which consists of few threads or execute few thread blocks each of which consists of many 

threads. This is in contrast to a fixed partitioning method where each block receives a fixed 

amount of resource regardless of their real needs. Such fixed partitioning results in wasted 
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thread slots when a block has few threads and fails to support blocks that require more 

thread slots than the fixed partition allows. 

 

Dynamic partitioning of resources can result in subtle interactions between resource 

limitations, which in turn cause underutilization of resources. Such interactions can occur 

between block slots and thread slots. If each block has 64 threads, the 768 thread slots can 

be partitioned and assigned to 12 blocks. However, since there are only 8 block slots in 

each SM, only 8 blocks will be allowed. This means that only 512 of the thread slots will 

be utilized. Therefore, to fully utilize both the block slots and thread slots, one needs at 

least 96 threads in each block. 

 

The register file is another dynamically partitioned resource. The number of registers in 

each CUDA device is not specified in the language and varies across implementations. In 

G80, there is an 8192-entry register file in each SM. These registers are used to hold 

frequently used programmer and compiler-generated variables to reduce their access 

latency and to conserve memory bandwidth. As we mentioned in Chapter 4, the automatic 

variables declared in a CUDA kernel are placed into registers. Some kernels may use lots 

of automatic variables and others may use few of them. Thus, one should expect that some 

kernels require many registers and some require fewer. By dynamically partitioning the 

registers among blocks, the SM can accommodate more blocks if they require few registers 

and fewer blocks if they require more registers. One does, however, need to be aware of 

potential interactions between register limitations and other resource limitations. 

Figure 5.12 Interaction of resource limitations  
 

In the matrix multiplication example, assume that the kernel code uses 10 registers per 

thread. If we have 16X16 thread blocks, how many threads can run on each SM? We can 

answer this question by first calculate the number of registers needed for each block, which 

is 10*16*16= 2560. The number of registers required by three blocks is 7680, which is 

under the 8,120 limit. Adding another block would require 10240 registers, which exceeds 
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the limit. Therefore, as shown in Figure 5.12(a), the register limitation allows 3 blocks that 

altogether have 768 threads to run on each SM, which also fits within the limit of 8 block 

slots and 768 thread slots.  

 

Now assume that the programmer declares another automatic variable in the kernel and 

bump the number of registers used by each thread to 11. Assuming the same 16X16 

blocks, each block now requires 11*16*16 = 2,816 registers. The number of registers 

required by three blocks is now 8,448, which exceeds the register limitation. As shown in 

Figure 5.12(b), the SM deals with this situation by reducing the number of blocks by one, 

thus reducing the number of registered required to 5,632. This, however, reduces the 

number of threads running on an SM from 768 to 512. That is, by using one extra 

automatic variable, the program saw a 1/3 reduction in the thread-level parallelism in G80 

execution! This is sometimes a referred to as a “performance cliff” where a slight increase 

in resource usage can result in dramatic reduction in parallelism and performance 

achieved.  

 

In some cases, adding an automatic variable may allow the programmer to improve the 

execution speed of individual threads by initiating time consuming memory accesses early, 

as we will explain in more detail later in this chapter. The improvement within each thread 

may be sufficient to overcome the loss of thread-level parallelism. For example, assume 

that in the original kernel, there are four independent instructions between a global 

memory load and its use. In G80, each instruction takes 4 clock cycles to process. So the 4 

independent instructions give a 16 cycle slack for the memory access. With a 200-cycle 

global memory latency, we need to have at least 200/(4*4) = 14 warps available for zero-

overhead scheduling to keep the execution units fully utilized. 

 

Assume that the additional register allows the programmer or the compiler to use a 

program transformation technique to increase the number of independent instructions from 

4 to 8. These independent instructions give 1 32 cycle slack for the memory access. With 

the same 200-cycle global memory latency, we now only need 200/(4*8) = 7 warps 

available for zero-overhead scheduling to keep the execution units fully utilized. That is, 

even though we just reduced the number of blocks from 3 to 2, and thus the number of 

warps from 24 to 16, we may have enough warps to fully utilize the execution units in each 

SM. Thus, the performance may actually increase! A programmer typically needs to 

experiment with each alternative and choose the best performing code. This can be a labor 

intensive, tedious process. Ryoo et al have proposed a methodology for automating the 

experimentation process to reduce the programming efforts required to reach an optimal 

arrangement for each variety of CUDA hardware [RyooCGO2008]. 

5.4. Data Prefetching 
One of the most important resource limitations for parallel computing in general is that 

global memory has limited bandwidth in serving data accesses and these accesses take a 

long time to complete. The tiling techniques for using shared memory address the problem 
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of limited global memory bandwidth. The CUDA threading model tolerates long memory 

access latency by allowing some warps to make progress while others wait for their 

memory access results. While this is a very powerful mechanism, it may not be sufficient 

in some cases where all threads are waiting for their memory access results. Such a 

situation can arise if all threads have very small number of independent instructions 

between memory access instructions and the consumer of the data accessed. 

Loop {

Load current tile to shared 

memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}

Figure 5.13 Data Prefetching.

(a) Without prefetching (b) With prefetching

 
A useful, complementary solution to the problem is to prefetch the next data elements 

while consuming the current data elements, which increases the number of independent 

instructions between the memory accesses and the consumers of the data accessed. 

Prefetch techniques are often combined with tiling to simultaneously address the problems 

of limited bandwidth and long latency. We show such a combined approach in Figure 5.13. 

 

The algorithm in Figure 5.13(a) corresponds to the tiled matrix multiplication kernel in 

Figure 5.10. Lines 9 and 10 in Figure 5.10 correspond to “load current tile to shared 

memory” in Figure 5.13(a). This is the part that loads data from global memory into shared 

memory. The dot-product code (lines 12 and 13) in Figure 5.10 correspond to “compute 

current tile” in Figure 5.13(a). This is the part that consumes the loaded data. Note that 

there is no substantial activity between the two parts. That is, there are few independent 

instructions between these two parts.  

 

Figure 5.13(b) shows a prefetch version of matrix multiplication kernel. This technique 

allocates twice the amount of shared memory for each tile, one holds the tile currently 

being processed and one holds the tile to be processed next. Before we enter the while 

loop, we load the first tile into the registers. Once we enter the loop, we move the loaded 

data into shared memory. Since this is a consumer of the loaded data, the threads will 

likely need to be put to sleep, waiting for its loaded data while other threads make 

progress. When the first tile of data arrive, threads in the block pass the barrier 

synchronization and deposit the tile data from their registers to the shared memory. When 
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all threads of a block complete depositing their data, they pass the barrier synchronization 

point and begin to load the next tile into their registers. The key is that the next tile data 

loaded is not immediately consumed. Rather, the current block is processed from the 

shared memory by the dot-product loop of lines 12 and 13 in Figure 5.10.  

 

When the loop iterates, the “next tile” in the current iteration becomes “current tile” of the 

next iteration. Thus, the deposit of the “current tile” into the shared memory corresponds to 

the “next tile” loaded in the previous iteration. The execution of the dot-product loop 

provides many independent instructions between the two parts. This reduces the amount of 

time the threads will need to wait for their global memory access data.  

 

We would like to encourage the reader to revise the kernel in Figure 5.10 to use prefetch. 

A cost of the data prefetch is that that it uses two additional automatic variables (registers). 

As we discussed in Section 5.3, using additional registers can reduce the number of blocks 

that can run on an SM. However, this technique can still win if it significantly reduces the 

amount of time each thread waits for its global memory load data.  

5.5. Instruction Mix 
In current generation CUDA GPUs, each processor core has limited instruction processing 

bandwidth. Every instruction consumes instruction processing bandwidth, whether it is a 

floating point calculation instruction, a load instruction, or a branch instruction. Figure 

5.14(a) shows the dot-product loop of the matrix multiplication kernel. The loop incurs 

extra instructions to update loop counter k and performs conditional branch at the end of 

each iteration. Furthermore, the use of loop counter k to index the Ms and Ns matrices 

incurs address arithmetic instructions. These instructions compete against floating point 

calculation instructions for the limited instruction processing bandwidth.  

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

(a) loop incurs overhead instructions

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];

(b) loop unrolling eliminates overhead

Figure 5.14 Loop unrolling improves instruction mix

 
For example, the kernel loop in 5.14(a) executes 2 floating point arithmetic instructions, 

one loop branch instruction, two address arithmetic instructions, and one loop counter 

increment instruction. That is, only 1/3 of the instructions executed are floating-point 
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calculation instructions. With limited instruction processing bandwidth, this instruction 

mixture limits the achievable performance to no more than 1/3 of the peak bandwidth. 

 

A common way to improve the instruction mix is to unroll the loop, as shown in Figure 

5.14(b).  Given a tile size, one can simply unroll all the iterations and simply express the 

dot product computation as one long multiply-add expression. This eliminates the branch 

instruction and the loop counter update. Furthermore, since the indices are constants rather 

than K, the compiler can use the addressing mode offsets of the load instructions to 

eliminate address arithmetic instructions. As a result, the long expression can execute at 

close to peak performance! 

 

Ideally, loop unrolling should be automatically done by the compiler. This is one of the 

areas where compiler technology will likely be improved rapidly in the near future. Until 

the tools mature, many programmers will still unroll loops in their source code to achieve 

high performance. 

5.6. Thread Granularity 
An important algorithmic decision in performance tuning is the granularity of threads. It is 

often advantageous to put more work into each thread and use fewer threads. Such 

advantage arises when some redundant work exists between threads. Figure 5.14 illustrates 

such an opportunity in matrix multiplication. The tiled algorithm in Figure 4.8 uses one 

thread to compute one element of the output Pd matrix. This requires a dot product 

between on row of Md and one column of Nd. 
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Figure 5.14 Increased thread granularity 

with rectangular tiles.

 
The opportunity of thread granularity adjustment comes from the fact that multiple threads 

redundantly load each Md row. As shown in Figure 5.14, the calculation of two Pd 
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elements in adjacent tiles uses the same Md row. With the original tiled algorithm, the 

same Md row is redundantly loaded by the two thread blocks assigned to generate these 

two Pd tiles. One can eliminate this redundancy by merging the two thread blocks into one. 

Each thread in the new thread block now calculates two Pd elements. This is done by 

revising the kernel so that each two dot-products are computed by the kernel.  Both dot 

products use the same Mds row but different Nds columns. This reduces the global 

memory access by ¼. It also increases the number of independent instructions in the case 

of a prefetch algorithm in Figure 5.13 since there are two dot-products calculated between 

the loading of the tiles into registers and depositing these tiles into shared memories. 

 

The potential downside is that the new kernel now uses more registers and shared memory. 

Thus the number of blocks that can be running on each SM may decrease. It also reduces 

the total number of thread blocks by half, which may result in insufficient amount of 

parallelism for matrices of smaller dimensions. For G80/G280, we found that combining 

four adjacent horizontal blocks to compute for adjacent horizontal tiles gives the best 

performance for a 2048x2048 matrix multiplication. 

5.7. Experimental Performance Tuning 
The combined effects of various performance enhancement techniques on the matrix 

multiplication kernel are shown in Figure 5.14. The dimensions covered are tiling size, 

loop unrolling, data prefetching, and thread granularity. We can make at least four 

observations. 
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Figure 5.15 Effects of Performance Improvement Techniques

 
 

First, the tile size plays a major role in the performance. Until the tile size reaches 16X16, 

neither loop unrolling nor data prefetch helps. This is reflected by the fact that all eight 

bars in granularity bracket are of the same height. For small tile sizes such as 8x8, the 

saturated global memory bandwidth so severely limits the execution performance that 

transformations such as loop unrolling and data prefetching simply do not matter. On the 
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other hand, since rectangular tiling can reduce global memory accesses, one would expect 

that it should improve performance. That is, 1x2 rectangular tiling reduces the global 

memory access by ¼ and resulted and 1X4 tiling by 3/8. Note that 1X8 would have 

reduced the global traffic by only 7/16, a diminishing return that makes it much less 

attractive than using a larger tile size. The reductions in global memory accesses indeed 

help improve the performance shown in Figure 5.15. 

 

Second, once the tile size becomes sufficiently large, 16X16 in this case, to alleviate the 

saturation of global memory bandwidth, loop unrolling and data prefetching become much 

more important. In most cases, complete unrolling the loop can result in more than 20% 

performance improvement.  

 

The third observation is that while data prefetching is very beneficial for 1x1 tiling, it does 

not help much for 1x2 rectangular tiling. In fact, for 1x4 rectanular tiling, the register usage 

by one block of data prefetching kernel exceeded the total number of registers in the SM. 

This makes the code not executable in G80! This is a good illustration that as one applies 

multiple techniques to a kernel, these techniques will likely interact by reducing the 

resources available to other techniques. 

 

Finally, the appropriate combinations of performance tuning techniques can make a 

tremendous difference in the performance achieved by the matrix multiplication kernel. In 

Figure 5.15, the speed of the kernel executing on G80 increased from 18 GFOPS to 120 

GLOPS! However, the programming efforts required to search through these combinations 

is currently quite large. Much work is being done in both academia and industry to reduce 

the amount of programming efforts needed to achieve these performance improvements 

with automation tools. 

 

 


