

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 1

Chapter 7

Application Case Study –

Quantitative MRI Reconstruction

Application case studies teach computational thinking and programming in a concrete

manner. They also help demonstrate how the individual techniques fit into a top-to-bottom

development process. Most importantly, they help us to visualize the practical use of these

techniques in solving problems. In this chapter, we start with the background and problem

formulation of a relatively simple application. We show that parallel execution does not

only speedup the existing approaches, but also allows applications experts to pursue

approaches that are known to provide benefit but were previously ignored due to their

excessive computational requirements. We then use an example algorithm and its

implementation source code from such an approach to illustrate how a developer can

systematically determine the kernel parallelism structure, assign variables into CUDA

memories, steer around limitations of the hardware, validate results, and assess the impact

of performance improvements.

7.1. Application Background

Magnetic resonance imaging (MRI) is commonly used by the medical community to safely

and non-invasively probe the structure and function of biological tissues in all regions of

the body. Images that are generated using MRI have made profound impact in both clinical

and research settings. MRI consists of two phases, acquisition (scan) and reconstruction.

During the acquisition phase, the scanner samples data in the k-space domain (i.e. the

spatial-frequency domain or Fourier transform domain) along a predefined trajectory.

These samples are then transformed into the desired image during the reconstruction phase.

The application of MRI is often limited by high noise levels, significant imaging artifacts,

and/or long data acquisition times. In clinical settings, short scan times not only increase

scanner throughput but also reduce patient discomfort, which tends to mitigate motion-

related artifacts. High image resolution and fidelity are important because they enable

earlier detection of pathology, leading to improved prognoses for patients. However, the

goals of short scan time, high resolution, and high signal-to-noise ratio (SNR) often

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 2

conflict; improvements in one metric tend to come at the expense of one or both of the

others. One needs new, disruptive technological breakthroughs to be able to

simultaneously improve on all of three dimensions. This study presents a case where

massively parallel computing provides such a disruptive breakthrough.

The reader is referred to MRI textbooks [Liang] for the physics principles behind MRI. For

this case study, we will focus on the computational complexity in the reconstruction phase

as affected by the k-space sampling trajectory. The k-space sampling trajectory used by

the MRI scanner can significantly affect the quality of the reconstructed image, the time

complexity of the reconstruction algorithm, and the time required for the scanner to acquire

the samples. In general, the MRI reconstruction problem is defined by equation (1),

 (1)

Where m(r) is the reconstructed image, s(k) is the measured k-space data, and W(k) is the

weighting function that accounts for non-uniform sampling. That is, W(k) decreases the

influence of data from k-space regions where a higher density of samples points are taken.

If data are acquired by measuring at uniformly spaced Cartesian grid points in the k-space,

then this weighting function is a constant and can thus be factored out of the summation in

(1). As a result, the reconstruction of m(r) becomes an inverse Fast Fourier Transform

(FFT) on s(k), an extremely efficient computation method. A collection of data measured

at such uniformed spaced Cartesian grid points is referred as a Cartesian scan trajectory.

Fig. 7.1(a) depicts a Cartesian scan trajectory. Because Cartesian scan trajectory allows

image reconstruction to be performed quickly and efficiently as an inverse FFT on the

acquired data, it is the approach used in most clinical MRI scanners today.

Cartesian Scan Data Spiral Scan Data

Gridding1

FFT LS
(a) (b) (c)

Figure 7.1. Scanner k-space trajectories and their associated reconstruction

strategies: (a) Cartesian trajectory with FFT reconstruction, (b) Spiral (or non-

Cartesian trajectory in general) followed by gridding to enable FFT

reconstruction, (c) spiral (non-Cartesian) trajectory with linear solver based

reconstruction.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 3

Although the inverse FFT reconstruction of Cartesian scan data is computationally

efficient, Cartesian scan trajectories often require longer scanner time than non-Cartesian

trajectories. This stems from the fact that the number of trajectories required to satisfy

Nyquist criterion in k-space sampling is different for different trajectory shapes. Non-

Cartesian scan trajectories like spirals (shown in Figure 7.1(c)), radial lines (projection

imaging) and rosettes cover the k-space much more efficiently. For instance, one needs

fewer spiral trajectories than Cartesian trajectories to cover the same area in the k-space,

thus reducing the scan time for spiral trajectories. The reduction of trajectories taken

translates into less scan time, and thus improved patient comfort and reduced motion

related artifacts. Furthermore, when time-dependent phenomena like bolus-spreading or

movement of the heart need to be scanned, one must reduce the scan time for generating

each video frame to achieve a frame rate needed to produce usable videos.

Image reconstruction from non-Cartesian trajectory data presents both challenges and

opportunities. The main challenge arises from the fact that the W(k) function in (1) is not a

constant function for non-Cartesian trajectory data and thus can no longer be factored out

of the summation. Therefore, one can no longer perform reconstruction by directly

applying an inverse FFT to the k-space sample. In a commonly used approach called

gridding, the samples are first interpolated onto a uniform Cartesian grid and then

reconstructed using the FFT (see Fig. 7.1(b)). Earlier gridding methods used simple

bilinear interpolation to map the data onto a Cartesian grid. However, simple bilinear

interpolation suffered from extra artifacts and low accuracy. Thus, a popular method for

the reconstruction of non-Cartesian k-space data has been to (re)grid the data onto a

Cartesian grid via a convolution approach. Each of the data points, which lie along some

trajectory in k-space, is convolved with a gridding kernel, and the result sampled and

accumulated on a Cartesian grid. Convolution is quite computationally intensive. Studies

have shown that that for standard gridding parameters, the reconstruction is approximately

six times longer than that of Cartesian sampled data and can make the reconstruction on a

CPU too long for clinical use. Accelerating gridding computation on many-core processors

enables the application of the current FFT approach to non-Cartesian trajectory data. Since

we will be examining a convolution-style computation in chapter 8, we will not cover it

here.

An interesting opportunity arises when we rethink the entire reconstruction process. The

use of non-Cartesian trajectory allows the scanner to take more samples at a given time

budget and can potentially improve SNR. However, inverse FFT satisfies no optimality or

bound criterion, does not model imaging physics. In applications where the pixels in the

reconstructed image are used to provide general diagnosis impression and their numerical

values are not used for critical diagnosis decisions, gridding followed by inverse FFT

offers a cost-effective solution. However, it does not take advantage of the potential

offered by increased amount of sample data to enable more applications where the

reconstructed image pixel values are used for critical diagnosis decisions.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 4

By contrast, iterative, statistically optimal image reconstruction methods can more

accurately model imaging physics and bound the noise error in each image pixel value.

This allows the reconstructed image pixel values to be used for measuring subtle

phenomenon such as tissue chemical anomalies before they become anatomical pathology.

However, such iterative reconstructions have been impractical for large-scale 3D problems

due their excessive computational requirements compared inverse FFT. Recently, these

reconstructions have become viable in clinical settings when accelerated on GPUs. In

particular, we will show that an iterative reconstruction algorithm that explicitly models

imaging physics used to take hours using a high-end sequential CPU but takes only

minutes using G80 for a image of moderate resolution, a delay acceptable in clinical

settings.

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

Figure 7.2. The use of non-cartesian k-space sample trajectory and accurate linear-

solver based reconstruction enables new MRI modalities with exciting medical

applications. The faster scan time allows acquisition of more samples required to

collect in-vivo concentration data on less abundant substance such as sodium in

human tissues. The variation or shifting of sodium concentration gives early signs of

disease development or tissue death. An example of sodium map of a human brain

shown in this Figure can be used to give early indication of brain tumor tissue

responsiveness to chemo-therapy protocols, enabling individualized medicine.

The availability of fast, robust, and statistically optimal image reconstruction methods for

non-Cartesian k-space trajectories enables new MRI modalities. The typical medical use of

MRI today studies the human anatomical structures by mapping out the concentration

levels of water in human tissues. The progress a disease development or treatment is

measured by the anatomical changes such as enlargement or shrinkage of tumors. One can,

however, measure much earlier progress that precedes the anatomical changes by

measuring the concentration changes of sodium, a heavily regulated substance in normal

human cells. Such a measurement is shown in Figure 7.2. Because sodium and other

interesting chemical substance for medical applications are much less abundant than water

molecules in human tissues, a reliable measurement of sodium concentration needs a

drastic increased k-space coverage in order to achieve an acceptable level of SNR in the

resulting image. The increased coverage requirement motivates the use of multiple

scanners as well as non-Cartesian data trajectories in order to keep the scanning time

reasonable for patients. Iterative, statistically optimal reconstruction methods are needed to

deploy physics models needed to correctly stitch together the data from multiple scanners

and to bound the noise error for each pixel point so that the pixel values are accurate

measurements of the sodium level for early assessment of disease progress.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 5

7.2. Iterative Reconstruction
Haldar and Liang proposed a linear solver based iterative reconstruction algorithm for non-

Cartesian scan data, as shown in Fig. 7.1(c). The algorithm allows for explicit modeling

and compensation for the physics of the scanner data acquisition process, and can thus

reduce the artifacts in the reconstructed image. It is, however, computational intensive. The

reconstruction time on high-end sequential CPUs has been hours for moderate-resolution

images and thus impractical in clinical use. The objective here is to use the massive

parallelism in GPUs to reduce the reconstruction time to a matter of seconds so that one

can begin to deploy the new MRI modalities such as sodium imaging in clinical settings.

Figure 7.3 shows a quasi-Bayesian estimation problem formulation of the linear-solver

based reconstruction approach, where ρ is a vector containing voxel values for the

reconstructed image, F is a matrix that models the physics of imaging process, d is a vector

of data samples from the scanner, and W is a matrix that can incorporate prior information

such as anatomical constraints. In clinical settings, the anatomical constraints represented

in W are derived from one or more high resolution, high-SNR water molecule scans of the

patient. These water molecule scans reveal features such as the location of anatomical

structures. The matrix W is derived from these reference images. The problem is to solve

for ρ given all the other matrices and vectors.

Compute FHF + λWHW

Acquire Data

Compute FHd

Find ρ

Figure 7.3. An iterative linear solver based approach to reconstruction of

no-Cartesian k-space sample data

dFWWFF HHH =+ ρλ)(

On the surface, the computational solution to the problem formulation in Figure 7.3 should

be very straightforward. It involves matrix-matrix multiplications and addition (F
H
*F

+λW
H
W), matrix-vector multiplication (F

H
 * d), matrix inversion (F

H
*F +λW

H
W)

-1
, and

finally matrix-matrix multiplication ((F
H
*F +λW

H
W)

-1
 * F

H
d). However, the sizes of the

matrices make the solution extremely time consuming. F
H

 and F are 3D matrices whose

dimensions are determined by the resolution of the reconstructed image ρ. Even in a

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 6

modest resolution 128
3
-voxel reconstruction, computation of F

H
*F +λW

H
W can take days

to complete on a high-end CPU. For a more desirable resolution of 512
3
-voxel

reconstruction, the matrix-matrix multiply will take 4
4
 = 64 times the time. Fortunately, the

computation of F
H
*F +λW

H
W does not have to be repeated for each data acquisition. It

needs to be done only once for a scanner set up for a patient. However, due to the extreme

long latency of the computation, it is still desirable to speed up the F
H
*F +λW

H
W

computation to minimize the inconvenience of scanner setup for each patient. The

acceleration of the F
H
*F +λW

H
W computation can be found in Stone, et al [Stone 2008].

The matrix-vector multiply to calculate F
H
d takes about one order of magnitude less time

than F
H
*F +λW

H
W but can still take about three hours for a 128

3
-voxel reconstruction on a

high-end sequential PCU. Since F
H
d needs to be computed for every image acquisition, it

is critical to reduce its computation to minutes. We will show the details of this process. As

it turns out, the core computational structure of F
H
*F +λW

H
W is identical to that of F

H
d.

As a result, the same methodology can be used to accelerate the computation of both.

The inversion of the F
H
*F +λW

H
W matrix can be prohibitively expensive due to the sheer

size of the inverted matrix. For a 128
3
–voxel reconstruction, the inverted matrix contains

well over four trillion complex-valued elements (the number of elements in the inverted

matrix equals the square of the number of voxels in the reconstructed image). An iterative

method for matrix inversion, such as the conjugate gradient (CG) algorithm, is therefore

preferred. The conjugate gradient algorithm reconstructs the image by iteratively solving

the equation in Figure 7.3 for ρ. During each iteration, the CG algorithm updates the

current image estimate ρ to improve the value of the quasi-Bayesian cost function. The

computational efficiency of the CG technique is largely determined by the efficiency of

matrix–vector multiplication operations involving F
H
*F +λW

H
W and ρ, as these operations

are required during each iteration of the CG algorithm. Fortunately, matrix W often has a

sparse structure that permits efficient multiplication by W
H
W, and matrix F

H
F has a

convolution structure that enables efficient matrix multiplication via the FFT. As a result,

the “find ρ” step in Figure 7.3 is much less computationally intensive than F
H
d, and

accounting only less than 1% of the execution of the reconstruction of each image on a

sequential CPU. As a result, we will leave it out of the parallelization scope and focus on

F
H
d in this chapter. We will however, revisit its status at the end of the chapter.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 7

7.3. Computing FHd

for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computationFigure 7.4 Computation of Q and FHD

Figure 7.4 shows a sequential C implementation of the computations for the core step of

F
H
*F +λW

H
W (Part (a)) and that for F

H
d (Part (b)). It should be clear from a quick glance

at Figure 7.4(a) and 7.4(b) that the core step of F
H
*F +λW

H
W and F

H
d have identical

structure. Both computations start with an outer loop, which encloses an inner loop. The

only differences are the particular calculation done in each loop body and the fact that the

core step of F
H
*F +λW

H
W involves a much larger number of sample points (M), thus a

much longer execution time. Thus it suffices to discuss one of them. We will focus on F
H
d,

since this is the one that will need to be run for each image being reconstructed.

A quick glance at Figure 7.4(b) shows that the C implementation of F
H
d is an excellent

candidate for acceleration on the GPU because it exhibits substantial data-parallelism. The

algorithm first computes the real and imaginary components of Mu at each sample point in

the k-space, then computes the real and imaginary components of F
H
d at each voxel in the

image space. The value of F
H
d at any voxel depends on the values of all k-space sample

points. However, no voxel elements of F
H
d depend on any other elements of F

H
d.

Therefore, all elements of F
H
d can be computed in parallel. Specifically, all iterations of

the outer loop can be done in parallel and all iterations of the inner loop can be done in

parallel. The calculations of the inner loop, however, have a dependence on the calculation

done in the same iteration of the outer loop.

Despite the algorithm’s abundant inherent parallelism, potential performance bottlenecks

are evident. First, in the loop that computes the elements of F
H
d, the ratio of floating-point

operations to memory accesses is at best 3:1 and at worst 1:1. The best case assumes that

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 8

the sin and cos trigonometry operations are computed using five-element Taylor series

that require 13 and 12 floating-point operations, respectively. The worst case assumes that

each trigonometric operation is computed as a single operation in hardware. As we have

seen in Chapter 4, a floating-point to memory access ratio of 16:1 or more is needed for the

kernel to be not limited by memory bandwidth. Thus, the memory accesses will clearly

limit the performance of the kernel unless the ratio is drastically increased.

Second, the ratio of FP arithmetic to FP trigonometry functions is only 13:2. Thus, GPU-

based implementation must tolerate or avoid stalls due to long-latency sin and cos

operations. Without a good way to reduce the cost of trigonometry functions, the

performance will likely be dominated by the time spent in these functions.

We are now ready to take the steps in converting F
H
d from sequential C code to CUDA

kernel.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.5 First version of the FHd kernel. The kernel will not

execute correctly due to conflicts between threads in wiring

into rFhD and iFhD arrays.

Step 1: Determine the kernel parallelism structure

The conversion of a loop into a CUDA kernel is conceptually straightforward. Since all

iterations of the outer loop of Figure 7.4(b) can be executed in parallel, we can simply

convert the outer loop into a CUDA kernel by assigning its iterations to CUDA threads.

Figure 7.5 shows the kernel from such a straightforward conversion. Each thread

implements an iteration of the original outer loop. The original outer loop has M iterations,

and M can be in the millions. We obviously need to have multiple thread blocks to

generate enough threads to implement all these iterations.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 9

To make performance tuning easy, we declare a constant FHD_THREADS_PER_BLOCK

that defines the number of threads in each thread block when we invoke the cmpFHd

kernel. Thus, we will use M/FHD_THREADS_PER_BLOCK for the grid size and

FHD_THREADS_PER_BLOCK for block size for kernel invocation. Within the kernel,

each thread calculates the original iteration of the outer loop that it is assigned to cover

using the formula: blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x. For

example, assume that there are 65,536 k-space samples and we decided to use 512 threads

per block. The grid size at kernel innovation would be 65536/512=128 blocks. The block

size would be 512. The calculation of m for each thread would be equivalent to

blockIdx.x*512 + threadIdx.

While the kernel of Figure 7.5 exploits ample parallelism, it suffers from a major problem:

all threads write into all voxel elements. This means that the kernel must use the atomic

operations in the global memory in the inner loop in order to keep threads from trashing

each other’s contributions to the voxel value. This can seriously affect the performance of

kernel. Note that as is, the code will not even execute correctly. We need to explore other

options.

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

Figure 7.6 Loop fission on the FHd computation.

From a quick inspection of Figure 7.4(b), we see that the F

H
d calculation can be split into

two separate loops, as shown in Figure 7.6 using a technique called loop fission or loop

splitting. This transformation takes the body of a loop and splits it into two loops. In the

case of F
H
d, the outer loop consists of two parts: the statements before the inner loop and

the inner loop. As shown in Figure 7.6(b), we can perform loop fission on the outer loop

by placing the statements before the inner loop into a loop and the inner loop into a second

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 10

loop. The transformation changes the execution order of the two parts of the original outer

loop. In the original outer loop, both parts of the first iteration execute before the second

iteration. After fission, the first part of all iterations will execute; they are then followed by

the second part of all iterations. The reader should be able to verify that this change of

execution order does not affect the execution results for F
H
d. This is because the execution

of the first part of each iteration does not depend on the result of the second part of any

preceding iterations of the original outer loop. Loop fission is a transformation often done

by advanced compilers that are capable of analyzing the (lack of) dependence between

statements across loop iterations.

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

Figure 7.7 cmpMu kernel
With loop fission, the F

H
d computation is now done in two steps. The first step is a single-

level loop that calculates the rMu and iMu elements for use in the second loop. The second

step corresponds to the loop that calculates the F
H
d elements based on the rMu and iMu

elements calculated in the first step. Each loop can now be converted into a CUDA kernel.

The two CUDA kernels will execute sequentially. Since the second loop needs to use the

results from the first loop, separating these two loops into two kernels that execute in

sequence does not sacrifice any parallelism.

The cmpMu kernel in Figure 7.7 implements the first loop. The conversion of the first loop

from sequential C code to a CUDA kernel is straightforward: each thread implements one

iteration of the original C code. Since the M value can be very big, reflecting the large

number of k-space samples, such a mapping can result in a large number of threads. Since

each thread block can have only up to 512 threads, we will need to use multiple blocks to

allow the large number of threads. This can be accomplished by having each thread block

to contain a number of threads, specified by MU_THREADS_PER_BLOCK in Figure

7.4(c), and employ M/MU_THREADS_PER_BLOCK blocks needed to cover all M

iterations of the original loop. For example, if there are 65,536 k-space samples, the kernel

could be invoked with a configuration of 512 threads per block and 65536/512=128

blocks. This is done by assigning 512 to MU_THREADS_PER_BLOCK and using

MU_THREADS_PER_BLOCK as block size and M/MU_THREADS_PER_BLOCK as

grid size during kernel innovation.

Within the kernel, each thread can identify the iteration assigned to it using its blockIdx

and threadIdx values. Since the threading structure is one dimensional, only blockIdx.x and

threadIdx.x need to be used. Because each block covers a section of the original iterations,

the iteration covered by a thread is blockIdx.x*MU_THREADS_PER_BLOCK +

threadIdx. For example, assume that MU_THREADS_PER_BLOCK=512. The thread

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 11

with blockIdx.x=0 and threadIdx.x=37 covers the 37
th

 iteration of the original loop,

whereas the thread with blockIdx.x=5 and threadIdx.x=2 covers the 2,562
nd

 (5*512+2)

iteration of the original loop. Using this iteration number to access the Mu, Phi, and D

arrays ensures that the arrays are covered by the threads in the same way they were

covered by the iterations of the original loop. Because every thread writes into its own Mu

element, there is no potential conflict between any of these threads.

Determining the structure of the second kernel requires a little more work. An inspection

of the second loop in Figure 7.4(b) shows that there are at least three options in designing

the second kernel. In the first option, each thread corresponds to one iteration of the inner

loop. This option creates the most number of threads and thus exploits the most amount of

parallelism. However, the number of threads would be N*M, with both N in the range of

millions and M in the range of hundred thousands. Their product would result in too many

threads in the grid.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.8 Second option of the FHd kernel

A second option is to use each thread to implement an iteration of the outer loop. This

option employs fewer threads than the first option. Instead of generating N*M threads, this

option generates M threads. Since M corresponds to the number of k-space samples and a

large number of samples, on the order of a hundred thousand, are typically used to

calculate F
H
d, this option still exploits a large amount of parallelism. However, this kernel

suffers the same problem as the kernel in Figure 7.5. The problem is that each thread will

write into all voxels, thus creating an extremely large number of conflicts between threads.

As is the case of Figure 7.5, the code in Figure 7.8 will not correctly without adding atomic

operations that will signicantly slow down the execution. Thus, this option does not work

well.

A third option is to use each thread to compute one voxel elemt. This requires interchange

the inner and outer loops and then use each thread to implement an iteration of the new

outer loop. This is shown in Figure 7.9. Loop interchange is necessary because the loop

being implemented by the threads must be the outer loop. Loop inter change makes each of

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 12

the new outer loop iteration to process a voxel element. Loop interchange is permissible

here because all iterations of both levels of loops are independent of each other. They can

be executed in any order relative to one another. Loop interchange, which changes the

order of the iterations, is allowed when these iterations can be executed in any order. This

option generates N threads. Since N corresponds to the number voxels in the reconstructed

image, the N value can be very large for higher-resolution images. For a 128
3

images, there

are 128
3
 = 2,097,152 threads, resulting in a large amount of parallelism. For higher

resolutions, such as 512
3
, we may need to invoke multiple kernels, each kernel generates

the value of a subset of the voxels. Note these threads now all accumulate into their own

rFhD and iFhd elements. There is no conflict between threads. These threads can run

totally in parallel. This makes the third option the best choice among the three options.

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop interchange

Figure 7.9 Loop interchange of the FHD computation

The kernel derived from the interchanged loops is shown in Figure 7.10. The threads are

organized into a two-level structure. Each thread covers an iteration of the new outer (n)

loop: blockIdx.x*FHD_THREADS_PER_BLOCK + threadIdx.x. Once this iteration (n)

value is identified, the thread executes the inner loop based on that n value. This kernel can

be invoked by having each thread block to contain a number of threads, specified by a

global constant FHD_THREADS_PER_BLOCK. Assuming N is the variable that gives

the number of voxels in the reconstructed image, N/FHD_THREADS_PER_BLOCK

blocks cover all N iterations of the original loop. For example, if there are 65,536 k-space

samples, the kernel could be invoked with a configuration of 512 threads per block and

65536/512=128 blocks. This is done by assigning 512 to FHD_THREADS_PER_BLOCK

and using FHD_THREADS_PER_BLOCK as block size and

N/FHD_THREADS_PER_BLOCK as grid size during kernel innovation.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 13

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

Figure 7.10 Third option of the FHd kernel

Step 2: Getting Around the Memory Bandwidth Limitation

The simple cmpFhD kernel in Figure 7.10 will provide limited speedup due to memory

bandwidth limitations. A simple analysis shows that the execution is limited by the low

compute to memory access ratio of each thread. In the original loop, each iteration

performs at least 14 memory accesses: kx[m], ky[m], kz[m], x[n], y[n], z[n], rMu[m]

twice, iMu[m] twice, rFhD[n] read and write, and iFhD[n] read and write. Meanwhile,

about 13 floating point multiple, add, or trigonometry operations are performed in each

iteration. Therefore, the compute to memory access ratio is approximately 1, which is too

low according to the analysis in Chapter 4.

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.11 Using registers to reduce memory accesses in the FHd kernel

We can immediately improve the compute-to-memory-access ratio by assigning some of

the array elements to registers. As we discussed in Chapter 4, this can be done via

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 14

automatic variables. A quick review of the kernel in Figure 7.10 shows that for each

thread, the same x[n]. y[n], and z[n] elements are used across all iterations of the for

loop. This means that we can load these elements into automatic variables before the

execution enters the loop. The kernel can then use the automatic variables inside the loop,

thus converting global memory accesses to register accesses. Furthermore, the loop

repeatedly reads from and writes into rFhD[n] and iFhD[n]. We can have the iterations to

read from and write into two automatic variables and only write the contents of these

automatic variables into rFhD[n] and iFhD[n] after the execution exits the loop. The

resulting code is shown in Figure 7.11. By increasing the number of register usage by 5 for

each thread, we have reduced the memory access done by each iteration from 14 to 7.

Thus, we have improved the compute to memory access ratio from 13:14 to 6:14. This is a

very good improvement and a good use of the precious register resource.

Recall that the register usage can limit the number of blocks that can run in an SM. By

increasing the register usage by 5, we really increase the register usage of thread blocks by

5*FHD_THREADS_PER_BLOCK. Assuming that we have 128 threads per block, we just

increased the block register usage by 640. Since each SM can accommodate a combined

register usage of 8912 registers among all blocks assigned to it, we need be careful that any

further increase of register usage can begin to limit the number of blocks that can be

assigned to an SM.

We need to further improve the compute to memory access ratio to something closer 10:1.

We need to further eliminate global memory accesses in the cmpFHD kernel. The next

candidates to consider are the k-space samples kx[m], ky[m] and kz[m]. These array

elements are accessed differently than the x[n], y[n] and z[n] elements: different elements

of kx, ky and kz is accessed in each iteration of the loop in Figure 7.11. This means that we

cannot load each k-space element into an automatic variable register and access that

automatic variable off a register through all the iterations. So, the registers will not help

here. However, we should notice that the k-space elements are not modified by the kernel.

This means that we might be able to place the k-space elements into the constant memory.

Perhaps the cache for the constant memory can eliminate most of the memory accesses.

A simple analysis of the loop in Figure 7.11 reveals that the k-space elements are indeed

excellent candidates for constant memory. The index used for accessing kx, ky, and kz is

m, which is independent of threadIdx. This means that all threads in a warp will be

accessing the same element of kx, ky, and kz. This is the ideal accessing pattern for cached

constant memory: every time an element is brought into the cache, it will be used at least

by all threads in a warp which is 32 in G80. This means that for every 32 accesses to the

constant memory, at least 31 of them will be served by the cache. This allows the cache

effectively eliminate about 96% of the accesses to the constant memory. Better yet, each

time when a constant is accessed from the cache, it can be broadcast to all the threads in a

warp. This means that no delays are incurred due to any bank conflicts in the access to the

cache. This makes constant memory as efficient as registers when accessing k-space

elements.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 15

There is, however, a technical issue involved in placing the k-space elements into the

constant memory. Recall that constant memory has a capacity of 64KB. However, the size

of the k-space samples can be much larger, in the order of hundreds of thousands or even

millions. A typical way of working around the limitation of constant memory capacity is to

breakdown a large data set to be placed into the constant memory into 64KB chunks. The

developer must re-organize the kernel so that the kernel will be invoked multiple times,

with each invocation of the kernel consuming only a 64KB chunk of the large data set.

This turns out to be quite easy for the cmpFHD kernel.

__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpy(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpy(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpy(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>

();

}

Figure 7.12 Chunking k-space data to fit into constant memory.
A careful examination of the loop in Figure 7.11 reveals that all threads will be

sequentially marching through the k-space arrays. For large data sets, the loop in the kernel

simply iterates more times. This means that we can divide up the loop into sections, with

each section processing a chunk of the k-space elements that fit into the 64KB capacity of

the constant memory. The host code now invokes the kernel multiple times. Each time the

host invokes the kernel, it places a new chunk into the constant memory before calling the

kernel function. This is illustrated in Figure 7.12.

In Figure 7.12, the cmpFHd kernel is called from a loop. The code assumes that kx, ky,

and kz are in the host memory. The dimension of these kx, ky, and kz are given by M. At

each iteration, the host code calls the cudaMalloc() function to transfer a chunk of the k-

space data into the device constant memory. The kernel is then invoked to process the

chunk. Note that when M is not a perfect multiple of CHUNK_SIZE, the host code will

need to have an additional round of cudaMemcpy and one more kernel invocation to finish

the remaining k-space data.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 16

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.13 Revised FHd kernel to use constant memory
Figure 7.13 shows the revised kernel that accesses the k-space data from constant memory.

Note that pointes to kx, ky, and kz are no longer in the parameter list of the kernel

function. Since we cannot use pointers to access variables in the constant memory, the

kx_c, ky_c, and kz_c arrays are accessed as global variables declared under __constant__

keyword as shown Figure 7.12. By accessing these elements from the constant cache, the

kernel now has effectively only 4 global memory accesses to the rMu and iMu arrays. The

compiler will typically recognize that the four array accesses are made to only two

locations. It will only perform two global accesses, one to rMu[m] and one to iMu[m]. The

values will be stored in temporary register variables for use in the other two. This makes

the final number of memory accesses to 2. The computer to memory access ratio is down

to 14:2, or 7:1. This is still not quite the desired 10:1 ratio but is sufficiently high that the

memory bandwidth limitation is no longer the only factor that limits performance. As we

will see, we can perform a few other optimizations that make computation more efficient

and further improve performance.

(a) k-space data stored in separate arrays. (b) k-space data stored in an array

whose elements are structs.

Figure 7.14 Effect of k-space data layout on constant cache efficiency.

If we ran the code in Figures 12 and 13, we would have found out that the performance

enhancement was not as high as we expected. As it turns out, the code shown in these

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 17

figures does not result in as much memory bandwidth reduction as we expected. The

reason is that the constant cache does not perform very well for the code. This has to do

with the design of the constant cache and the memory layout of the k-space data. As shown

in Figure 14, each constant cache entry is designed to store multiple consecutive words.

This design reduces the overhead of bookkeeping in the hardware design. If multiple data

elements that are used by each thread are not in consecutive words, as illustrated in Figure

14(a), they will end up taking up multiple cache entries. Due to cost constraints, the

constant cache has only a very small number of entires. As shown in Figure 12 and 13, the

k-space data is stored in three arrays: kx_c, ky_c, and kz_c. During each iteration of the

loop, three entries of the constant cache is needed to hold the trhee k-space element being

processed. Since different warps can be at very different iterations, they may require many

entries altogether. As it turns out, the G80 cache capacity was not sufficient to provide

sufficient number of entries for all the warps active in an SM.

struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpy(k_c,k,12*CHUNK_SIZE, cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>

();

}

Figure 7.15 adjusting k-space data layout to improve cache efficiency

The problem of inefficient use of cache entries has been well studied in the literature and

can be solved by adjusting the memory layout of the k-space data. The solution is

illustrated in Figure 14(b) and the code based on this solution in Figures 15. Rather than

having the x, y, and z components of the k-space data to be stored in three separate arrays,

the solution stores these components in an array whose elements are structs. The

declaration of the array is shown on top of Figure 15. By storing the x, y, and z

components in the three fields of an array element, the developer forces these components

to be stored in consecutive locations of the constant memory. Therefore, all three

components used by an iteration can now fit into one cache entry, reducing the number of

entries needed to support the execution of all the active warps. Note that since we have

only one array to hold all k-space data, we can just use one cudaMemcpy to copy the entire

chunk to the device constant memory. The size of the transfer is adjusted from

4*CHUNK_SIZE to 12*CHUNK_SIZE to reflect the transfer of all the three components

in one cudaMemcpy call.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 18

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.16 Adjusting the k-space data memory layout in the FHd kernel

With the new data structure layout, we also need to revise the kernel so that the access is

done according to the new layout. The new kernel is shown in Figure 7.16. Note that kx[m]

has become k[m].x, ky[m] has become k[m].y, and so on.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 19

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = __cos(expFhD);

float sArg = __sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Figure 7.17 using hardware __sin() and __cos() functions.

Step 3: Using hardware trigonometry functions

As we discussed in Chapter 5, CUDA offers hardware mathematic functions that offer

much higher throughput than their software counter parts. These functions are

implemented in the SFU (Super Function Units) in G80. The procedure for using these

functions is quite easy. In the case of the cmpFHd kernel, what we need to do is to change

the calls to sin and cos functions into their hardware versions: __sin and __cos. Because,

these functions are called in a heavily executed loop body, we expect that the change will

result in very significant performance improvement. The resulting cmpFHd kernel is

shown in Figure 7.17.

∑∑ −=
i j

jiIjiI
mn

MSE
2

0)),(),((
1

)
)),(max(

(log20 0

10
MSE

jiI
PSNR =

∑∑=
i j

s jiI
mn

A
2

0),(
1

)(log20 10
MSE

A
SNR

s=

A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).

Figure 7.18 metrics used to validate the accuracy of hardware functions.

I0 is perfect image. I is reconstructed image.

PSNR is Peak signal-to-noise ratio, SNR is Signal-to-noise ratio.

We need to, however, be careful about the reduced accuracy when switching from software

functions to hardware functions. As we discussed in Chapter 6, Hardware implementation

currently have slightly less accuracy than software libraries. In the case of MRI, we need to

make sure that the hardware implementation passes test cases that measure the Signal to

Noise Ration (SNR) of the resulting image, as shown in Figure 7.18. The testing process

involves a “perfect” image (I0). We then use a reverse process to generate a corresponding

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 20

“scanned” k-space data that is actually synthesized. The synthesized scanned data is then

processed by the proposed reconstruction system to generate a reconstructed image (I). The

value of the voxels in the images are then plugged into the MSE, PSNR, and SNR formula

in Figure 7.18.

Figure 7.19 Validation of floating-point

precision and accuracy of the different

FHd implementations.

The criteria for passing the test depend on the application that the image is intended for. In

our case, we worked with the MRI clinical experts to ensure that the SNR changes due to

hardware functions is well within the accepted limits for their applications. In applications

where the images are used by physicians to form impression of injury or disease

evaluation, one also needs to have visual inspection of the image quality. Figure 7.19

shows the visual comparison of the original “true” image. It then shows that the SNR

achieved CPU double precision and single precision implementation both achieve 27.6 dB,

an well acceptable level for the application. A visual inspection also shows that the

reconstructed image indeed correspond well with the original image.

The advantage of iterative reconstruction compared to a simple bilinear interpolation

gridding/FFT is also obvious in Figure 7.19. The image reconstructed with the simple

gridding/FFT has an SNR of only 16.8 dB, substantially lower than that of the iterative

reconstruction method. A visual inspection of the gridding/FFT image shows that there is

severe artifact that can significantly impact the usability of the image for diagnosis

purposes.

When we move from double precision to single precision arithmetic on the CPU, there was

no measurable degradation of SNR, which remains at 27.6 dB. When we move the trig

function from software library to the hardware units, we observed a negligible degradation

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 21

of SNR, from 27.6 dB to 27.5 dB. A visual inspection shows that the reconstructed image

does not have significant artifact compared to the original image.

Step 4: Experimental Performance Tuning

Up to this point, we have not determined the appropriate values for the configuration

parameters for the kernel. For example, we need to determine the best number of threads

for each block. On one hand, using a large number of threads in a block is needed to reach

thread capacity of each SM given that up to eight blocks can be assigned to each SM. On

the other hand, having more threads in each block increases the register usage of each

block and can reduce the number of blocks that can fit into an SM. Some possible values

of number of threads per block are 32, 64, 128, 256, and 512. One can also consider non-

power-of-two numbers.

One also needs to determine the number of scan points per grid. All the scan point data

consumed by a grid must fit into the 64KB constant memory. This is 16K single precision.

Since each scan point requires three single-precision floating point data, we can have up to

4K scan points if we want to use power-of-two scan points in each grid for convenient loop

control. Some possible numbers are 32, 64, 128, 256, 1024, 2048, and 4096.

Another kernel configuration parameter is the number of times one should unroll the body

of the for loop. On one hand, unrolling the loop can reduce the number of overhead

instructions, and potentially reduce the number of clock cycles to process each k-space

sample data. On the other hand, too much unrolling can increase the usage of registers and

reduce the number of blocks that can fit into an SM.

Note that these configurations are not independent of each other. Increasing one parameter

value can potentially use the resource that could be used to increase another parameter

value. As a result, one needs to evaluate these parameters jointly in an experimental

manner. That is, one may need to change the source code for each joint configuration and

measure the run time. There can be a large number of source code versions to try. In the

case of F
H
D, the performance improves about 20% by systematically searching all the

combinations and choosing the one with the best measured runtime, as compared to a

heuristic tuning search effort that explore some promising trends.

7.4. Final Evaluation
To obtain a reasonable baseline, we implemented two versions of FHd on the CPU. Version

CPU.DP uses double-precision for all floating-point values and operations, while version CPU.SP

uses single-precision. Both CPU versions are compiled with Intel’s icpc (version 10.1) using flags -

O3 -msse3 -axT -vec-report3 -fp-model fast = 2, which (1) vectorizes the algorithm’s dominant

loops using instructions tuned for the Core 2 architecture, and (2) links the trigonometric operations

to fast, approximate functions in the math library. Based on experimental tuning with a smaller data

set, the inner loops are unrolled by a factor of four and the scan data is tiled to improve locality in

the L1 cache.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 22

1.5

9.8

41.0

342.3

518.0

N/A

Run

Time

(m)

1.69

1.57

1.65

1.61

1.59

N/A

Linear

Solver

(m)

Total

11.3722.818.672.0LS (GPU, CMem)

3.19144.5178.97.5LS (GPU, CMem,

SFU, Exp)

42.655.45.1260.2LS (GPU, Naïve)

343.910.70.52678.7LS (CPU, SP)

519.590.40.34009.0LS (CPU, DP)

0.39N/AN/AN/AGridding + FFT

(CPU, DP)

Recon.

Time (m)

GFLOPGFLO

P

Run Time

(m)

Reconstruction

FHdQ

108X228X357X
Figure 7.20 Summary of Performance improvements

Each GPU version of FHd is compiled using nvcc -O3 (CUDA version 1.1) and executed on a 1.35

GHz Quadro FX 5600. The Quadro card is housed in a system with a 2.4 GHz dual-socket, dual-

core Opteron 2216 CPU. Each core has a 1 MB L2 cache. The CPU versions use pthreads to

execute on all four cores of 2.66 GHz Core 2 Extreme quad-core CPU, which has peak theoretical

capacity of 21.2 GFLOPS per core and a 4 MB L2 cache. The CPU versions perform substantially

better on the Core 2 Extreme quad-core than on the dual-socket, dual-core Opteron.

All reconstructions use the GPU version of the linear solver, which executes 60 iterations on the

Quadro FX 5600. Two versions of Q were computed on the Core 2 Extreme, one using double-

precision and the other using single-precision. The singleprecision Q was used for all GPU-based

reconstructions and for the reconstruction involving CPU.SP, while the double-precision Q was

used only for the reconstruction involving CPU.DP. As the computation of Q is not on the

reconstruction’s critical path, we give Q no further consideration.

To facilitate comparison of the iterative reconstruction with a conventional reconstruction, we also

evaluated a reconstruction based on bilinear interpolation gridding and inverse FFT. Our version of

the gridded reconstruction is not optimized for performance, but it is already quite fast.

All reconstructions are performed on sample data obtained from a simulated, three-dimensional,

non-Cartesian scan of a phantom image. There are 284,592 sample points in the scan data set, and

the image is reconstructed at 1,283 resolution, for a total of 221 voxels. In the first set of

experiments, the simulated data contains no noise. In the second set of experiments, we added

complex white Gaussian noise to the simulated data. When determining the quality of the

reconstructed images, the percent error and peak signal-to-noise ratio metrics are used. The percent

error is the root-mean-square (RMS) of the voxel error divided by the RMS voxel value in the true

image (after the true image has been sampled at 1283 resolution).

The data (runtime, GFLOPS, and images) were obtained by reconstructing each image once with

each of the implementations of the FHd algorithm described above. There are two exceptions to

this policy. For GPU.Tune and GPU.Multi, the time required to compute FHd is so small that run-

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 23

time variations in performance may become non-negligible. Therefore, for these configurations we

computed F
H
d three times and reported the average performance.

As shown in Figure 7.20, the total reconstruction time for the test image using bilinear interpolation

gridding followed by inverse FFT takes only less than 0ne minute on a high-end sequential CPU.

This confirms that there is little value in parallelizing this traditional reconstruction strategy. It is,

however, obvious from Figure 7.19(2) that the resulting image exhibits an unacceptable level of

artifact.

The LS (CPU, DP) row shows the execution timing of reconstructing the test image using double-

precision floating-point arithmetic on the CPU. The timing shows that the core step (Q) of

calculating F
H
*F +λW

H
W. The first observation is that the Q computation for a moderate

resolution image based on a moderate sized data sample takes an unacceptable amount of

time (more than 65 hours) on the CPU for setting up the system for a patient. Note that this

time is eventually reduced to 6.5 minutes on the GPU with all the optimizations described

in Section 7.3. The second observation is that the total reconstruction time of each image

requires more than 8 hours, with only 1.59 minutes spent in the linear solver. This

validates our decision to focus our parallelization effort on F
H
d.

The LS(CPU, SP) row shows that we can reduce the execution time significantly when we

covert the computation from double-precision floating-point arithmetic to single-precision

on the CPU. This is because the SSE instructions have higher throughput, i.e., calculate

more data elements per clock cycle when executing in single-precision mode. The

execution times, however, are still unacceptable for practical use.

The LS(GPU, naïve) row shows that a straightforward CUDA implementation can achieve

a speedup about 10 times for Q and 8 times for the reconstruction of each image. This is a

good speedup but the resulting execution times are still unacceptable for practical use.

The LS(GPU, Cmem) row shows that significant further speedup is achieved by using

registers and constant cache to get around the global memory bandwidth limitations. These

enhancements achieve about 4X speedup over the naïve CUDA code! This shows the

importance of achieving good compute to memory ratios in CUDA kernels. These

enhancements bring the CUDA code to about 40X speedup over the single precision CPU

code.

The LS(GPU, CMem, SPU, exp) row shows the use of hardware trigonometry functions

and experimental tuning together results in dramatic further speedup. A separate

experiment, not shown here, shows that most of the speedup comes from hardware

trigonometry functions. The total speedup over CPU single-precision code is very

impressive: 357X for Q and 108X for the reconstruction of each image.

An interesting observation is that in the end, the linear solver actually takes more time that

F
H
d. This is because we have accelerated F

H
d dramatically (228X). What used to be close

to 100% of the per image reconstruction time now accounts for less than 50%. Any further

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 24

acceleration will now require acceleration of the linear solver, a much more difficult type

of computation for massively parallel execution.

