0.1 Numerical grid

The numerical grid is the basic tool of most numerical models. In this appproach a function is tabulated on an equally spaced lattice in the domain $x=\left[x_{\min }, x_{\max }\right]$ with a fixed lattice spacing h. The grid points are characterized by an index $i=\left[0, N_{\text {grid }}-1\right]$ (C language convention).

$$
\begin{gather*}
x_{i}=x_{\min }+i h \tag{1}\\
h=\frac{\left(x_{\max }-x_{\min }\right)}{N_{\text {grid }}-1} \tag{2}
\end{gather*}
$$

The function $f(x)$ is then tabulated on the lattice

$$
\begin{equation*}
f_{i}=f\left(x_{i}\right) \tag{3}
\end{equation*}
$$

0.2 Differentiation - Finite Difference

First write Taylor series expansions centered at x_{i} on the lattice:

$$
\begin{gather*}
f\left(x_{i}+h\right)=f\left(x_{i}\right)+h \frac{d f}{d x}+\frac{h^{2}}{2} \frac{d^{2} f}{d x^{2}} \tag{4}\\
f\left(x_{i}\right)=f\left(x_{i}\right) \tag{5}\\
f\left(x_{i}-h\right)=f\left(x_{i}\right)-h \frac{d f}{d x}+\frac{h^{2}}{2} \frac{d^{2} f}{d x^{2}} \tag{6}
\end{gather*}
$$

From these, one derives the forward and backward first derivative formula of order $O(h)$ (terms in h^{2} neglected)

$$
\begin{align*}
& \frac{d f}{d x}=\frac{f\left(x_{i}+h\right)-f\left(x_{i}\right)}{h}=\frac{f_{i+1}-f_{i}}{h} \tag{7}\\
& \frac{d f}{d x}=\frac{f\left(x_{i}\right)-f\left(x_{i}-h\right)}{h}=\frac{f_{i}-f_{i-1}}{h} \tag{8}
\end{align*}
$$

and the symmetric formula of order $O\left(h^{2}\right)$

$$
\begin{equation*}
\frac{d f}{d x}=\frac{f\left(x_{i}+h\right)-f\left(x_{i}-h\right)}{2 h}=\frac{f_{i+1}-f_{i-1}}{2 h} \tag{9}
\end{equation*}
$$

The second derivative formula of order $O\left(h^{2}\right)$ is similarly derived by combining the Taylor series expansions:

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}}=\frac{f\left(x_{i}+h\right)-2 f\left(x_{i}\right)+f\left(x_{i}-h\right)}{h^{2}}=\frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}} \tag{10}
\end{equation*}
$$

