
Binding Quantum Particles

ODEs in space variables lead to eigenvalue problems. For instance, think of setting up a
standing wave whereby the boundary conditions restrict the wave to be of certain types and
to have particular wavelength and frequencies.

To illustrate the solutions of ODEs in space variables, we will look at a particularly
simple example from the quantum world. Namely, we will ask whether a nuclear model with
nucleons (protons and neutrons) bound in a potential of depth and size comparable to that
of a typical nucleus is quantum mechanically consistent and possesses excited states at an
energy of several MeV.

The model will consist in placing 1 nucleon (proton or neutron, mass mc2 = 940MeV ) in
a 1-D potential well of width a = 2fm ( 1fm = 1013cm = 10−15m ) and depth V0 = 83MeV .
These potential size and depth correspond to the size and interaction strength of a typical
nucleus. The 1-D variable x is meant to represent the radial direction. We will then solve
for the ground state and exited states of the system.

Quantum Mechanics in a nutshell

Quantum Mechanics is a statistical theory. The probability to find a particle within dxdydz
at a position [x, y, z] at the time t is given by |ψ(x, y, z, t)|2dxdydz. The function ψ(x, y, z, t)
is called the wave function. It satisfies the Schrodinger Equation, a Partial Differential
Equation (PDE).

For a bound state, the time dependence is simple and can be taken out. Furthermore, in
1-D the wave function is a function of x only, ψ(x), that satisfies the 1-D time independent
Schrodinger equation.

− ~2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

V (x) is the potential, m is the mass of the particle, and ~ is a constant ( the Planck constant,
with a value such that ~c = 197.32MeV fm where c is the speed of light). E is the energy of
the bound state. This is an ODE in space variable. It is a Wave Equation whose solutions
describe standing quantum mechanical wave functions. This is similar to solving for the
standing waves on a violin string, but slightly more challenging mathematically!
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It is convenient to write
d2ψ

dx2
=

2m

~2
V (x)ψ − 2m

~2
Eψ

and to define (E is negative)

κ2 =
2m

~2
|E|

therefore
d2ψ

dx2
=

2m

~2
V (x)ψ + κ2ψ

The Nuclear Model

Let us consider a finite depth potential of width −a to +a, i.e., V (x) → 0 for x → ±∞.
Therefore, for large ±x values, Schrodinger equation reduces to

d2ψ

dx2
= κ2ψ

The regions outside the well are classically forbidden to the particle (the energy is neg-
ative). Quantum mechanics, on the other hand, allows the particle to penetrate in these
regions; this is the physical basis for quantum tunnelling. Therefore the asymptotic solu-
tions in either sides of the potential well are ψ(x) → exp(−κx) for large positive x and
ψ(x) → exp(κx) for large negative x. These are the two boundary conditions that ψ(x)
must satisfy.

The wave function ψ(x) is a solution of a second order ODE. Therefore it must be
continuous for all x, both inside and outside of the potential well. Together with the two
boundary conditions described above, this requirement restricts the allowed solution to very
specific standing wave shapes.

The energy E, or κ, is the quantity labeling the allowed states. In other words, only
particular values of E allow a solution ψ(x) to satisfy the 2nd order Schrodinger equation
(ODE) simultaneously with the boundary conditions. E is the quantized energy. It may
take one or many values. The 1-D time independent Schrodinger equation is said to be an
eigenvalue problem.

RK4 Solution

We want to solve the 1-D Schrodinger equation via the RK4 method. To do so, rewrite it in
a canonical form

dψ

dx
= χ
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dχ

dx
=

2m

~2
V (x)ψ + κ2ψ

The auxiliary function χ(x) will be solved for simultaneously with the wave function ψ(x).

Details of the Solution

• Starting at x = −Xfar, use RK4 to integrate toward the right from x = −Xfar to
x = Xmatch, starting from the asymptotic negative x solution.

Xfar is an arbitrary far distance, outside the well, where ψ(x) takes its asymptotic
form. Xmatch is the point at which the solution from the left and from the right will
be matched.

Use Nsteps x steps in this RK4 solution and the one from the right (next).

• Starting at x = +Xfar, use RK4 to integrate toward the left from x = +Xfar to
x = Xmatch, starting from the asymptotic positive x solution.

• At x = Xmatch, the wave function must be continuous, i.e., ψ(x) and χ(x) must be
continuous.

Calculate a function W (E) which depends on the energy

W (E) =

ψ′
L

ψL
− ψ′

R

ψR

ψ′
L

ψL
+

ψ′
R

ψR

The use of the logarithmic derivative ψ′

ψ
in W (E) is to avoid problems with the norm

(multiplicative constant) of ψ(x). The denominator is to avoid small and large num-
bers. Allowed values of E will be such that W (E) = 0.

• Search for proper E. This can be done by the following procedure.

– Scan over a lattice in E spanning a range E = [−0.95V0, 0]. Use a scanning step
descan.
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– Find a change in sign in W (E)

– Use a bisection step two times to refine the solution twice, i.e.,

– Repeat for every bound state.

• For each bound state energy found above, solve again for ψLx) and ψR(x). Store the
wave function in an array. At the matching point adjust ψR(x) so that ψR(Xmatch) =
ψL(Xmatch). This should yield a continuous wave function. Plot it as a check.

• If |ψ(x)|2dx is the probability to find the particle in the interval dx centered on x, then
the wave function must be normalized, i.e.,∫ ∞

−∞
ψ(x)2dx = 1

must be required. This says that the particle must be somewhere!

The wave function obtained so far is unlikely to be normalized. This must now be
imposed numerically:

– Use the trapezoidal rule to calculate the area under ψ(x)2; call it NORM.

– Normalize ψ(x), i.e., calculate 1√
NORM

ψ(x).

• Find all bound states and plot the corresponding normalized wave functions

• Comment on the symmetry of wave functions and their energies.

1-D Square Well Potential

The method of solution explained above is general and can solve any model harboring any
local 1-D potential. However, to answer the qualitative question posed earlier, it is sufficient
to use a simple symmetric square well potential, V (x) = −V0 for |x| <= a and V (x) = 0
otherwise.
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Schrodinger equation then becomes

d2ψ

dx2
= −2m

~2
V0ψ + κ2ψ

inside the well, and
d2ψ

dx2
= +κ2ψ

outside the well.

Constants

Use V0 = 83MeV , a = 2fm, Xfar = 6fm, Xmatch = −0.5fm.
Use Nsteps = 150.
Use descan = 0.5 to scan the energy range.
Use 2m

~2 = 2mc2

(~c)2 = 2 940MeV
(197.32MeV fm)2

= 0.0483 MeV −1fm−2.

Ref: R. Landau, M. J. Paez and C. C. Bordeianu,
A Survey of Computational Physics,
Princeton University Press, 2008
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