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1 Preliminaries

1.1 Initial Conditions

This  paper  discusses  some  fundamental  and  interesting  properties  of  the  Lorenz
equations,  a  topic  which  is  well  outside  the  scope  of  a  single  paper,  but  has  been
appropriately narrowed down.  It is assumed that the reader is familiar with dynamical
systems and bifurcations.

It should be noted that in all of the diagrams, the solutions must be calculated
numerically, as analytic solutions are impossible using known methods, so some of the
claims  are  not  rigorous.   For  example,  when  a  "nonperiodic  trajectory"  is  plotted,
technically the path is a small stretch of a high period orbit since a computer is a finite
machine.   Still,  the  general  behavior  of  the  system  that  is  illustrated  and  the
characteristics that emerge do not depend on our method (Sparrow 6).

1.2 Historical Setting

Edward Lorenz formally awoke the scientific world to the idea of deterministic chaos
through his 1963 paper, "Deterministic Nonperiodic Flow."  Prior to this, a few shrewd
minds  had  identified  systems  that  showed  characteristics  like  nonperiodicity  and
sensitivity to initial conditions, but the overwhelming mindset was that, outside of the
quantum world, classical physics provided the theory for completely predicting the state
of  the  universe  at  any future  time[1].   In the  mid-20th century,  computer  and  satellite
technology were being developed with the ultimate intention of controlling the weather.

The mistake was in believing that tiny perturbations in a system only amount to
tiny changes over time.  Lorenz showed that such small differences actually amount to
drastic changes in a system's behavior.  As Gleick (21) puts it, if one infinitely accurate
sensor were placed within every cubic foot of the earth's atmosphere, and the data were
fed to an infinitely powerful computer, reasonable prediction (e.g. rain vs. shine) would
still be limited to less than one month.  Prediction becomes suddenly truncated even in a
completely deterministic system.  Yet the scientific community was reluctant to accept
this new idea.  Decades later, physicists would commonly nonchalantly cross out small
nonlinear terms in order to simplify a system[2].  There was a reluctance to abandon the
predictability of the classical universe.

1.3 Derivation

This section provides a brief derivation of the Lorenz equations.  The details  are not
crucial to this paper, as we are more interested in the behavior of the system.  For more
details regarding this derivation or other derivations, see Kundu, Lorenz, or Sparrow.

In his 1963 paper, "Deterministic Nonperiodic Flow," Lorenz cites the convection
equations of Saltzman (1962).  These equations come from the examination of a fluid of



uniform depth  H, with a temperature difference between the upper and lower layer of
T , in particular with a linear temperature variation.  In the case where there is no

variation with respect to the y-axis, Saltzman provided the governing equations:
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where  is a stream function for the two-dimensional motion,  is the temperature
deviation from the steady state,  ,∇ 2 vanish at the upper and lower boundaries, and

g , , , are  the  respective  constants  of  gravitational  acceleration,  coefficient  of
thermal expansion, kinematic viscosity, and thermal conductivity.  Rayleigh discovered a
critical point at which these equations show convective motion, based on what is now
known as the Rayleigh number.  Lorenz then defined three time dependent variables:  X
proportional to the intensity of the convective motion, Y proportional to the temperature
difference between ascending and descending currents, and Z proportional to distortion of
the  vertical  temperature  profile  from linearity.  The  result  was  the  following  set  of
equations:

Ẋ=− XY
Ẏ=−XZrX−Y
Ż=XY−bZ ,

where  a  dot  denotes  the  derivative  with  respect  to  time,  =−1 is  the  Prandtl
number,  r=Rc

−1 Ra (the  Rayleigh  number  over  the  critical  Rayleigh  number),  and
b=41a2−1 gives the size of the region approsimated by the system (a comes from

the solutions for  and  ) (Lorenz 134-5).  All parameters are taken to be positive.
These equations will be henceforth referred to as the Lorenz System.

We will examine the behavior of the Lorenz System for different parameter values
to see some of the interesting features, but the system is only a realistic model of the
intended fluid convection if r is close to 1.  However, other authors have discovered many
physical  problems  modeled  by  essentially  the  same  set  of  equations,  with  realistic
behavior for a variety of parameter values.  Some examples include irregular spiking in
lasers,  convection  in  a  toroidal  region,  a  disc  dynamo,  and  a  chaotic  water  wheel
(Sparrow 4).

2. Chaotic Behavior

This section outlines the properties of the Lorenz System that are the fundamental reason
it  is  now referred  to  as  "chaotic."   The  section  closes  with  an  example  taken  from
Lorenz's  article  that  shows an  example  of  a  nonperiodic  sequence  within  the Lorenz
System.



2.1 Nonperiodic

For certain parameter values,  the Lorenz System displays some interesting properties.
Observe the trajectory of a particle, projected onto the  X-Z-plane as shown in Figure 1.
(It should be noted that the intersections in the path are merely a result of the projection
and do not  actually occur  in  three dimensions.)   It  displays turbulent  behavior.   The
precise  definition  of  turbulence  varies  depending  on  the  context  and  purpose  of  the
analysis,  but  one  common  turbulent  characteristic  is  that  the  path  depicted  does  not
approach a periodic limit or an equilibrium point.  In the center of each of the two loops
is an unstable equilibrium point, and the particle orbits one, then the other, jumping back
and forth in a manner that appears random, though is actually deterministic.  Furthermore,
the general form of this trajectory is not dependent upon initial conditions or integration
method.  Here the parameter values are  b = 8/3, σ = 10, and r = 28, and the initial point is
(10, 0, 10).  If this system is perturbed slightly, though the details will change, the general
form will remain.

Historically, closed physical systems were generally believed to approach periodic
behavior.  Nonperiodicity was an idea that was slow to come into acceptance.  Lorenz
acknowledges and thanks Saltzman for first pointing out the nonperiodic behavior of the
convection equations (Lorenz 141).

2.2 Sensitive to Initial Conditions

One feature of the Lorenz System that had previously been largely ignored from analysis
of  physical  systems is  the  fact  that  even  a  slight  perturbation  can  alter  the  outcome
drastically.  This characteristic is also sometimes used in definitions of turbulence.  The
general line of thinking had previously been that a small difference in initial conditions
would yield a small difference in results, except near unstable equilibria.  As it turns out,
this is not true for most real-world systems.  Figure 2 illustrates this phenomenon in the
Lorenz System.  Two trajectories begin with very close initial conditions; in particular, X1

= X2 = 10, Y1 = Y2 = 0, Z1 = 10, Z2 = 10.00000000001.  For the first 25 time units, the two
trajectories  seem  identical.   However,  beyond  30  time  units,  they  seem  completely

Figure 1 A numerical solution of the Lorenz equations
projected onto the X-Z plane showing nonperiodic behavior.



unrelated to each other.
It is this property of physical systems that makes long term prediction impossible,

and  ultimately  dashes  the  hopes  idealistic  classical  physicists.   Strangely,  this
unpredictability  comes  from  a  completely  deterministic  system.   Although  Lorenz
illustrated  this  phenomenon  of  sensitivity  to  initial  conditions  in  a  very  simple  and
elegant manner in his paper, he was not the first to discover it.  Poincaré once wrote, 
"[S]mall  differences  in  the  initial  conditions  produce  very  great  ones  in  the  final
phenomena.  A small error in the former will produce an enormous error in the latter.
Prediction becomes impossible,  and we have the fortuitous phenomenon" (Davies 53).
Yet for a long time,  people were reluctant  to accept  these ideas in favor of the non-
chaotic, predictable universe.

2.3 Lorenz's Deterministic Nonperiodic Sequence

The following example comes from Lorenz's paper.  It is used to illustrate some of the
implications of the nonperiodic behavior of the sequence of Z-maxima.  Lorenz wondered
whether one Z-maximum could be used to predict the next.

It appears that once the Z value crosses a certain threshold, the particle will jump into an
orbit around the other equilibrium, and Z will become suddenly small again.  Again, the Z
value will  increase until  it  reaches a certain threshold, then jump back to the original
orbit, and so on (Figure 3).  He composed the following figure which plots M n  against

M n1 .  That is, given one Z-maximum on the horizontal axis, the vertical axis shows

Figure 2 Two numerical solutions of the Lorenz equations showing sensitivity to initial conditions.  The X
values, plotted with respect to time, of two trajectories whose initial positions differ by one one-hundred-
billionth in the Z direction.  These two trajectories seem identical until around t = 27.5, at which point they
completely separate forever.

Figure 3 The Z value plotted against time to show the behavior of the sequence of Z-maxima.



the value of the next Z-maximum (Figure 4).  The cusp corresponds to an orbit going to
the origin, located on the local stable manifold.

Lorenz  revealed  the  implications  of
this sequence using the following simplified
example.   Consider  the  sequence

M 0, M 1, ... of  numbers  between  0  and  1,
defined as follows.

M n1=2 M n if M n
1
2

M n1 is undefined if M n=
1
2

M n1=2−2 M n if M n
1
2

Thus,  Lorenz's  diagram  is  simplified  to
Figure  5.   Given  an  initial  M 0 ,  the
general form of M n is given explicitly by 

(*) M n=mn±2n M 0 , 

where mn is an even integer.  This can be shown inductively.  Clearly m0=0 , and
M 0 is of the desired form.  Suppose the statement holds for n=k .  There are two

possibilities  for  the  next  iteration,  M k1=2 M k=2 mk±22
n M 0 and

M k1=2−2 M k=2−2 mk ∓22
k M 0 , both of which are of the desired form.

Now consider these cases.

Case 1: M 0=u /2 p where u is odd.  Then
by (*) and the fact that the sequence remains
between  0  and  1,  M p−1=1/2 .   Such
sequences represent  no convection at  all,  but
there are only countably many of them.

Case 2:  M 0=u /2 p v  where  u and v
are relatively prime and odd.  If  k0 then

M p1k=uk /v where  uk is  even  and
relatively  prime  to  v .   The  number  of

possibilities  for  fractions  0
uk

v
1  is

finite,  so  the  sequence  is  periodic.   Again,
there are countably many such sequences.

Figure 4 From Lorenz's paper: Corresponding
values of relative maximum of  and subsequent
relative maximum of Z for the first 6000 iterations.

Figure 5 From Lorenz's paper: An idealization of
Figure 4 using the M-sequence defined.



Case 3:  M 0 is irrational.  By (*) we have  that for periodic sequences,  M 0−M k

must be rational (since M k=
mk

1∓2k is rational).  The sequence is thus not periodic, but

it  still  could  be  quasi-periodic,  approaching  a  periodic  sequence  asymptotically.  To
eliminate  this  possibility,  Lorenz  showed  that  all  sequences  are  unstable  to  slight
perturbations.   Consider  two  sequences,  M 0, M 1, ... and  M 0 ' , M 1 ' , ... where

M 0 '=M 0 for a small  .  Then for k0 we have M k '=M k±2k  , and the
sequence  is  unstable.   Therefore  there  are  uncountably many nonperiodic  sequences,
corresponding to the irrational numbers between 0 and 1.

It is  interesting to note  that  in  this  example,  the existence of chaotic  behavior
corresponds directly to the existence of irrational numbers, a fact that people were once
even more reluctant  to  accept.   According to legend, when Hippasus first  proved the
existence of irrational numbers, he was thrown by the other Pythagoreans from a boat into
the middle of the ocean[3].

3 Properties and Bifurcations

There exist far too many interesting features of the Lorenz System to discuss in a single
paper.  Henceforth the scope of this paper will be limited to some of the behavior of the
system near the equilibria as r increases from an infinitesimal value toward infinity, for
fixed values of the other parameters.  To read about the system's other features, a good
place to start is Sparrow's book (see references).

3.1 Dissipative

A system is  dissipative  if  every orbit  eventually moves away from infinity.  That  is,
∃B⊂ℝ2 bounded,  such  that  ∀ x0∈ℝ2 ,∃t0 (depending  on  x0 , B )  with  the

solution  t , x0 satisfying  t , x0∈B∀ t≥t0 (Hale  &  Koçak  394).   It  can  be
shown that the Lorenz System is dissipative by using the Liapunov function

V=rX 2Y 2Z−2 r 2 (Sparrow 196).

Then

V̇=2 rX Ẋ2Y Ẏ2Z−2 r  Ż
      = −2r X 2Y 2bZ 2−2brZ  .

Choose the bounded region D such that  X ∈D⇔V̇ X ≥0 , and let c be the maximum
of V in D.  Let E be the ellipsoid defined by V≤c for small 0 .  Then

X ∉E⇒ X ∉D
⇒ V̇ X ≤− for some 0 ,

and  the  points  on  the  trajectories  passing  through  X will  be  associated  with  a



decreasing V.  Thus the trajectories will eventually enter and remain in E.
It follows from the fact that the divergence of the system is negative, -(σ + b + 1),

that the volume of this region will decrease with e−b1t , so the set toward which all
trajectories tend has zero volume (Sparrow 198).

3.2 Symmetric

The Lorenz System is invariant under the symmetry X ,Y , Z −X ,−Y , Z  :

− Ẋ=−−X −Y 
⇒ Ẋ=−XY 

−Ẏ=r −X −−Y −−X Z
⇒ Ẏ=rX−Y−XZ

Ż=−b Z −X −Y =−bZXY .

The invariance of the  Z-axis implies that all trajectories on the  Z-axis remain on the Z-
axis and approach the origin.  Furthermore, since

X=0,Y0⇒ Ẋ0
and X=0,Y0⇒ Ẋ0 ,

all trajectories that rotate around the Z-axis must move clockwise with increasing time.  

3.3 Equilibria

Let us now find the equilibrium points of the system.  Solving

−XY =0
r X−Y−X Z=0
−b ZX Y=0

yields

X=0 , or ±b r−1 .

Depending upon the parameter values, we might have as equilibria

0,0,0 , 
C1=−br−1 ,−b r−1 , r−1 , and
C 2=b r−1 ,b r−1 , r−1 ,

though the origin is always an equilibrium point.
The behavior of the Lorenz System is quite complex.  To examine some simple

bifurcations, first consider the case where two of the parameters are fixed at b = 8/3 and σ
= 10, and let 0 <  r < 1.  Then the above root has an imaginary part, and the only real
equilibrium is



X=Y=Z=0 .

In fact, this equilibrium point is a global attractor for 0 < r < 1.  To see this, consider the
Liapunov function,

V=X 2Y 2 Z 2 .

Then,

V̇=2 X Ẋ2Y Ẏ2 Z Ż
  = 2[1r  XY−X 2−Y 2−bZ 2]
⇒ V̇0∀ X ,Y , Z .

This last inequality is seen by observing that 

1r  XY−X 2−Y 20 , i.e. r X 2Y 2

XY
−1 ,

since if X ≥ Y (similar for the opposite inequality) then

X
Y
−1≥0 , and 1− Y

X
≥0 ,so their product, 

X
Y
−2 Y

X
≥0 ⇒ X

Y
 Y

X
−1= X 2Y 2

XY
−1≥1r .

Thus  beginning  at  any point  away from  the  origin,  the  associated  value  of  V must
decrease, and the trajectory will approach the origin.

3.4 The First Bifurcations and "Preturbulence"

At r = 1 there is a bifurcation, and the other
two  equilibria  appear.   By the  symmetry
previously  shown,  we  see  that  this  is  a
pitchfork bifurcation.  The origin becomes
unstable, and two stable equilibria emerge,

C1, C 2 ,  as  seen  in  the  bifurcation
diagram in Figure 6.

Linearizing  the  system  near  an
equilibrium  point  X ,Y , Z   using  the
Jacobian matrix gives

[ ẊẎŻ ]=[
−  0
r−Z −1 −X

Y X −b ][XYZ ] ,
Figure 6 Bifurcation diagram varying r from 0 to 2
and fixing the other parameters, showing the X value
of the equilibria.



and setting the determinant minus λI equal to zero gives the eigenvalues as solutions of 

3b12bb−r ZX 2b1−r X YX 2b Z =0 .

If the equilibrium point is taken to be the origin, this simplifies to

3b12bb−rb1−r =0 .

Since -b is clearly a solution, we factor to get

b211−r =0 ,

and the three eigenvalues are:

1 ,2=
−−1±124r−1

2
3=−b ,

expressed in such a way to make it clear that 10 , 2 ,30 for r > 1.  Thus the
origin becomes unstable (Hale & Koçak, Theorem 9.3).  This is generally called a saddle,
with a one-dimensional, unstable manifold.

The eigenvalues of a linearization near C1 and C2 simplify to be the solutions of

32b1br 2 br−1=0 .

If we let  b = 8/3 and σ = 10, then all three roots will have negative real part if

r
b3
−b−1

=470
19
≡r H (Sparrow 10).

Thus if r < rH then C1 and C2 are stable.  For r > rH, the two complex eigenvalues have
positive real part, and the equilibria become unstable (Hale & Koçak, Theorem 9.3).  At
r = rH there is a subcritical Hopf bifurcation.  So for values of r above this critical value,
there are three unstable equilibria, yet it has already been shown that no trajectories

Figure 7 A "preturbulent" trajectory at r = 22.7, just before the bifurcation into chaotic behavior.



approach infinity but rather eventually enter a region around the origin.  This is where we
begin to see the chaotic behavior similar to that originally seen in Figure 1.

How does the system transition from nonchaotic to chaotic?  To see intuitively
what happens to the trajectories as r approaches this critical value, let us look at r = 22.7,
just  before  the  bifurcation  (Figure  7).   C1 and  C2 are  still  stable,  so  the  trajectory
eventually spirals  in toward one of them, but before it  comes sufficiently close to an
equilibrium, it exhibits "preturbulent" or “chaotic transcient” behavior.

3.5 Period Doubling Windows

For  the  values  99.524  <  r <  100.795 there  exists  what  is  called  a  "period  doubling
window."  The first period doubling, listed in increasing order of period, occurs at  r ≈
99.98.  Just above this bifurcation value, trajectories approach a stable periodic orbit that
circles the  first  equilibrium  once,  then  the  second  equilibrium twice,  which  we  will
denote [1-2-2], as seen in Figure 8.  As r decreases, the period doubles to [1-2-2-1-2-2]
for 99.629 < r < 99.98 (Figure 9).  As r continues to approach the lower boundary of this
window, 99.524, there is a cascade of period doubling similar to the behavior of chaotic
one-dimensional maps.  For 99.547 < r < 99.629 there is a period of [1-2-2]4, for 99.529 <
r < 99.547 there is a period of [1-2-2]8, and so on (Figures 10 and 11 respectively).  

Figure 8 Stable periodic orbit for r = 100.5. Figure 9 Stable periodic orbit after the first period
doubling, for r = 99.7.

Figure 10 Stable periodic orbit after the second
period doubling, for r = 99.6.

Figure 11 Stable periodic orbit after the third period
doubling, for r = 99.537.



Not much is known of the particular behavior for values of  r just less than the
accumulation point of such cascades, where chaos begins.  In general, the period doubling
cascades have the same properties as in scalar maps, such as the Feigenbaum number,
=limn∞

r n1−rn

rn2−rn1
=4.669 ... which can be used to find the accumulation value r∞.

The behavior in the upper half of the period doubling window is interesting as
well.  The fact that the window has an upper bound suggests that the system demonstrates
nonperiodic behavior once again as r exceeds it.  This is true, and the transition can be
seen through what is called "intermittent chaos."  This phenomenon is shown in Figure 12
for  r = 100.93.  As time progresses, the trajectory tends toward the periodic orbit, but
every so often it lapses into nonperiodic, chaotic behavior for an interval of time.  If r is
within the period doubling window, the intermittent chaos will eventually cease, leaving a
periodic orbit, but once r is beyond the upper bound, rc, intermittent chaos will occur after
any given time t'.  As r moves further from the window, the periods of intermittent chaos
will increase in length until they dominate the trajectory.  In fact, the mean length of the
periodic intervals seems to vary at a rate proportional to r−rc

−1/2 (Sparrow 63)[4].

There exist two other period doubling windows as r increases.  The first is 145 < r
< 166.  For 154.4 < r < 166.07 there is a stable symmetric (i.e. with the same symmetry as
shown for the system itself) periodic orbit with a period described by [1-1-2-2].  At r  ≈
154.4 the stable symmetric orbit splits into two stable asymmetric periodic orbits with
periods  described  by  [1-1-2-2],  producing  between  them  an  unstable  periodic  orbit.
These  orbits  undergo  simultaneous  period  doubling  bifurcations  as  r decreases  in  a
manner similar to that of the first window (Sparrow 59).

The final period doubling window is for 214.364 < r, with period described by a
symmetric stable [1-2] orbit.  This window is similar to the previous, except that for r >
313,  the  lowest  period  orbit  continues  to  exist.   There  is  no  intermittent  chaos  as  r
increases.  In fact, for large enough r, it is believed that this stable periodic orbit unioned
with  the  three  equilibria  compose  all  of  the  non-wandering  set,  though  this  simple
behavior depends on our particular choice of b and σ (for a theoretical justification of this
claim, see Sparrow, chapter 7)[5].

4 Afterword

Lorenz's paper has spawned many deep and detailed analyses of this system.  For a fairly
rigorous  discussion  of  other  features  of  the  system,  such  as  homoclinic  explosions,
manifolds, another derivation, etc., see Sparrow's book.  For an entertaining,  qualitative
dramatization of chaos and its implications, see Gleick's book.  Lorenz's article itself is an

Figure 12 Intermittent chaos just above the period doubling window, for r = 100.93.



invaluable milestone in physics and mathematics, and is highly recommended.  Although
it was published in the Journal of Atmospheric Sciences, it is essentially a mathematics
article and is elegant in its simplicity.

Many higher dimensional systems have been designed as extensions of the Lorenz
System.  In fact, the system itself is a simplification of fluid convection, and higher order
systems of fluid convection have been studied.  Extensions of the Lorenz System have
similar symmetries and demonstrate similar behavior, though more complex.  In one such
example, there are two equilibrium tori that act like the equilibria in the Lorenz System,
with trajectories orbiting one torus, then the other, in a nonperiodic manner.  Examination
of these systems generally involve analyzing the way the system changes with a changing
parameter, r, just as in the Lorenz System.

The conclusion of Lorenz's paper relates his theory to the atmosphere.  Bounded
finite dimensional systems must eventually come arbitrarily close to any previous state.
We  could  then  expect  an  analogue  in  the  weather—i.e.  a  point  in  time  when  the
atmosphere seems to be in a state identical to to a previously observed state.  If the system
is  nonchaotic,  then the  weather  will  remain arbitrarily close to  its  past  behavior,  and
weather forecasting will be a breeze.  On the other hand, if an analogue occurs followed
by new weather patterns,  no forecasting scheme could be correct both times,  and the
system is unpredictable.

By now it is generally accepted that real physical systems contain this inherent
unpredictable quality.  Sensitivity to initial conditions, sometimes dubbed the "butterfly
effect," is commonly described using an old folk poem in which a misplaced nail causes a
kingdom to fall (see Gleick 23).  Instead of repeating this example, I'd like to close with a
Steinbeck passage that describes a real-life example of sensitivity to initial conditions that
is, perhaps, a more accurate analogy.

"Two  gallons  is  a  great  deal  of  wine,  even  for  two
paisanos.  Spiritually the jugs may be graduated thus: Just
below  the  shoulder  of  the  first  bottle,  serious  and
concentrated  conversation.   Two  inches  farther  down,
sweetly sad memory.  Three inches more, thoughts of old
and satisfactory loves.  An inch, thoughts of old and bitter
loves.   Bottom  of  the  first  jug,  general  and  undirected
sadness.   Shoulder  of  the  second  jug,  black,  unholy
despondency.   Two  fingers  down,  a  song  of  death  or
longing.  A thumb, every other song each one knows.  The
graduation stops here, for the trail splits  and there is no
certainty.   From  this  point  on  anything  can  happen
(Steinbeck 43-4)."



REFERENCES

DAVIES, Paul.  "The Cosmic Blueprint."  Orion Productions, 1988.  Simon and Schuster, New York.
GLEICK, James.  "Chaos: Making a New Science."  James Gleick, 1987.  Penguin Books, New York.
HALE, J. and H. Koçak.  "Dynamics and Bifurcations."  Springer-Verlag New York Inc., 1991.  New York.
KUNDU, Pijush K. and  Ira M. Cohen.  "Fluid Mechanics: Second Edition."  Academic Press, 2002.
LORENZ, Edward N.  "Deterministic Nonperiodic Flow."  Journal of the Atmospheric Sciences, 20, 130-
141, 1963.
SALTZMAN, B.   "Finite  amplitude  free  convection as  an initial  value  problem—I ."   Journal  of  the
Atmospheric Sciences, 19, 329-341, 1962.
SPARROW, Colin.  "The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors."  Springer-Verlag
New York Inc., 1982.  New York.
STEINBECK, John.  "Tortilla Flat."  John Steinbeck, 1935.  Random House, New York.

All figures not cited were generated by the author using MATLAB 6.5.

COMMENTS BY PROFESSOR ANDY FOSTER

[1] 'In fact, experimentalists would routinely hide (i.e. not publish) data from real systems exhibiting these
types of behavior.'

[2] 'As we have seen, this is usually no problem, because of topological equivalence, etc.  But ... the
prevalent mindset is still that systems are classically predictable.'

[3] 'This “tent map” construction from the original flow is interesting, isn't it?  Notice that the tent map is
ℝ1 , so it is simpler than the Poincaré map, which would be ℝ2 .'

[4] 'For intermittent chaos, see Y. Pomeau and P. Manneville, Comm. Math. Phys. 74, 189-197 (1980).'

[5] '...Did you know that the Lorenz system is not structurally stable?  Yes, it has dense sets with and
without saddle-saddle connections which can switch back and forth under arbitrarily small perturbations.
So, what appears to be a stable chaotic set is not stable!'


