
PHYS 280 Lecture problems outline Spring 2015

Electricity and Magnetism

We previously hinted a links between electricity and magnetism, finding that
one can induce electric fields by changing the flux of a magnetic field through
a wire, and finding that the two constants for electricity and magnetism were

related to the speed of light. In this lecture, we follow through to discover
the complete unit of the two forces, and the general physics of oscillations.

1 Maxwell’s Equations

Ampère’s law, which states that ∮
~B · d~s = µ0I

does not properly account for what happens near a capacitor. JC Maxwell proposed adding
a displacement current,

Id = ε0
dΦE

dt

where ε0 is the permittivity of free space given as ε0 = 8.85418782×10−12m−3kg−1s4A2. The
new version of the law becomes: ∮

~B · d~s = µ0(I + Id)

To distinguish the displacement current from a normal one, we call normal currents
conduction currents. Where did this equation come from? Recall that V = Ed, Q = CV
and C = ε0A/d. We can write the displacement current as

ID =
∆Q

∆t
=

∆CV

∆t
=
ε0∆(A/d)Ed

∆t
= ε0

AE

t
= ε0

∆ΦE

∆t

1. Show that the displacement current gives the necessary result.

Solution: Where we previously found that the electric field created by an ideal
conductor is E = q/(ε0A), so that

ΦE = EA =
q

ε0

so that the contribution due to the displacement current is

µ0ε0
dΦE

dt
= µ0

dq

dt

which is exactly the same as if a wire were passing through.
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What does it mean? It means that Ampère’s law must also take into account the
changing flux of the electric field–the magnetic field has now been related to the changing
flux of the electric field just as an induced electric field was related to the changing flux
of the magnetic field.

In addition to this and many other contributions, Maxwell collected all of the laws for
electromagnetism into a set of four laws which we call Maxwell’s equations:

Gauss’s Law (E)

∮
~E · d ~A =

q

ε0

Gauss’s Law (M)

∮
~B · d ~A = 0

Faraday’s Law

∮
~E · d~s = −dΦB

dt

Ampère-Maxwell Law

∮
~B · d~s = µ0I + ε0µ0

dΦE

dt

1.1 EM force

The total force due to electrical and magnetic force is called the Lorentz force law:

~F = q ~E + q~v × ~B

1.2 A strange equation

The implications of the last of the two of Maxwell’s equations are tremendous. In free
space with no current, they take on very similar forms:∮

~E · d~s = −dΦB

dt∮
~B · d~s = ε0µ0

dΦE

dt

Via a series of manipulations, these two equations can be recast as

∂E

∂x
= −∂B

∂t

∂B

∂x
= −µ0ε0

∂E

∂t

Then
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∂2B

∂x2
= −µ0ε0

∂

∂x

(
∂E

∂t

)
= −µ0ε0

∂

∂t

(
∂E

∂x

)
= µ0ε0

∂

∂t

(
∂B

∂t

)
= µ0ε0

∂2B

∂t2

A similar line of reasoning produces the equation

∂2E

∂x2
= µ0ε0

∂2E

∂t2

To uncover the true implications of these two equations, we must take a detour into
chapter 15 and 16.

2 Wave Equations

Consider a pulse traveling along a string. The position of every point along that string
can be written y(x, t) = f(x+ vt) for a pulse traveling to the left and y(x, t) = f(x− vt)
for a pulse traveling to the right. To help see why this is so, think about the pulse in
time and on one specific place on the string, say x = 0. Then at t = 0, y(0) = f(0).
If the pulse is traveling to the right, then its position at t = 0, which is f(0) will move
over a distance vt after t seconds. That is, at position x = vt, we require f to be equal
to f(0), which can be satisfied with the equation f(x− vt) = 0.

Now let’s do some calculus on this equation. Let u = x − vt and use the chain rule to
find that

∂2y

∂x2
=

(
du

dx

)2
∂2f(u)

∂u2
=
∂2f(u)

∂u2

∂2y

∂t2
=

(
du

dt

)2

= v2
∂2f(u)

∂u2

Therefore we get,
∂2y

∂x2
=

1

v2
∂2y

∂t2

So we see that Maxwell’s equations lead to the wave equation, which implies that the
velocity of the electromagnetic waves that Maxwell predicts is related to the permeability
and permittivity of free space:
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v =
1

√
µ0ε0

Let’s calculate those values:

v =
1√

(8.85× 10−12C2/Nm2) (4π × 10−7Ns2/C2)
= 3.0× 108m/s

This is precisely the speed of light. Maxwell’s prediction was radical, and was confirmed
when in 1887 (eight years after Maxwell’s death) Hertz experimentally proved this with
a spark-gap experiment.

ElectroMagnetic Waves and Light

Electromagnetic waves propagate in free space at the speed of light; in fact,
light is an electromagnetic wave and travels at a speed c = 3.0× 108m/s.
The actual number is c = 2.99792458× 108m/s, but we round it without

much harm for our goals.

3 Nature of EM waves

Suppose we have a capacitor wired up to an AC source:

Since the source is sinusoidal, so too will the wave be sinusoidal in nature. Maxwell’s
equations tell us that a changing magnetic field produces a changing electric field and
a changing electric field produces a changing magnetic field. In this sense, as the wave
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propagates, it will be self sustaining, it will go on oscillating between electric and mag-
netic fields forever; though the intensity of the field will decrease the further away it
travels from the source just as the brightness of the sun is stronger on Earth than it is
on pluto.

These waves will propagate in a regular way, oscillating as the source oscillates:

In this way, we can produce waves of varying frequency. The condition for a wave that
relates its frequency to its wavelength is that,

v = λf

or in the case of EM waves,
c = λf

This results in the fact that there is an infinite spectrum of frequency/wavelength com-
binations of EM waves:

2. Calculate the wavelength of a 60 Hz EM wave; a 93.3 MHZ FM radio wave, and a beam
of red light from a laser at frequency 4.74× 1014 Hz.
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Solution: Since c = λf then

λ =
c

f
=

3.0× 108m/s

60s−1
= 5.0× 106m

which is approximately the radius of the Earth, and,

λ =
c

f
=

3.0× 108m/s

93.3× 106s−1
= 3.22m

which is approximately the height of two people stacked together, and

λ =
c

f
=

3.0× 108m/s

4.74× 1014s−1
= 6.33× 10−7m

, which is about a hundredth of the width of a human hair.

4 Power in EM waves

If AC current is driving the generation of waves, the most simple form of the wave can
waves can be (in one-d version):

E = Emax cos(kx− ωt)
B = Bmax cos(kx− ωt)

where k = 2π/λ and ω = 2πf .

Now using the equation,
∂E

∂x
= −∂B

∂t

and,
∂E

∂x
= −kEmax sin(kx− ωt)

∂B

∂t
= ωBmax sin(kx− ωt)

we find that

kEmax = ωBmax → Emax

Bmax

=
ω

k
= c

We now introduce the Poynting vector which is the rate of transfer of energy by an
electromagnetic wave,
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~S =
1

µ0

~E × ~B

for the type of waves we deal with in this chapter (called plane waves), this is simply

S =
EB

µ0

Using B = E/c, then,

S =
E2

µ0c
=
cB2

µ0

which means we can express the energy transferred from an EM wave as a function of
either the magnetic and electrical field of the wave.

Because the fields oscillate as a function of cos, and the power transferred is a function
of the field squared, the energy transfer will be a function of cosine squared, and the
average of cosine squared is 1/2 so that the average value of energy of the wave is the
intensity given as,

I = Savg =
E2

max

2µ0c
=
cB2

max

2µ0

3. Radiation from the Sun reaches the Earth (above the atmosphere) at a rate of about
1350 J/sm2. Assume that this is a single EM wave, and calculate the maximum values
of E and B.

Solution: Given the average rate is

I = 1350J/sm2 =
E2

max

2µ0c

we can solve for Emax,

Emax =
√

2µ0c1350J/sm2 = 1.01× 103V/m

Bmax =
Emax

c
=

1.01× 103V/m

3.00× 108m/s
= 3.37× 10−6T


