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Objectives

Review of Schrödinger’s Wave Equation

Tunneling

The Schrödinger Equation for two identical particles.

Electron shells, why can’t you have 100 electrons in the ground
state?

�antum Mechanics explains why all metals aren’t conductors.
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Schrödinger’s Wave Equation

− ~2

2m
∂2Ψ(x, t)
∂x2

+ UΨ(x, t) = i~
∂Ψ(x, t)
∂t

The time component can sometimes be broken away giving:

− ~2

2m
d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x)

And we can express it in three dimensions:

− ~2

2m

(
d2ψ
dx2

+
d2ψ
dy2

+
d2ψ
dz2

)
+ Uψ = Eψ
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Schrödinger’s Wave Equation: Example

In regions I and III:

d2ψ
dx2

=
2m(U − E)

~2
ψ ≡ C2ψ

and in region II:

d2ψ
dx2

=
2mE
~2

ψ

With solutions

ψI = AeCx , ψII = F sin kx+G cos kx, ψIII = Be−Cx
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Tunneling

Recall that

C =

√
2m(U − E)

~2

It can be shown that the probability of an
object tunneling through a barrier is:

T ≈ e−2CL
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Tunneling example

Q: A 30-eV electron is incident on a square barrier of height 40 eV
and width 0.10 nm. You measure its location. You repeat this 10,000
times total. How many times to you expect that you’ll find an
electron on the other side of a barrier that classically it should be
able to get beyond? ~ = 1.055× 10−34Js. 1eV = 1.6× 10−19J.
me = 9.11× 10−31 kg .

A: Please don’t forget to convert the energy U − E to Joules.

U − E = 40eV − 30eV = 10eV
(
1.6× 10−19J

1eV

)
= 1.6× 10−18J

2CL = 2

√
2 (9.11× 10−31 kg ) 1.6× 10−18J

1.055× 10−34Js

(
0.1× 10−9m

)
= 3.24

T ≈ e−2CL = e−3.24 = 0.039

With 10,000 trials, you would expect to find about 390 incidents in
which the electron tunneled through a barrier–which classical
physics says is impossible.
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Pauli Exclusion Principle

An electron has intrinsic angular
momentum, called spin. The image
pictured at le� is a classical model, not a
quantum one. As far as we know, the
electron is super super close to being a
point particle.

For an electron, the spin can be manifested
as one of two types: spin up and spin
down.

The wave function for an electron needs to
include its spin: ψ(x)→ ψ(x) ↑ orψ(x) ↓
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Pauli Exclusion Principle

If there is a 30% chance of it raining tomorrow, and a 10% chance
that your phone will fall tomorrow, what is the probability that it
will both rain tomorrow and you will drop your phone?

P(a, b) = P(a)P(b)

When a, b are independent.
So there is a 0.3(0.1) = 0.03 or 3
What does that really mean?

It means that if there were 10,000 exact universes like ours
with 10,000 yous, about 300 of yous would experience the
heartbreak of a dropped phone while it is raining. Of course,
it may be 288 or 380 or even 753 or 62, but the point is that the
more duplicate universes you counted, the closer the number
would get to 3%.
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Pauli Exclusion Principle

Because the Schrödinger equation is a di�erential equation,
solutions can be combined to yield equally valid solutions. Consider
two particles, 1 and 2, which can exist in states a or b: ψa(x1),
ψb(x2), ψa(x2), and ψb(x1). The functions we can form turn out to
correspond to two distinct types of particles:

ψ1,2(x) = A (ψa(x1)ψb(x2) + ψb(x1)ψa(x2)) Bosons

ψ1,2(x) = B (ψa(x1)ψb(x2)− ψb(x1)ψa(x2)) Fermions

For Fermions, the wave function goes to zero if the particles are in
the exact same states (ψa = ψb).

Two identical fermion particles can not inhabit the exact
same quantum state.

Electrons are fermions. Why can’t we fit a hundred electrons into
the ground state of a hydrogen atom? How many can we fit?
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Because electrons have intrinsic spin, either spin up or spin down,
an electron in the ground state of a particular hydrogen atom can be
distinguished from another electron in the ground state of that
same atom if and only if they have opposite spins. Thus each energy
level can contain two electrons and only two electrons so long as
they have opposite spin.

This Pauli Exclusion Principle is just one example of how
mathematics is manifested in our physical universe. We will now
look at another example of this manifestation.
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Hydrogen

Wrong:
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Hydrogen

Right:
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Periodic Table
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Band Structure

Mystery:
Classically, all materials should be conductors of electric current.

Why are some materials insulators
and other materials conductors?
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Band Structure

Dirac Comb:

Models materials as a ”comb” of infinite potentials (the nucleus).

Dr. Jones Physics 280�antum Mechanics Lecture II



Band Structure

The potential is periodic V (x + a) = V (x).

Bloch’s theorem gives ψ(x + a) = eiKaψ(x) where K is a
constant and i represents

√
−1

Let’s focus on the solution for the block just to the le� and
right of the origin.
Cell to right of origin:
ψ(x) = A sin(kx) + B cos(kx), 0 < x < a, k =

√
2mE
~

Use Bloch’s theorem to extend to the cell to the le� of the
origin:
ψ(x) = e−iKa [A sin[k(x + a)] + B cos[k(x + a)]] , −a < x < 0
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Band Structure

ψ(x) = A sin(kx) + B cos(kx), 0 < x < a

ψ(x) = e−iKa [A sin[k(x + a)] + B cos[k(x + a)]] , −a < x < 0

These equations must be continuous at their intersection x = 0.
This yields the conditions:

B = eiKa [A sin(ka) + B cos(ka)]
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Band Structure

The derivatives must also be continues which yields:

kA− e−iKak [A cos(ka)− B sin(ka)] = −2mα
~2

B

where α is a constant depending on the material.
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Band Structure

These two continuity conditions can be merged to yield:

cos(Ka) = cos(ka)− mα
~2k

sin(ka)

Note that thus far this is just a mathematical result, but it has
interesting implications.
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Band Structure

Let z = ka and β = mαa
~2 so that the continuity condition can be

wri�en:

f (z) = cos(z)− β sin(z)

z

Let’s plot it:

Can you spot the problem?
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Band Structure

Since | cos(Ka)| ≤ 1, the equation only ”works” in certain ”bands”:
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Band Structure

This corresponds to areas in the Energy ”spectrum” which can never
be occupied:

Each energy band can have up to two
electrons.

Electrons in these bands must make a
quantum leap to higher energy bands but
can never have energy equal to anywhere
in the gap.

If a gap is completely filled, takes a lot
more energy to excite an electron to the
next higher energy state since it has to
”jump” across gap.
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Band Structure

This corresponds to areas in the Energy ”spectrum” which can never
be occupied:

In some materials, the lowest bands
completely occupied with the material’s
electrons already and it takes a lot of
energy to jump the gap. These metals are
insulators.

In other materials, the highest occupied
band has room for more electrons and so it
is easy to excite those electrons to higher
energy states. These are conductors.

”Doping” of insulators can lead to
semiconductors where either electrons are
now in the next higher band or holes are in
the previously filled one, and so weak
currents can flow.
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Band Structure

Mystery:
Classically, all materials should be conductors of electric current.

�antum Mechanics solves this mystery precisely! The solution
shows us how deeply mathematics dictates the physical
manifestation of the universe.
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