
PHYS 280 Quantum I: Tools Summer 2016

Theoretical Catastrophe, Unwanted Solutions, and the Quantum Revolution

Early Hints

• 1897: J. J. Thomson experiments with cathode ray tubes–glass tubes filled with certain
rarefied gases that has a cathode (negative plate) on one end and an anode (positive
plate) connected to the other end.

• When a high enough voltage was used, beams of glowing gasses could be seen. The path
of these beams could be manipulated with electric or magnetic fields which indicated
that they were charged particles.

• When only the electric field plate is charged, the particles deflected upwards; when
only the magnetic field was in place, they deflected downwards, indicated that the
charges involved were negative.

• Without electric field, only magnetic, the curve path is described by

evB = m
v2

r
→ e

m
=

v

Br

We can measure the radius of curvature as well as the magnetic field applied, but what
about v? Let’s dump it.

• We can eliminate v by turning the electric field back on so that the force from the
electric field is F = eE. We adjust this field so that the beam is no longer deflected.
Remember a problem like this from last trimester? Now you see why it is so useful.
Then we have the magnetic force and electric force equal: eE = evB such that v = E/B
and

e

m
=

E

B2r

• This ratio of charge to mass is 1.76× 1011 c/kg. This marks the discovery of electrons
and suggesting that charge is carried on individual particles and can be found only as
multiples of some elementary value. In other words, charge is quantized.



PHYS 280 Quantum I: Tools 2 of 19 Summer 2016

• 1913: Millikan’s oil drop experiment finds that ions are affected by an electric field in
discrete multiples of e, the charge of the electron. Not only does this work prove the
discrete theory of electrons, it is able to find the value of those charges. If we adjust
the field that an ion is in so that it is at rest, then we have exactly balanced out the
gravitational pull, i.e. qE = mdropg. The mass can be found by finding the terminal

velocity of the particle, and so the charge is found to be q = mg/E. This charge was
found to be integer multiples of an elementary charge e = 1.602× 10−19C.

• Proof beyond the shadow of doubt that charge is quantized.

That isn’t too radical, and in fact it probably seems like common sense to most of us
today. The revolution truly began in 1900.

Planck the reluctant revolutionary

0.1 Blackbody Radiation

• Hot objects emit a regular spectrum of light:

• That is an idealized version, in real life these curves wouldn’t be so smooth. These
curves describe the light emitted by something called an idealized blackbody–a body
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that would absorb all the radiation falling on it. The radiation in the graph above is
called blackbody radiation. It only approximates what real-world objects would
emit, but it is a good approximation.

• Experimentally it has been found that the peak value of wavelength is

λp =
2.90× 10−3m ·K

T

where K stands for Kelvin (degrees Celsius + 273.15 = degrees K) and T temperature.
For reference, this is referred to as Wien’s Law.

• Example:

1. What color would a star that has a surface temperature of 22500 K appear?

Solution:

λp =
2.90× 10−3m ·K

T
=

2.90× 10−3m ·K
22500 K

= 1.29e− 07 m

Since this is below the visible spectrum (approximately 390 to 700 nm), then
the peak will be to the left of the visible spectrum and so the dominating
component from the visible spectrum will be blue.

2. What color would a star that has a surface temperature of 3500 K appear?

Solution:

λp =
2.90× 10−3m ·K

T
=

2.90× 10−3m ·K
3500 K

= 8.29e− 07 m

This time the peak is to the right of the visible spectrum, which means the
red side of the visible spectrum will dominate and the star will appear red.

Red stars are cool stars; Blue stars are hot stars.

3. The sun’s peak wavelength occurs somewhere near the yellow-green part of the
visible spectrum at λp = 500 nm. Estimate how hot the sun is.

Solution:

T =
2.90× 10−3m ·K

λp
= 5.80e+ 03 K
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The Ultraviolet Catastrophe

• It was also found with a mix of theory and experiment that the power of the radiation
emitted by a blackbody was approximately

P = σAeT 4

which is known as Stefan’s Law where P is power in watts, σ = 5.670×10−8W/m2 ·K4

is called the Stefan-Boltzmann constant, A is the surface area of the object, T is
temperature of course, and e is emissivity of the surface (times 100 = percentage of
radiation that gets emitted rather than reabsorbed and is equal to one for blackbodies).

• Compare this to Wien’s displacement law. The power emitted by the peak wavelength
is proportional to the inverse of the wavelength to the fourth power.

• What’s the big deal? Think about what happens at lower and lower wavelength. As
λ→ 0, P →∞. But this is not at all what we see (see graph above), where the power
goes to zero as the wavelength goes to zero (the ultraviolet side of the spectrum).
Theory makes a catastrophically wrong prediction, the “ultraviolet catastrophe”.

• The classical prediction is called the Rayleigh-Jeans law; here it is for comparison with
the quantum answer (nevermind the constants for now):

I(λ, T ) =
2πckBT

λ4

• Max Planck found a way out, but it was a deal with the devil of quanitization. Planck
wasn’t a fan of his solution and thought that it would prove to be a mathematical
artifact that could be explained away somehow.

• Planck assumed that blackbody radiation came from atomic oscillators in the cavity
walls which could only have certain discrete energy values En = nhf where n is a
positive integer (we write this as n ∈ N). We call n the quantum number, f is
the oscillator frequency, and h is a new universal constant called Planck’s constant.
Each energy level corresponds to a separate quantum state.

• Planck postulated that the oscillators emit or absorb energy when making different
transitions from one quantum state to another. The difference between the starting
and ending state corresponds to the energy absorbed or emitted and will be equal to
some integer multiple of hf .

• The probability of a state being occupied is given as e−E/kBT where kB = 1.38 ×
10−23m2kgs−2K−1 is the Boltzmann constant.

• Consult active figure 40.7 for a conceptual perspective.
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• Planck found:

I(λ, T ) =
2πhc2

λ5
(
e

hc
λkBT − 1

)
where h = 6.626 × 10−34 J · s was set by Planck to match experimental data. The
match was superb. This was the right equation.

• Planck was not happy with this because it expanded the quantization regime to energy.
He searched for ways to reconcile this with the classical picture. Other established
physicists also searched for a classical escape hatch. None was to be found.

1. A 234.0 kg block is attached to an ideal classical spring with a force constant k =
125 N/m and is stretched 1.4 m from its equilibrium position.

(a) Find the energy and frequency of oscillation.

Solution:

E =
1

2
kX2 =

1

2
(125 N/m) (1.4 m)2 = 122.50J

and

f =
1

2π

√
k

m
= 0.116 Hz

(b) Assume now that this is a quantum system. Find the quantum number n.

Solution:

En = nhf → n =
En

hf
=

122.50J

(6.626× 10−34 J · s) (0.116 Hz)
= 1.59e+ 36

(c) Finally suppose this system were to make a quantum leap into the next highest
energy state. What is the energy change?

Solution: This is a change of energy of integer quantum state 1, and so the
energy shift will be

E = (1)hf = 7.71e− 35 J

which is so incredibly small compared to the total energy that it appears to our
classical eyes to be a continuous shift in energy rather than a radical quantum
leap (which it is).
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Atomic mystery

• Quantization of energy solved the Blackbody Radiation problem and the Photoelectric
Effect. It solved the scattering problem (Compton effect) and although nobody could
quite make sense of it,

• Another mystery dominated atomic physics–nobody could explain the spectra of gasses.

• We might expect a continuous distribution of wavelengths, but instead we find discrete
line spectrum called the emission spectrum.

• Passing white light through gasses result in discrete missing wave- lengths, this is called
the absorption spectrum.

• Example emission (hydrogen, mercury, and neon) and absorption spectrum for hydro-
gen:

• 19th century physicists can’t explain these spectra.

• Balmer found an empirical equation that correctly predicted the wavelengths of four
of the visible emission lines; Rydberg expanded this equation to find all emission lines:

1

λ
= RH

(
1

22
− 1

n2

)
, n = 3, 4, 5, · · ·

• RH is a constant called the Rydberg constant and is equal to 1.0973732 ×107m−1.

• The shortest wavelength is found when n→∞ is called the series limit with wavelength
364.6 nm (ultraviolet).

• Other physicists started experimenting with these numbers and found similar equations
that described other lines in the spectrum:

Lyman series:
1

λ
= RH

(
1− 1

n2

)
, n = 2, 3, 4, · · ·

Paschen series:
1

λ
= RH

(
1

32
− 1

n2

)
, n = 4, 5, 6, · · ·

Bracket series:
1

λ
= RH

(
1

42
− 1

n2

)
, n = 5, 6, 7, · · ·
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• It all works very well, but nobody knows why.

Quantum solution: A fix that nobody was happy with

A physicists named Niels Bohr saw that energy quantization had solved the blackbody and
photoelectric problem, and he wondered if it could solve the mystery of the atomic spectrum
lines as well. Here is a basic outline of his reasoning.

• Assume the classical model of the electron orbiting the nucleus of the hydrogen atom
under electrical forces. In this case the total energy is

E = K + U =
1

2
mev

2 − ke
e2

r

and since we assume the electron is going in a circle, the electric force must act as a
centripetal force:

kee
2

r2
=
mev

2

r
=⇒ v2 =

kee
2

mer

Using this value for velocity, we have kinetic energy:

K =
1

2
mev

2 =
kee

2

2r
and E = −kee

2

2r

• So far, so classical.

• Next comes the quantum step. Assume that only certain orbits are stable (called
stationary states, which validates are previous assumption of using classical physics).
The atom emits radiation when it makes a quantum leap from one state to another.
The change in its energy after making this leap is quantized:

Ef − Ei = hf, positive value means absorbed, negative value means emitted

• Bohr next a new leap: quantizing the electron’s orbital angular momentum:

mevr = n
h

2π
= n~

where ~ = h/2π. The energy quantization was enough to fluster some, but this latter
assumption was a radically new expansion of the concept of quantization.
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• Now lets apply this radical concept:

v2 =
n2~2

m2
er

2
=
kee

2

mer
=⇒ rn =

n2~2

mekee2
, n = 1, 2, 3

• Call the orbit with the smallest radius the Bohr radius (when n = 1):

a0 =
~2

mekee2
= 0.0529nm

Plug this all back into the energy equation to find:

En = −kee
2

2ao

(
1

n2

)
, n = 1, 2, 3, · · ·

or numerically:

En = −13.606eV

n2
, n = 1, 2, 3, · · ·

Now let’s find out the frequency of light emitted from a quantum leap:

f =
Ei − Ef

h
=
kee

2

2a0h

(
1

n2
f

− 1

n2
i

)

That looks familiar...
1

λ
=
f

c
=

kee
2

2a0hc

(
1

n2
f

− 1

n2
i

)
Plugging in all of our numbers:

kee
2

2a0hc
= 1.0973732× 107m−1 = RH

• Quantum mechanics had theoretically predicted the value of RH . At this point,
attempts to rescue classical physics were beginning to look hopeless.

• We see it again: integers describing physical reality–one of the key signatures of quan-
tum mechanics. This made most physicists uncomfortable, but also energized by the
revolutionary spirit in the air.
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A pivot towards formalization

• Classical physics had major holes in its attempt to describe our universe.

• Physicists resorted to a technique called quantization to try to patch these holes.

• Quantization worked so well that it started dominating physics.

• This patchwork isn’t professional, Bohr’s model had a major flaw–an electron traveling
in a circle is undergoing centripetal acceleration and thus should be radiating energy
and collapse into the nucleus. Bohr had to posit that it could only reach certain states
and not get any closer. Very sloppy if effective.

• Bohr’s model turns out to be just that, a model that gets correct results but doesn’t
exactly describe the true story.

• Also, classical physics still worked–mostly. Bohr posited that where quantum predic-
tions and classical predictions overlap, they should agree. This is called the corre-
spondence principal.

• Bohr’s work was further supported (10 years later) by de Broglie’s wave-particle duality
theory for matter. He proposed that the wavelength of matter is given by λ = h

mv
. If

we see each electron orbiting an atom as a standing wave with such a wavelength, then

2πrn = nλ
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and

2πrn =
nh

mv
→ mvrn =

nh

2π

This was Bohr’s prediction. Thus Bohr’s radical quantization of angular momentum
went hand in hand with de Broglie’s radical proposal that matter is a wave and a
particle all at once.

• The search was on for a more formal way to describe the theory.

Quantum Mechanics is born

At this point, we are settling down from our riotous state and learning to live with the reality
that our brains have deceived us about the true nature of reality. So lets accept that the
world is quantized at the very fundamental levels, and see what this implies.

• If particles are waves, how do we discuss their amplitudes and displacements like we
do for classical waves? We need some sort of wave function to do so, which we write
as Ψ.

• For light, the intensity of the wave is proportional to the square of the electric field.
The more intense the light, the more photons we can find, and so the number of photons
is proportional to the intensity is proportional to the square of the electric field (the
EM wave amplitude).

• Put another way, the square of the electric field amplitude is proportional to the
probability that we will find a photon at a certain region.

• We seek a matter wave such that Ψ2 is proportional the probability of finding an
electron at a certain place and time.

• Schrödinger found the equation that properly describes how these matter waves behave:

− ~2

2m

d2ψ

dx2
+ Uψ = Eψ

• This is called the Schrödinger equation.

• For most particles, we can separate the time-dependence so that

Ψ(r, t) = ψ(r)e−iωt

• This is a probabilistic equation, where the probability of finding a particle whose
wave is ψ within any given region of space is P (x, y, z)dV =| ψ |2 dV .

• What is matter then? A particle? A wave? Is ψ the true manifestation of matter?

• ψ is the true manifestation of matter.
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Heisenberg’s Uncertainty Principal

A statistical side effect of quantum mechanics is Heisenberg’s Uncertainty Princple:
Call the uncertainty of the measurement of a particles position as ∆x and ∆px, then quantum
mechanics requires that ∆x∆px ≥ ~

2
. In that momentum is related to energy, this result

restricts the accuracy of the Energy levels we can measure. For small groups of atoms this
isn’t a problem, but very large groupings of atoms clustered together result in very closely
spaced energy levels, getting so close that we would be better off of speaking of bands of
energy states rather than discrete spectrum.

A particle in an infinite well

Let’s find out how a single subatomic particle inside an infinite well behaves.

• Start with the Shrödinger equation:

− ~2

2m

d2ψ

dx2
+ Uψ = Eψ

.

• Think about the potential. The particle would have to have infinite energy to overcome
the infinite potential (this isn’t very realistic but can be a conceptual approximation
to a particle being trapped in a low electrical potential regions between two very high
electric potential regions in optoelectronics). Since the particle can’t have infinite
energy, we assume that it can’t exist in the region of infinite potential, and so its wave
function must go to zero on the borders.

• This simplifies the wave equation–we only have to look at the zero-potential region and
assume that the function goes to zero on the edges.

− ~2

2m

d2ψ

dx2
= Eψ
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d2ψ

dx2
= −2mE

~2
ψ ≡ −k2ψ where k =

√
2mE

~2

• This looks familiar from previous discussions we had on springs. Let’s assume that the
solution takes the form:

ψ(x) = A sin (kx)

• If the length of the zero-potential region starts from zero and goes to x = L, then we
require that sin(kL) = 0. Thus we require that kL = nπ. Quantization comes out of
the boundary conditions.

• Putting it all together, we find that:√
2mE

~2
L = nπ

2mE

~2
L2 = n2π2

E =
n2π2~2

2mL2
=

n2h2

8mL2
since ~ =

h

2π

Overall, the wave function can be written most simply as

ψ(x) = A sin
(nπx
L

)
The total probability over all space must be:∫ L

0

| ψ2(x) |=
∫ L

0

A2 sin2
(nπx
L

)
= 1

That is, the particle must have 100% probability to exist somewhere in the box.

1 = A2

∫ L

0

sin2
(nπx
L

)
= A2x

2
− A2 L

4nπ
sin
(nπx
L

)
|L0 =

L

2

so that

A =

√
2

L

• The probability of finding the particle at certain places inside the box depends on the
energy of the particle:
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• The n = 1 value corresponds to what is called ground state and anything with n > 1
is excited states.

• The expectation value of the position x is given by

〈x〉 =

∫ ∞
−∞

ψ∗xψdx

where ψ∗ is the complex conjugate of ψ, that is, if ψ = α + iβ then ψ∗ = α − iβ. See
Example 41.3 for a full derivation, but the result is that the expectation value for the
position is L/2. This makes classical sense (why?) but we need to remember that this
expectation value is a statistical result which can only be obtained by measuring
thousands of equivalent systems.

• Review examples in textbook on page 1227.

Particle in a finite well

A more realistic example involves a finite potential well. Solid state transistors, for example,
involves a mixing of substrates of materials with different compositions, such as Aluminum-
Galium-Arsenic layered with Galium-Arsenic. The former has a smaller band-gap (difference
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in energy between the valiance band and the conduction band) than the latter. The valiance
band represent the highest range of energies for a material in which electrons are typically
present. Electrons in this band are bound to atoms and don’t typically allow them to
“transfer” and so don’t conduct current. The next higher band of assessable energy states
is called the conducting band. If this band is very close to or intersects the valiance band,
then the material is a good conductor. If the band-gap between them is very large, then the
material is an insulator.

• The Shrödinger equation for this system is:

d2ψ

dx2
=

2m(U − E)ψ

~2

for the particle outside of the well.
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• Let’s assume that U > E so that the particle should be classically bound, then write
C2 = 2m(U − E)/~2 where the general solution might be

ψ = AeCx +Be−Cx

• This can’t work because it would explode infinitely. For x < 0, we have ψ = AeCx and
for x > L we have ψ = Be−Cx

• In between, for 0 < x < L, we have a general solution ψ(x) = F sin(kx) +G cos(kx)

• By matching boundary conditions, we can find the full probability wave.

• But note that there is a small but real chance that the particle will be found inside
the well. This is a new, and very strange concept called quantum tunneling.

• Examples of tunneling:

– Alpha decay: Unstable heavy nuclei sometimes release a helium nucleus (called
an alpha-particle–two neutrons and two protons). The unstable nucleus is the
equivalent of a finite potential well that the alpha particle can sometimes tunnel
through.

– Nuclear Fusion: How can free protons be brought so close together to form deu-
terium? The protons must tunnel through their repulsive barriers.

– Scanning Tunneling Microscopes: Voltage difference is applied across tip of mi-
croscope and material. The electron can tunnel through the “barrier” that is the
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space between the material and the probe–the closer they are, the more tunneling
will occur and so the resulting current indicates how far away that object is.

– Other examples will follow next week.

Harmonic Oscillator

The potential energy of a HO is

U =
1

2
kx2 =

1

2
mω2x2

where ω =
√
k/m. What will a quantized version of such a system look like?

Schrödinger’s equation for this system will be:

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ

The solution is ψ = Be−Cx2
where C = mω

2~ and E = 1
2
~ω. This corresponds to the

ground state of the HO. It can be shown that the energy levels for excited states are given
by,

En =

(
n+

1

2

)
~ω

Quantization of ElectroMagnetic Fields

When the EM field is quantized, it predicts an energy that looks as:

En =

(
n+

1

2

)
~ω

This is currently giving physics some problems...

1. Lightning produces a maximum air temperature on the order of 104 K whereas a nuclear
explosion produces a temperature on the order of 107 K. Use Wien’s displacement law
to find the order of magnitude maximum intensity wavelength and name the part of the
EM spectrum this belongs to.

Solution:

We recall that Wien’s displacement law relates temperature and maximum wave-
length:

λmaxT = (2.898e− 3) mK
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For the lightening,

λmax =
(2.898e− 3) mK

T
= (2.90e− 07) m

which is in the ultraviolet range. For the nuclear explosion:

λmax =
(2.898e− 3) mK

T
= (2.90e− 10) m

which is in the x-ray and gamma ray range.

2. Chapter 40–7: What is the surface temperature of Betelgeuse, a red giant star in the
constellation Orion which radiates at a peak wavelength of about 970 nm? Rigel radiates
with a peak wavelength of 145 nm. What is the surface temperature of each star?

Solution: Again using λmaxT = (2.898e− 3) mK, we have for Betelgeuse:

T =
(2.898e− 3) mK

λmax

= (2.99e+ 03) K

and for Rigel,

T =
(2.898e− 3) mK

λmax

= (2.00e+ 04) K

3. A simple pendulum has a length of 1.00 m and a mass of 1.00 kg. The maximum
horizontal displacement of the pendulum bob from equilibrium is 3.00 cm. Calculate the
quantum number n for the pendulum.

Solution: The change in energy of the pendulum can be found by looking at the
gravitational potential energy:

E = mg∆h = mgL (1− cos θ)

If the maximum horizontal displacement is 0.03 m , then the Pythagorean theorem
tells us that 1.00 m =

√
h2 + 0.032 m so that h =

√
12 − 0.032 = 0.9995. Then we

have
E = mg (1− 0.9995) = mg (0.0005) m = 0.0044 J

We quantize as follows:
E = nhf = 0.0044 J
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The frequency is

f =
1

2π

√
g

L
=

1

2π

√
9.8

1
= 0.4982 Hz

So that we have,

En = nhf = n ((6.63e− 34 Js) 0.4982) = 0.0044 J

Solving for n,

n = 13353331814153592332575263686656 = 1.34e+ 31

4. Two light sources are used in a photoelectric experiment to determine the work function
for a particular metal surface. When green light from a mercury lamp λ = 546.1 nm is
used, a stopping potential of 0.376 V reduced the photocurrent to zero. Based on this
measurement, what is the work function for this metal? What stopping potential would
be observed when using the yellow light from a helium discharge tube λ = 587.5 nm?

Solution: The stopping potential is the potential the experimenter provides in order
to overcome the kinetic energy of the electrons and prevent them from escaping the
plate. The photoelectric effect is described by:

Kmax + φ = hf

And so in this case, Kmax = 0.376eV = (6.02e− 20) J.

To find the frequency we must recall that c = λf and so f = z/λ = (5.49e+ 14) Hz
and hf = (3.64e− 19) J . Then,

φ = hf −Kmax = (3.04e− 19) J = (1.90e+ 00) eV

Where we have used that 1 eV = 1.602 × 10−19 J. Then we can predict that the
stopping potential needed for the helium discharge tube will be

Kmax = hf − φ =
hc

λ
− 1.9 eV = 2.13e− 01 eV

5. Calculate the de Broglie wavelength for a proton moving with a speed of 1.00×106 m/s.

Solution: The de Broglie wavelength for a particle is given as:

λ =
h

p
=

h

mv
= (3.97e− 13) m
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Where proton mass is 1.672× 10−27 kg.

6. Calculate the momentum of a photon whose wavelength is 4.00×10−7 m. Find the speed
of an electron having the same momentum as the photon.

Solution: Since λ = h/p then p = h/λ, and so the momentum of such a photon is:

p = (1.66e− 27) kg(m/s)

An electron having such a momentum would have a speed of:

p = mv → v =
p

m
=

(1.66e− 27) kg(m/s)

9.11× 10−31 kg
= 1.82e+ 03 m/s

7. Use the uncertainty principle to show that if an electron were confined inside an atomic
nucleus of diameter on the order of 10−14 m, it would have to be moving relativistically
whereas a proton would not.

Solution: The uncertainty principle tells us that ∆x∆px ≥ ~
2
. For this electron, the

best case scenario is the equality ∆xm∆v = ~/2. Using our book (or the internet)
to find the mass of an electron, and use ∆x = 10−14 we find:

∆v =
~

2∆xm
= (5.79e+ 08) m/s

Since the uncertainty exceeds the speed of light, we would know that we would have
to treat this a relativistic problem and thus we would have to use the relativistic
equation for momentum instead of the simplified version we use here. This gets
more complicated when it comes to the uncertainty principle and so we leave it at
that for this class.

For the proton, on the other hand,

∆v =
~

2∆xm
= (3.16e+ 05) m/s = (1.05e− 03) c

which is substantially smaller than c and so we likely don’t have a relativistic scenario.
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