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Objectives

Review Lorentz Coordinate Transforms and principles of
relativity

Be able to understand and perform Lorentz Velocity Transforms

Understand relativistic momentum

Understand relativistic work and energy
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Review: Galilean Relativity

“The laws of mechanics must be the same in all inertial frames of
reference.”

x ′ = x + ut

t ′ = t
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Relativity

The principle of relativity:
The laws of physics must be
the same in all inertial
reference frames.

The constancy of the speed
of light: The speed of light in
vacuum has the same value,
(2.99× 108) ms , in all inertial
frames, regardless of the
velocity of the observer or
the velocity of the source
emi�ing the light.
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Relativity and Time

We call the time measurement in the frame in which the event
happens and is at rest the proper time (the clock here is at rest
relative to the event) tp.

∆t =
∆tp√
1− u2

c2

≡ γ∆tp , γ ≥ 1

This is called Time Dilation. Moving clocks tick slower than clocks
at rest.

KEY
The shortest amount of time for an event is measured in the
proper-frame (the frame in which the event is at rest).
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Length Contraction

The Lorentz Factor:
γ =

1√
1− u2

c2

Length Contraction:

That being measured is at rest︷︸︸︷
∆x = γ

That being measured is not at rest︷︸︸︷
∆x ′

L =
Lp
γ

KEY
Objects are measured with longest length in their rest-frame.
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Lorentz Transforms

When motion is in x direction only:

x ′ = γ (x − ut) , y ′ = y, z ′ = z

If we look at the reverse transform:

x = γ
(
x ′ + ut ′

)
and plug one into the other, we find:

t ′ = γ
(
t − ux

c2

)
Implication: Not only do we have time dilation, but time and space
are tied together. Implication: The definition of simultaneous di�ers
between observers. If something is simultaneous in one frame, it
may not be so in another frame.
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Lorentz Velocity Transformations

The Lorentz Transforms between frame S and frame S’ where the
relative speed between the frames is v is:

x ′ = γ (x − ut)

y ′ = y

z ′ = z

t ′ = γ
(
t − ux

c2

)

These transforms are valid for infinitesimals as well:

dx ′ = γ (dx − udt)

dt ′ = γ

(
dt − udx

c2

)
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Lorentz Velocity Transformations

dx ′ = γ (dx − udt)

dt ′ = γ

(
dt − udx

c2

)

dx ′

dt ′
=

(dx − udt)(
dt − udx

c2
)

dx ′

dt ′
=

dx
dt − u

1− u
c2

dx
dt

→ dx ′

dt ′
=

vx − u
1− uvx

c2

In order to not confuse relative velocity with the velocity of an
object measured in frame S, write the relative velocity as u and the
velocity of a measured object as vx .
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Velocity transforms: example

Two spacecra� A and B are moving in opposite direction. An
observer on the Earth measures the speed of spacecra� A to be
0.750c and the speed of spacecra� B to be 0.850c. Find the velocity
of spacecra� B as observed by the crew on spacecra� A.

Identify u = 0.750c and vx = −0.850c such that

v ′x =
vx − u
1− vxu

c2
=
−0.850c − 0.750c

1− (−0.850c)(0.750c)
c2

= −0.977c
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Relativistic momentum and Newton’s Second Law

The requirements of conservation of momentum require that our
equation for momentum, p = mv is modified:

~p =
m~v√
1− v2

c2

= γm~v

This in turns modifies Newton’s Second Law (F in direction of v):

F =
d
dt

mv√
1− v2

c2

=
ma(√
1− v2

c2

)3

a =
F
m

(
1− v2

c2

) 3
2

What happens when v → c?
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Relativistic momentum: example

An electron, which has a mass of 9.11× 10−31 kg, moves with a
speed of 0.750c. Find the magnitude of its relativistic momentum
and compare this value with the momentum calculated from the
classical expression.

Classical:

p = mu = 9.11×10−31kg
(
0.750× 3.0× 108m/s

)
= 2.05×10−22kg·m/s

Relativity:

p =
mu√
1− u2

c2

= 3.10× 10−22kg ·m/s
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Relativity and Energy

Relativity plus conservation of momentum =⇒ p = γmv

Relativistic momentum =⇒ F = ma(
1− v2

c2

) 3
2

Finally, the work energy theorem implies that

K = W =

∫ x2

x1
Fdx → [Algebra and calc]→ (γ − 1)mc2

Dr. Jones Physics 280 Lecture 2



Relativity and Energy

Relativity plus conservation of momentum =⇒ p = γmv

Relativistic momentum =⇒ F = ma(
1− v2

c2

) 3
2

Finally, the work energy theorem implies that

K = W =

∫ x2

x1
Fdx → [Algebra and calc]→ (γ − 1)mc2

Dr. Jones Physics 280 Lecture 2



Relativity and Energy

Relativity plus conservation of momentum =⇒ p = γmv

Relativistic momentum =⇒ F = ma(
1− v2

c2

) 3
2

Finally, the work energy theorem implies that

K = W =

∫ x2

x1
Fdx → [Algebra and calc]→ (γ − 1)mc2

Dr. Jones Physics 280 Lecture 2



Relativity and Energy

There is a component, mc2 which is independent of velocity and is
thus called Rest Energy. Thus the total energy is:

E = K + mc2 = γmc2

What is the energy if the particle is at rest? With some algebra (see
textbook) we get an equation for energy:

E2 =
(
mc2
)2

+ (pc)2

when p = 0:
E = mc2

and when m = 0 (e.g. photons):

E = pc
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Relativistic energy: part 1

Physicists tend to find that it is easier to express energy in terms of
eV , the energy it takes to bring an electron across a potential of 1
Volt. Find the rest energy of a proton in units of electron volts.
Given: 1eV = 1.602× 10−19J, mp = 1.673× 10−27kg.

Ep = mpc2 = 1.673× 10−27kg
(
3.0× 108m/s

)
= 1.504× 10−10J

Ep = 1.504× 10−10J
(

1.00eV
1.602× 10−19J

)
= 938MeV
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Relativistic energy: part 2

If the total energy of a proton is three times its rest energy, what is
the speed of the proton?

E = 3mc2 = γmc2

γ = 3 =
1√

1− u2
c2

Solve for u:

9 =
1

1− u2
c2
→ u = 0.943c
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Relativistic energy: example part 3

For this particular proton, what is the momentum?

Recall that E2 = p2c2 +
(
mpc2

)2 and from the previous problem we
know that for this particular proton (not all protons) that
E = 3mpc2. An answer in units MeV/c is fine.

E2 = p2c2 +
(
mpc2

)2
=
(
3mpc2

)2
p2c2 = 8

(
mpc2

)2
p =
√
8
mpc2

c
=
√
8 (938MeV/c) = 2.65× 103MeV/c
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