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Newton proposed three “Axioms, or Laws of Motion”. The first is the most basic, and
has been paraphrased in some textbooks as simply saying that When a body is left
alone, it maintains a constant velocity. As Newton put it:

‘c Every body perseveres in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces impressed , ,
thereon.

Issac Newton

This law is perhaps partially attributable to Galileo Galilei who used the term in-
ertia as a name for the tendency of objects to resist a change in their state of motion,
or lack thereof. Newton improved upon Galileo’s work by associating inertia by as-
sociating the change in a state of motion with the concept of net forces acting on the
body. Newton mentions, for instance, that projectiles maintain a constant velocity in
their horizontal directions if we don’t consider “resistance of the air”, but fall towards
the Earth due to gravity.

Imagine you are driving down the I-76 and you take an exit ramp. You are going
around a corner a bit faster than you should, and you have something sitting on
your car’s dashboard. As you take the curved turn, it starts to slide. The state of
motion of that object is changing even though it seems there are no forces acting
on it. So what is going on?

It turns out that your frame of reference, which is to say, how you view the world

Frame. An Inertial Frame is a postulated sort of universal frame of reference,
or point of view, in which all objects only change their motion when forces are
acting upon them. Put a bit simplistically, it is a frame which itself is under no
state of acceleration relative to the rest of the universe.

For the problems we deal with in this chapter, we can set the Earth as being our
Inertial Frame, even though, realistically the Earth is itself accelerating relative
to the sun, local stars, the galaxy, and so on. We can ignore this fact for now.

Inertial Reference Frame N

»*

and the velocities and trajectories and forces around you, is not an Inertial .

IMAGINE YOU DROVE A FRIEND TO THE TRAIN STATION AND YOU CAN SEE THEM THROUGH
THE WINDOW AS THE TRAIN ACCELERATES FORWARD. THEY HAVE A SEAT WITH A TABLE, AND
AS THE TRAIN ACCELERATES, THEIR CELL-PHONE WHICH WAS ORIGINALLY RESTING ON THE TABLE
SLIDES BACKWARDS. ACCORDING TO YOUR FRIEND’S PERSPECTIVE, THE CELL PHONE HAS SEEM-
INGLY ACCELERATED BACKWARDS WITHOUT A CORRESPONDING NET FORCE. ACCORDING TO YOU,
THE CELL PHONE'S INERTIA CAUSED IT TO SLIDE BACKWARDS AS IT RESISTED THE ACCELERATION
OF THE TRAIN BECAUSE THE TABLE DIDN'T HAVE ENOUGH FRICTION TO COMPEL IT FORWARD.
You, STANDING ON EARTH, WOULD BE IN AN INERTIAL FRAME, WHILE YOUR FRIEND WHO IS on
an accelerating frame, is on a non-inertial frame where Newton’s laws don’t apply.

1 NEwWTON’s FIRST LAW

< Real world



2 NEWTON’s SECOND LAW

2.1 Statement of ...

Newton was rarely straight-forward, and states the second law as follows:

cc The alteration of motion is ever proportional to the motive force im-
pressed; and is made in the direction of the right line in which that force , ,
is impressed.

Issac Newton

It can be stated more clearly that the response of a body to a force, in an inertial
frame, is a change in the state of motion. By change of the state of motion we mean
that the velocity changes in either magnitude or direction, or both. We call such a
change acceleration.

Stated even more clearly, the acceleration of a body is proportional to the force
being exerted on it. Even more precisely, the acceleration is proportional to the net
force, the sum of all forces acting on the body, and along the same direction as the
net force.

As precisely as we can get is the following statement of Newton’s second law:

In an inertial frame, a net force acting on a body results in an acceleration of that
body which is equal to the net force divided by the mass of the body, or simply put:
Force equals mass times acceleration.

Newton’s Second Law

Fhet = ma

2.2 Examples of ...

Let’s consider two similar examples with very different outcomes. A ball is resting on
a table. What are the net forces acting on the ball? The gravitational force pulls the
ball downward, and the table is providing a support or normal force in the opposite
direction holding the ball up. The net force acting on the ball is zero since the normal
force upwards is balancing out the gravitational force downwards.

Now let’s suppose that a sudden draft blows the ball off the table (which of course
is a force unto itself). What are the forces acting on the ball as it falls to the ground?
There is only one such force- the gravitational force downward. Whenever there is
only one force acting on an object, the object can not have a net force of zero.
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Figure 2.1: Left: The ball is resting on the table such that the normal force of the
table holding the ball up cancels out the gravitational pull on the ball downwards,
and so we say that the net forces ) F = Fy — F;, =0 — Fy = F,. Right: The
ball is in free-fall and has only one force acting on it, thus the ball has a net force of
> F = F; = ma. The acceleration due to gravity on Earth is g = 79.85%. Drawing
the forces as vectors on the object is called a Force diagram or Free body diagram.

Mechanical Equilibrium

An object is in mechanical equilibrium if the sum of all the forces acting on the
object is zero, that is, if all the forces acting on an object cancel out, or if there
are no forces acting on the body. > F = 0.

2.3 Quantitative Solutions

Example One: Consider a block sitting on an inclined plane that has an angle of 30°.
There is enough friction between the block and the inclined plane that the block will
not slide down. The mass of the block is 3 kilograms. What is the force of friction
and the normal force? Given: g = 9.8 s%

STEPS TO SOLVE 2ND LAW PROBLEMS:
e Draw a rough sketch of the problem.
e Label the sketch with forces. Every force should get a corresponding vector.

e Choose how to coordinate your axis system. It is generally easiest to line the
x, y axis so that most of the forces are parallel with the x or y axis.

e For those forces which aren’t parallel to the x or y axis, we have to decompose
them into vectors which are parallel to the x and y axis such that the sum of the
decomposed vectors adds up to the original vector. It will always be easier
to do this by drawing a second picture which zooms in on this vector.

e Now you can find the sum of all vectors in the = direction and the y direction.
By Newton’s laws, the sums > F,, and > F,, should add to zero if the system
is under equilibrium. If the sum of the vectors don’t add to zero, then there will
be a net acceleration in that direction.
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In the sketches above at left, we draw a simple outline of the ramp and weight
structure. The angle the ramp makes with the floor is «. In the middle sketch, we
focus in on the weight and label the forces. We know where to put them as follows:

How TO KNOW WHERE TO PUT THE FORCES:

e Normal forces are forces that hold up masses, for example, when you stand
on the floor you are pushing down with your weight, and the floor is push-
ing back. This pushing back is called a “Normal Force” and is labeled Fi. A
Normal Force always points in a direction perpendicular to the surface
of contact. Thus the normal force in this case should be perpendicular to the
ramp.

e Friction forces always point in the opposite direction of motion, or when there
is no motion, in the opposite direction of the motion that would occur were there
no friction. In this case, if there were no friction, the block would slide down
the ramp, so the friction points up the ramp. We label this force f.

e Gravity always points towards the center of the Earth and is labeled F7.

We have chose our zy axis so that the x axis is parallel to the ramp and points up
the ramp (and thus parallel to the friction force). The y axis is automatically perpen-
dicular to this axis, but we have a choice to have it pointing upwards or downwards,
and we choose to point it upwards so that it is parallel with the Normal Force.

But we have a problem: The gravitational force is not parallel to either of our axis.
We have to break this up into components in the = and y direction. By some geometry
(similar triangles or compliments of a right angle), we find the angle between F; and
the y-axis is « as well, and so we find:

Fy o =mgsin(a), Fgy = mgcos(a)

Now that we have all of our forces into their « and y axis components, we can apply
Newton’s Second Law:

ZF_qc = f—Fysin(a) =0
Y F, = Fx—Fycos(a)=0



We knew that both of those net force equations were equal to zero because the
block is in equilibrium, that is, there is no change to its state of motion. We can thus
solve for the friction force and the normal force:

f—mgsin(a) =0 —
f=mg=3.0ke (9.8 892) sin(30) = 14.7N

Where we know that this is pointing up the ramp based on our sketch, and we recall
that the Newton is a derived SI unit:

As for the normal force:
Fy —mgcos(a) =0 —

Fy = mgcos(a) = 3.0kg (9.8 EQ) cos(30) = 25.5N
s
As a check, we can find the resultant force of these two forces, where we find that

14.72 4 2552 = 294N = F,

Example One (b): What is the coefficient of static friction from the previous
example?

Static and Kinetic Friction N

It has been experimentally found that the force of friction can be closely approxi-
mated as being proportional to the normal force between the object experiencing
friction and the surface on which it is experiencing friction. That is,

f=uFn

where p is a constant that depends on the types of materials involved. But in

fact we have two different types of friction, static and dynamical. Recall from
a previous lecture that we had dynamical mechanical equilibrium (where the net
forces were zero but the object had a constant straight-line motion) and static
mechanical equilibrium (where the net forces were zero and there was no veloc-

ity.




Static and Kinetic Friction N

Static friction is written fs = s Fv and is the friction experienced by an object
which is being pushed or pulled against a surface, but which is not in motion
because the friction forces are too strong. Try pushing your hands very hard
against each other, so hard that when you try to slide them, they don’t move.
That is static friction. Eventually if you push hard enough, they will suddenly
slide against each other-then they will be experiencing Kinetic friction, which
is written f = ugF. Kinetic friction is weaker than static friction, which is
why when your hands suddenly slide against each other, it is a very rapid and
sudden motion-this is the basics behind why earthquakes are so deadly.

It will always be the case that for every material:

M < Ws

\. J

In the previous problem, we found the f = 14.7 N and Fiy = 25.5 N, and so we
have

[ =nusbn
14.7N = pus25.5N

15 = 0.576

If the block had been in motion, these would have been the numbers for .

Example Two: In the previous problem, suppose there is now no friction. What
is the net acceleration of the block?

<ty
\\\ FN = +.I‘

In this case, the sum of the forces is:

ZF = —mgsin(a) =?



ZFy = Fy —mgcos(a) =0

We know that the forces in the y direction will balance out since we assume that
ramp isn’t collapsing, but now that there is no friction, we physically know that the
block will slide down the ramp. Thus we apply Newton’s second law:

ZFx = —mgsin(a) = ma
We can divide m out of both sides and find that the acceleration is
m
a= —gsin(a) = —4.9—
S
Which confirms our physical intuition (not to mention common sense) that the block

will slide down the ramp. But note that it isn’t accelerating as fast as the gravitational
acceleration.

Example 3: Suppose we have a weight with mass M = 5 kg that is on a ramp. It
is connected to a mass of weight m = 2 kg by a rope and pulley system. What is the
acceleration, and in what direction, of the two masses?
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We can treat the two masses as two separate problems. The simplest scenario is
the hanging mass, where all of the forces are acting in a single direction:

ZFy:T'—mg:ma

We don’t know what the tension will be, yet, but we do know that tension in a
rope is uniform throughout the rope so that T = T". Also, since the masses are tied
together, they share the same acceleration, a.

For the larger block, we can do the same decomposition of the gravitational force
into vectors parallel and perpendicular to the slope as we did in the previous prob-
lems. Doing so yields the following two second law equations:

ZF =T — Mgsin(a) = Ma
M

ZFy =Fn — Mgcos(a) =0
M



Notice that the sum of the forces along the ramp for this mass results in Ma
not ma, since the mass of this block is different. Also notice that the sum of the
forces perpendicular to the ramp are zero, as they should be. We thus have the three
equations:

T — Mgsin(a) = Ma
T—mg = ma
Fn — Mgcos(a) =0

This is wrong!

To see why this is wrong, we have to remember that the two masses are tied
together, so that they move in the same direction. Thus they should have the same
sign for that direction. If we set going up the ramp as positive for mass M, then we
need to also set going downwards as positive for the mass m. This has to be done to
ensure that the acceleration can be solved properly.

Thus if we set down as positive for the mass m, then the net force equation should
be

—T +mg =ma

The two equations we are concerned with are now:

-T+mg = ma
T — Mgsin(a) = Ma

We can add these two equations together to get:

(m — Msin(a))g = (m+ M)a
Then we have

m — M sin(«) m
a . g 0.782
This tells us that the acceleration will be in the direction of down the ramp for
mass M, since the sign is negative, and upwards for mass m. This sort of makes sense
if we consider that M > m, but this wouldn’t necessarily be the case for a smaller
angle. In fact, the acceleration would be zero for the angle at which m — M sin(a) =
0. We can solve for this by finding,

= sin~! @) = 23.6°
« Sin (M .

Or we could keep the same angle but change one of the masses, say m. The two
blocks would balance out at a = 0, so that

m' —5kgsin(30°) =0 — m' =25kg



3 NEWTON’S THIRD LAW

cc To every action there is always opposed an equal reaction. , ,

Issac Newton

In a sense we have already been talking about Newton’s third law when we were
discussing normal forces, such that of a table holding a block or a ball up. The table is
exerting a reacting force against the downward force of the weight of the ball. This is
an equal and opposite force. When you push against a wall, the wall is pushing back
with equal force.

Even when a block is on the ramp, the Normal force is an equal and opposite
force. It is only that in such cases the component of gravity directed perpendicular to
the surface of the ramp is not as great as it would be if the block were simply resting
on a flat surface.

You are yourself exerting an equal an opposite force on the Earth. While the Earth
is pulling you downwards, you are pulling it upwards. But because the Earth is so
unimaginably more massive than you are, we can correctly ignore your pull on the
Earth, but you can never ignore the Earth’s pull on you.

Newton’s third law has some deeper implications that we’ll get to in the next
lectures.



