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Abstract. Though this report presents an unoriginal derivation of Stirling’s
equation, it is useful to have it cogently presented.

1. Cowboy mathematics

As a physicist, one often disregards the formalities of mathematics which can
hinder ones investigations just as often as they can help. In this section, we present
an informal rough derivation of Stirling’s formula. Consider that

(1.1) ln(n!) =
n∑

k=1

ln(k).

Multiply both sides by ∆k, so,

(1.2) lim
∆k→0

n∑

k=1

ln(k)∆k =

∫

ln(k)dk = k ln(k) − k

Now of course, in our sum ∆k = 1, but the relative size of ∆k becomes smaller
as n → ∞, so if we write,and so we find loose enough reason to approximate, for
n ≫ 1,

(1.3) ln(n!) ≈ n ln(n) − n

2. The legal way I: buddy formulas and functions

Beyond undergraduate applications, the previous method does not provide a
satisfactory understanding of Stirling’s approximation. Following [1], we proceed
to demonstrate a formal derivation.

2.1. Bernoulli Numbers. We can define a set of numbers, the so called Bernoulli
Numbers, via the equation,

(2.1)
x

ex − 1
=

∞∑

n=0

Bn

n!
x2

Complex analysis allows us to extract the Bn ∋

(2.2) Bn =
n!

2πi

∮

C

1

ez − 1

dz

zn

We can construct a contour which avoids the central pole (wrapping over the posi-
tive real axis, around a clockwise infinitesimal circle centered at the origin, and back
along the positive real axis to rejoin the the main contour of clockwise orientation.
We then have,

(2.3) Bn =
n!

2πi
(−2πi)

∑

p

Res[±p2πi]

where

(2.4) Res(f ; z0) = lim
z→z0

1

(m − 1)!

dm−1

dzm−1
[(z − z0)

mf(z)]
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With an application of l’Hopital’s rule,

(2.5) lim
z→p2πi

z − p2πi

ez − 1
= lim

z→p2πi

1

ez
= 1

Thus we note that the odd residues beyond one will cancel each other out

(2.6) Bn =
n!

2πi
(−2πi)2

∞∑

p=1

1

pn(2πi)n
= − (−1)n/22n!

4π2

(
∞∑

p=1

p−n = ζ(n)

)

For example, B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, and so on.
Bernoulli functions are derived in the same way, defined by

(2.7)
xexs

ex − 1
=

∞∑

n=0

Bn(s)
xn

n!

This is easily solved by expanding the extra exs factor and relating the results to
the previous results for the Bernoulli numbers, i.e.,

(2.8) Bn(s) =
n!

2πi

∮
ez

ez − 1

dz

zn
=

n!

2πi

∮
1

ez − 1

(
1

zn
+

s

zn−1
+

s2

2!zn−2
+ · · ·

)

dz

For example,

(2.9) B3(s) = B3 + B2
3!

2!
s + B1

3!

1!2!
s2 + s3 3!

0!3!
B0 = s3 − 3

2
s2 +

1

2
s

2.2. Euler-Maclaurin Integration Formula. To start,

(2.10)

∫ 1

0

f(x)dx =

∫ 1

0

f(x)B0(x)dx

It is also obvious that B′

1(x) = B0(x) = 1 so that,

(2.11)

∫ 1

0

f(x)dx = f(1)B1(1) − f(0)B1(0) −
∫ 1

0

f ′(x)B1(x)dx

Carrying on and seeing that B2n(1) = B2n(0) = B2n and B2n+1(1, 0) = 0, we
would find,
(2.12)
∫ 1

0

f(x)dx =
1

2
[f(1)+f(0)]−

q
∑

p=1

1

(2p)!
B2p[f

(2p−1)(1)−f (2p−1)(0)]+
1

(2q)!

∫ 1

0

f (2q)(x)B2q(x)dx

The transform x → x + 1, x + 1 → x + 2 ,etcetera, yields,
∫ n

0

f(x)dx =
1

2
(f(0) + f(n)) +

n−1∑

k=1

f(k)(2.13)

−
q
∑

p=1

1

(2p)!
B2p[f

(2p−1)(1) − f (2p−1)(0)] +
1

(2q)!

∫ 1

0

B2q(x)

n−1∑

χ=0

f (2q)(x + χ)dx

2.3. Gamma, Digamma, Polygamma Functions.

(2.14) z! = zΓ(z) = lim
n→∞

n!

(z + 1)(z + 2) · · · (z + n)
n2

(2.15) ln(z!) = lim
n→∞

(

ln(n!) + z ln(n) −
n∑

k=1

ln(z + k)

)

∋

(2.16)
d

dz
ln(z!) ≡ F (z) = lim

n→∞

(

ln(n) −
n∑

k=1

1

z + k

)
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2.4. Beta Function and the Legendre Duplication Formula. Consider the
fact that,

(2.17) m!n! = lim
a2

→∞

∫ a2

0

e−uumdu

∫ a2

0

e−vvndv

When we transform to polar coordinates, we have,

(2.18) m!n! = (m + n + 1)!2

∫ π/2

0

cos2m+1 θ sin2n+1 θdθ

The beta function is so defined as,

(2.19) B(m + 1, n + 1) ≡ 2

∫ π/2

0

cos2m+1 θ sin2n+1 θdθ =
m!n!

(m + n + 1)!

With t = cos2 θ, we have

(2.20)
m!n!

(m + n + 1)!
=

∫ 1

0

tm(1 − t)ndt =
︸︷︷︸

t=x2

2

∫ 1

0

x2m+1(1 − x2)ndx

From these we can obtain the Legendre duplication formula, where we start with,

(2.21)
z!z!

(2z + 1)!
=

∫ 1

0

tz(1 − t)zdt =
︸︷︷︸

t=(1+s)/2

2−2z

∫ 1

0

(1 − s2)zds

From the definition of the Beta function, we have,

(2.22)
z!z!

(2z + 1)!
= 2−2z−1 z!(− 1

2 )!

(z + 1
2 )!

It is easy to show that (− 1
2 )! =

√
π. Multiplying through equation 2.22 by z + 1

2 ,
we have,

(2.23) z!(z − 1

2
)! = 2−2z

√
π(2z)!

3. The legal way II: taking it home

The application of the Euler-Maclaurin Integration Formula to the function
∫

∞

0

dx

(z + x)2
=

1

z

and recalling the Polygamma function, we know that,

(3.1)
1

z
=

1

2z2
+ F 1(z) −

∞∑

n=1

B2n

z2n+1

Which is to say,

(3.2)
d

dz
F (z) =

1

z
− 1

2z2
+

∞∑

n=1

B2n

z2n+1

Which is also to say, after some integration,

(3.3) ln(z!) = ℵ +

(

z +
1

2

)

ln z − z −
∫ ∞∑

n=1

B2n

2nz2n
dz
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We can solve for ℵ by using the Legendre duplication formula in 3.3 and taking
z → ∞. In this sense, we will proceed but ignore all pieces on the order of z−1 or
less, so that,

ln(z!) + ln((z − 1

2
)!) = −2z ln(2) +

1

2
ln(π) + ln((2z)!)

= 2ℵ+

(

z +
1

2

)

ln(z) − z + · · · + z ln(z(1 − 1

2z
)) − z +

1

2
+ · · ·

= 2ℵ+

(

2z +
1

2

)

ln(z) − 2z + · · ·

= −2z ln(2) +
1

2
ln(π) + ℵ +

(

2z +
1

2

)

ln(2z)− 2z + · · ·

Here we must detail the disappearance of the 1/2:

(3.4) z ln(1 − 1

2z
) = z

(

−1

2z
− 1

2!

(
−1

2z

)2

+ · · ·
)

→
︸︷︷︸

z→∞

−1

2

Now we can cancel out what we may cancel out and separate ln(2z) = ln(2)+ln(z),
finally taking the limit of z,

(3.5) ℵ =
1

2
ln(2) +

1

2
ln(π) =

1

2
ln(2π)

At last, we have

(3.6) ln(z!) =
1

2
ln(2π) +

(

z +
1

2

)

ln(z) − z +
1

12z
− 1

360z3
+ · · ·

Finally, by noting for example that,

(3.7) e1/12z = 1 +
1

12z
+

1

2!

(
1

12z

)2

+ · · ·

we also have,

(3.8) z! =
√

2πzz+1/2e−z

(

1 +
1

12z
+

1

288z2
+ · · ·

)
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