
THE PFAFFIAN AND THE WEDGE PRODUCT

TIMOTHY JONES

The following problem demonstrates the relation of the Pfaffian with the wedge
product: Find an ω ∈ Alt2R

4 ∋ ω ∧ ω 6= 0
Based on definitions of the wedge product,

ω = ζije
i ∧ ej i, j = 0 · · · 3

we have

ω∧ω =
(

ζije
i ∧ ej

)

∧
(

ζabe
a ∧ eb

)

=





∑

σ∈S(p,q)

sign(σ)ζσ(i)σ(j)ζσ(a)σ(b)



 e0∧e1∧e2∧e3

Combination Sign
(0,1)(2,3) + 1
(0,2)(1,3) -1
(0,3)(1,2) +1
(1,2)(0,3) +1
(1,3)(0,2) -1
(2,3)(0,1) +1

One explicates this and finds,

ω ∧ ω = (2ζ01ζ23 − 2ζ02ζ13 + 2ζ03ζ12) e0 ∧ e1 ∧ e2 ∧ e3

We might stop here, and simply search for a combination of coefficients so that the
above product is not zero, but we must note that the combination is suggestive
of Sarrus’s scheme in that the ζ are multiplied with members of their same diag-
onal, via Sarrus’s scheme, but with the negative counterparts not included in the
multiplication. Consider:

ζ̂ =









0 ζ01 ζ02 ζ03

−ζ01 0 ζ12 ζ13

−ζ02 −ζ12 0 ζ23

−ζ03 −ζ13 −ζ23 0









The mechanisms of the wedge product prefactor coupling and the determinant
formation are suggestively similar. It is one of the greatest sadnesses in mathemat-
ics that Sarrus’s scheme does not extend beyond three dimensional arrays. The
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determinant is instead found by Laplace’s theorem, as
∣

∣

∣

∣

∣

∣

∣

∣

0 ζ01 ζ02 ζ03

−ζ01 0 ζ12 ζ13

−ζ02 −ζ12 0 ζ23

−ζ03 −ζ13 −ζ23 0

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(1+3)ζ02

∣

∣

∣

∣

∣

∣

−ζ01 0 ζ13

−ζ02 −ζ12 ζ23

−ζ03 −ζ13 0

∣

∣

∣

∣

∣

∣

+ · · · =

(

ζ2
02ζ

2
13 − ζ2

12ζ
2
03 + ζ2

23ζ
2
01

)

− 2ζ03ζ12ζ13ζ02 − 2ζ23ζ01ζ13ζ02 + 2ζ23ζ03ζ01ζ12 =

= (ζ01ζ23 − ζ02ζ13 + ζ03ζ12)
2

Does this then suggest that

det(ζ̂) =
∑

σ∈S(p+q)

sign(σ)

p+q
∏

i=0

ζ̂iσ(j) =





1

p!q!

∑

σ∈S(p+q)

sign(σ)ζσ(i)σ(j)ζσ(a)σ(b)
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?

At this point, we investigated further and found a reference on Wikipedia (of course)
regarding the Pfaffian in relation to the wedge product. We also consulted with our
colleague Daniel Cross who confirmed that this was indeed the right path. Further
investigation brought us into consideration of the extensive work on determinants
by Thomas Muir1, and we wish to take the reader along this path to show how
indeed the above equation is true via Muir’s work.

A determinant can be defined by use of minors, e.g.

∆ = (−1)p+1ap1Ap1 + (−1)p+2ap2Ap2 + · · · + (−1)n+papnApn

If we switch apr → aqr, then the determinant of such will have two identical rows
and thus be zero. This allows us to find that when we multiply a matrix by its
adjugate,

det(A|Aij |) =

∣

∣

∣

∣

∣

∣

∣

∣

A 0 0 · · · 0
0 A 0 · · · 0
0 · · · · · · · · · 0
0 0 0 · · · A

∣

∣

∣

∣

∣

∣

∣

∣

= |A|n

Thus the determinant of the adjucate is the determinant of An−1. Now to get to
our next point, we have found the fastest path is a short proof by S. Parameswaran
published in The American Mathematical Monthly (Vol. 61, No. 2. (Feb., 1954), p.
116). We recreate the proof in whole here. For n even, we define the determinant
of our matrix to be,

∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Then ∆n−2 can be defined as the minor of

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

. Parameswaran next notes

that,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0
0 1 · · · 0

a31 a32 · · · a3n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A21 · · · An1

A12 A22 · · · An2

A13 A23 · · · An3

· · · · · · · · · · · ·
A1n A2n · · · Ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

A11 A21

A12 a22

∣

∣

∣

∣

∆n−2
n

∆n−2∆
n−1
n =

∣

∣

∣

∣

A11 A21

A12 a22

∣

∣

∣

∣

∆n−2
n

1A Treatise on the Theory of Determinants
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We now rejoin Muir where we write this generically as,

ArrAss − ArsAsr = ∆rs,rs∆n

For zero-axial skew-symmetric determinants, the left side simplifies to A2
rs. With

use of this identity, we can apply Laplace’s theorem again and write that

∆1/2 = (−1)r
{

ar1A
1/2
1r,1r − ar2A

1/2
2r,2r + · · ·

}

≡ ff(a1 2n) =| |a1 2n| =

| a12 a13 · · · a1n

a23 · · · a2n

a3n · · ·
· · ·

∣

∣

∣

∣

∣

∣

∣

∣

The latter three being various notations, according to Muir, for the Pfaffian (though
Wikipedia suggest the modern notation is simply Pf()). To bring this all home, we
finally note that for our given four dimensional array,

(−1)r
{

ar1A
1/2
1r,1r − ar2A

1/2
2r,2r + · · ·

}

=

ζ01

√

∣

∣

∣

∣

0 ζ23

−ζ23 0

∣

∣

∣

∣

− ζ02

√

∣

∣

∣

∣

0 ζ13

−ζ13 0

∣

∣

∣

∣

+ ζ03

√

∣

∣

∣

∣

0 ζ12

−ζ12 0

∣

∣

∣

∣

=

ζ01ζ23 − ζ02ζ13 + ζ03ζ12

This confirms our suspicion, and generically we write2:

ωn

n!
= ff(ζ̂)e1 ∧ e2 ∧ · · · ∧ e2n

An example of such a matrix would be the electromagnetic variable matrix seen in
electrodynamics3.

2See for example http://en.wikipedia.org/wiki/Pfaffian
3See for example page 60 of Greg Naber’s Topology, Geometry, and Gauge Fields: Interactions


