
Homework One

Student: Timothy Jones
Math 723: Mathematics of Neuroscience

Professor: Medvedev
Spring 2008



Mathematics of Neuroscience

1.1.

Follow the lines of the example analyzed in Sec. 3.2 and 3.3 in the handout (Elements of
the theory of differential equations) to analyze the system of equations of motion of a pendulum:
{

ẋ = y,
ẏ = − sin(x)

(1) In particular,

a. Use the graph of the potential energy U(x) = 1 − cos(x) to construct the phase plane of (1).

Given a system ẍ = − sin(x), we can write an equivalent system of two equations:

{

ẋ = y,
ẏ = − sin(x)

In general, when ẍ = f(x), x ∈ R, we have kinetic energy given by T (ẋ) = 1
2 ẋ2

and potential energy U(x) = −
∫ x

x0

f(ζ)dζ. In our current case,
∫ x

x0

− sin(ζ)dζ =

cos(ζ) |xx0
. We choose x = 0 to be our reference point for the potential energy,

whereby U(x) = 1 − cos(x) and our total energy is E = y2

2 + 1 − cos(x).

Figure 1.1. Top graph shows the potential energy, bottom graph
the phase portrait for x verses y. The color regions correspond to
the potential energies as found in the phase portrait.
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Below we include the maple code used to generate the above graphs:

>plot([1-cos(x), 1+(1/2)*1.7^2-cos(20), 1+(1/2)*1.8^2-cos(20), \\

1+(1/2)*1.9^2-cos(20), 2, 1+(1/2)*1.3^2-cos(1/6)], x = -3*Pi .. 3*Pi)

> with(DEtools);

> EQ1 := diff(x1(t), t) = x2(t); EQ2 := diff(x2(t), t) = -sin(x1(t));

> DEplot([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 10, x1 = -3*Pi .. 3*Pi,\\

x2 = -10 .. 10, title = ’Spiral*stable*point’, arrows = medium)

> part1 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 150,

[[x1(0) = 5*Pi, x2(0) = -0.1e-1]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part15 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 150,

[[x1(0) = -5*Pi, x2(0) = 0.1e-1]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part2 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 20, x2(0) = -1.9]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part3 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 2*Pi+1, x2(0) = 1.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part4 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -20, x2(0) = 1.9]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part5 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -2*Pi-1, x2(0) = 1.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part6 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -1, x2(0) = 1.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part7 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 20, x2(0) = -2.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part8 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -20, x2(0) = 2.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part9 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 20, x2(0) = -3.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part10 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -20, x2(0) = 3.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part11 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 20, x2(0) = -2.7]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part12 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 2*Pi+1/6, x2(0) = 1.3]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part13 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = -2*Pi-1/6, x2(0) = 1.3]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> part14 := phaseportrait([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 100,

[[x1(0) = 1/6, x2(0) = 1.3]], stepsize = .1, x1 = -3*Pi .. 3*Pi, x2 = -5 .. 5);

> display([part1, part2, part4, part7, part8, part9, part10, part11,

part12, part13, part14, part15])
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b. Locate the fixed point(s). Linearize (1) around the fixed points.

Sketch the phase portraits for the linearized systems and compare them with the phase portrait of (1).

State if the Hartman-Grobman theorem applies to the linearized systems.

Discuss stability of the fixed points.

We write

~̇x = ~F (~x) =

{

ẋ1 = x2,
ẋ2 = − sin(x1)

The fixed points are where ~F (~x) = 0, which we write as ~F (~̄x) = 0 for the fixed
points ~̄x. It is most clear that ~̄x must take the form (x̄1, 0 since ẋ1 = x2 = 0. Our
other equation, ẋ2 = − sin(x̄1) is satisfied for x1 = nπ, n ∈ Z. Thus we will have
fixed points at all points that satisfy x̄ = (nπ, 0), n ∈ Z.

We now introduce the typical change of coordinates, ~ζ = ~x − ~̄x, so that ~̇ζ = ~̇x.
The Taylor expansion is

~̇ζ = F (~̄x) + DF (~̄x)ζ̂ + O(ζ2) ≈ DF (~̄x)ζ̂

With this linearization we can compute the eigen values of the linearized matrix:

DF (~̄x) =

(

0 1
− cos(nπ) 0

)

=























(

0 1
−1 0

)

n even =⇒ λ2 + 1 = 0, λ = ±i

(

0 1
1 0

)

n odd =⇒ λ2 − 1 = 0, λ = ±1

Thus we see that the Hartman-Grobman theorem does not apply to the n-even
case, but does to the n-odd case.

For n-even we have the following eigenvalue and eigenvector combination:























(

−i 1
−1 −i

) (

x1

x2

)

=

(

0
0

)

for λ1 = i ⇒ E1 =

(

1
i

)

(

i 1
−1 i

) (

x1

x2

)

=

(

0
0

)

for λ2 = −i ⇒ E2 =

(

1
−i

)

We can confirm these are correct by noting that DF (~̄x) = EDE−1, i.e.,
(

0 1
−1 0

)

=

(

1 1
i −i

) (

i 0
0 −i

) (

1
2 − i

2
1
2

i
2

)

We note that the Wronskian of E is not zero, and so these solutions are linearly
independent. We have solutions of the form ~x = Eie

λit, specifically,

X1 =

(

1
i

)

eit, X2 =

(

1
−i

)

e−it

The Wronskian is,
∣

∣

∣

∣

eit e−it

ieit −ie−it

∣

∣

∣

∣

= −i − i = −2i

which is never zero, so the above solutions form a fundamental set of solutions, and
our general solution is

X = c1X1 + c2X2 = c1

(

1
i

)

eit + c2

(

1
−i

)

e−it
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In order to obtain more realistic solutions, we can take one of the solutions and
take its real and imaginary values:

X1 =

(

1
i

)

eit = X1 =

(

1
i

)

(cos t + i sin t) =

(

cos t
− sin t

)

+ i

(

sin t
cos t

)

Again we apply the Wronskian test:
∣

∣

∣

∣

cos t sin t
− sin t cos t

∣

∣

∣

∣

= 1

Hence our general solution can now be written:

X = α1

(

cos t
− sin t

)

+ α2

(

sin t
cos t

)

Hence we see that our fixed point is a “center”. All that remains is for us to apply
initial value conditions.

We can use this information to sketch the phase portraits, but instead we wish
to use the method used in the previous section. With the linearized equations, we

now have U(x) = −
∫ x

x0

ζdζ =
−x2+x2

0

2 . The resulting graph will be quite similar to

that of the original at the center, but in this case the potential is infinite and all
“particles” would be trapped in a cycle. x
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Figure 1.2. The linearized system (left) and the original system
(right) are similar only locally for ~̄x = (nπ, 0), n ∈ Z even. In the
margin we have compared the potential of the linearized system
(red) and the original system (green) which are similar only locally
for points very near ~̄x = (0, 0).

The odd case follows similarly. As before we note that DF (~̄x) = EDE−1, i.e.,
(

0 1
1 0

)

=

(

1 −1
1 1

) (

1 0
0 −1

) (

1
2

1
2

− 1
2

1
2

)

where again the Wronskian is non-zero, affirming that we have a fundamental set
of solutions. Furthermore, our case is made easier by the fact that these solutions
are all real. Our solution thus takes the form,

X = c1X1 + c2X2 = c1

(

1
1

)

et + c2

(

−1
1

)

e−t

This suggest an exponential growth in the direction of (1, 1) and and exponential
decay in the direction of (−1, 1) which is indeed the case.

Finally, we include the maple code used to create these figures:
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Figure 1.3. The linearized system (left) and the original system
(right) are similar only locally for ~̄x = (nπ, 0), n ∈ Z odd.
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Figure 1.4. The linearized system (red) and the original system
(green) are similar only locally for ~̄x = (nπ, 0), n ∈ Z odd. Here
we have reset our potentials so that each match up: 1− cos(x) and
(

π2

2 − (x−π)2

2

)

− π2

2 + 2.

> EQ1 := diff(x1(t), t) = x2(t); EQ2 := diff(x2(t), t) = -x1(t);

> with(DEtools); with(plots);

> v := 1; DEplot([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 10,

x1 = -3*Pi .. 3*Pi, x2 = -10 .. 10, arrows = medium);

> EQ1 := diff(x1(t), t) = x2(t); EQ2 := diff(x2(t), t) = x1(t)

> plot01 := DEplot([EQ1, EQ2], [x1(t), x2(t)], t = 0 .. 10,

x1 = -3*Pi .. 3*Pi, x2 = -10 .. 10, arrows = medium);

> plot02 := plot(x, x = -3*Pi .. 3*Pi, y = -10 .. 10, color = blue);

> plot03 := plot(-x, x = -3*Pi .. 3*Pi, y = -10 .. 10, color = green)

> display([plot01, plot02, plot03])

> plot({1-cos(x), (1/2)*Pi^2-(1/2)*(x-Pi)^2-(1/2)*Pi^2+2},

x = Pi-3.5 .. Pi+3.5, y = 0 .. 2)

Stability: Let the linearization of our system be written ẋ = Ax. We now need
to apply the Lyapunov stability criteria for linearized systems. That is, if there
exists two positive-definite matrices P > 0 and Q > 0 so that AT P + PA + Q = 0,

[6]
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then the system defined by A is stable. This is shown in many text, but we follow
Nonlinear Systems by Shankar Sastry. The Lyaponov function we would use is
V (z) = xT Px. Lyaponov’s direct method requires that V (x) is a positive definite

function and V̇ (x) = ∇V · f = V̇ (x(t)) is a negative definite function. We have

the requirement that dV (x)
dt

= ẋT Px + xT P ẋ = (Ax)T Px + xT P (Ax) = xT (AT P +

PA)x = xT (−Q)x, where, iff Q is positive definite, V̇ is negative definite as required
for stability.

It is shown that we can find a P given a Q, via the equation P =
∫

∞

0
(eAτ )T QeAτdτ .

We will instead consider our two matrices in question in a simpler way.
Positive definite matrices of dimension two have, amongst other properties: Q =

QT , ∀ x ∈ R
n, and f(x) = xT Qx is a positive definite function, i.e. f(x) ≥ 0.

Thus a positive definite function P has the form where
(

p11 p12

p21 p22

)

where it can be shown that we require p11 > 0, p12 = p21, p22 >
p2

12

p11

. Thus we have

(

0 1
1 0

)

−→ AT P + PA =

(

0 1
1 0

) (

p1 p2

p2 p3

)

+

(

p1 p2

p2 p3

) (

0 1
1 0

)

=

(

2p2 p3 + p1

p1 + p3 2p2

)

= −Q

In order for Q to be positive definite, we require that −2p2 > 0 and −2p2 > (p3+p1)
2

−2p2

,

i.e.

Q =

(

−2p2 −(p1 + p3)
−(p1 + p3) −2p2

)

But if Q is to be positive definite, as required for stability, we have that,

−2p2 >
(p1 + p3)

2

−2p2
, i.e. 2p2 > p1 + p3

But we know that since P is itself positive definite, we require p1, p3 > 0, and so
we have the coupled conditions that 2p2 > p1 + p3 > 0. If this is so, then q1, the
first entry of Q is negative, and so Q is not positive definite in contradiction to our
assumption of stability.

We knew this also from the fact that this linearization had one positive eigenvalue
(stability requires all eigenvalues be negative in their real parts).

Our other case is more quickly shown to not satisfy the Lyapunov conditions for
stability. We have,

(

0 1
−1 0

)

−→ AT P + PA =

(

0 1
−1 0

) (

p1 p2

p2 p3

)

+

(

p1 p2

p2 p3

) (

0 1
−1 0

)

=

(

−2p2 −p3 + p1

p1 − p3 2p2

)

= −Q

We quickly see that if Q were to be positive definite, we can not have the diagonal
elements to be of opposite signs or negative at all.

When we look at the eigenvalues, we find that the real parts are equal to zero
for both. The Lyaponov tests do not treat this case, and as we have shown above,
the system is a cycle.

Finally, out of curiosity, we show what a stable solution would look like using the
Lyaponov conditions for linear systems. We consider the system whose linearized
matrix is:
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(

−1 0
0 −2

)

−→ AT P + PA =

(

−1 0
0 −2

) (

p1 p2

p2 p3

)

+

(

p1 p2

p2 p3

) (

−1 0
0 −2

)

=

(

−2p1 −3p2

−3p2 −4p3

)

= −Q

The MATLAB lyap function solves the equation AX + XAT + Q = 0, which is
equivalent to the one we’ve been working with, AT P + PA + Q = 0 since QT = Q
and and PT = P (they are positive definite) and so we can write A → AT to obtain
the correspondence we desire.

The routine is a function of the form:

X = lyap(A,Q)

For Q we chose the 2 × 2 positive-definite matrix
(

1 1
0 1

)

The code found the corresponding P = X . We follow this up by testing the code
with our unstable case.

Unstable case:

>>A=[0 1 ; 1 0]

A =

0 1

1 0

>> Q=[1 1; 0 1]

Q =

1 1

0 1

>> X = lyap(A,Q)

??? Error using ==> sylvslv

Solution does not exist

or is not unique.

Stable Case:

Stable Case:

>> A=[-1 0 ; 0 -2]

A =

-1 0 \\

0 -2

>> Q=[1 1; 0 1]

Q =

1 1 \\

0 1

>> X = lyap(A,Q)

X =

0.5000 0.3333 \\

0 0.2500

>> A’*X + X*A

ans =

-1 -1 \\

0 -1
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1.2.

Problem 2 is posted on the web (see Lecture 2, below Topics). Follow the steps described
in this problem. After that, modify the parameters of the model and repeat all the steps. In
your report, include your codes and the representative plots.

We present the the web-hand-out as an attachment at the end of this report.
The results of following these instructions are show in the figure below.

The model used for this problem is that for a “nonlinear gain control in the
retina”:

Ḃ =
−B + L

1+A

τb

Ȧ =
−A + 2B

τa

,

where τa = 1, τb = 1, and L = 1. The initial conditions are B = x(1) and A = x(2).
This is written in MATLAB as (from Dr. Medvedev’s instructions):

function xdot=gain(t,x)

% This function codes the equations for the

% model of nonlinear gain control in the

% retina (Example 6, p. 37)

tau_a=1; tau_b=1; L=1;

B=x(1); A=x(2);

Bdot=(-B + L/(1+A))/tau_b;

Adot=(-A+2*B)/tau_a;

xdot=[Bdot; Adot];

We compare this with Maple, where the above commands would appear:

tau_a:=1; tau_b:=1; L:=1;

EQ1 := diff(x1(t), t) = (-B + L/(1+A))/tau_b;

EQ2 := diff(x2(t), t) = (-A+2*B)/tau_a;

Now in the MATLAB command window we are to type: diary save_your_work which
saves our work to a file called save_your_work after we have entered, later, diary off.
After a perfunctory clear all, we are instructed to set the time span via tspan=[0 50];and
set initial conditions x0=[1 ; 0.5];. Now having defined our differential equa-
tion, we are instructed to apply the numerical integration ode23 with the command
x[t,x]=ode23(’gain’, tspan, x0);. This routine takes our differential equa-
tion, initial conditions, and our chosen time span for integration and returns the
integrated values stored in t, a vector of discreet times, and a corresponding x which
contains the pair of values (x1(t),x2(t)) for position and velocity. The following code
prints out a plot of the velocity and position verses time:

B=x(:,1); % extract the first column with the values of B

A=x(:,2); % extract the second column for A

figure(1) % open a new figure

plot(t,B,’-b’) % plot B versus t

figure(2) % open another figure
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plot(t,A) % plot A versus t

figure(3) % alternatively we can combine two plots

plot(t,B,’-b’) % plot B versus t

hold on %

plot(t,A,’--r’) % plot x2 vs t

xlabel(’time, t’) % supply lablels

ylabel(’B (-), and A (--)’)

print -deps batraces % save this figure to file batraces.eps

We close our run with the command that will write our input: diary off.
After forming another plot (along with nullclines–curves where the vector field is

horizontal and vertical, these are found by finding where Ȧ = 0 =⇒ B = L/(1+A)

and Ḃ = 0 =⇒ A = 2B.).

Finally we are asked to the fixed points, which can be found via −A + 2B = 0
and −B + L/(1 + A) = 0:

>> b_bar=(-1+sqrt(1+8*1))/4; a_bar=2*b_bar;

>> DF=[-1 -1/(1+a_bar)^2; 2 -1];

>> [V, D]=eig(DF)

V =

0 - 0.3333i 0 + 0.3333i

-0.9428 -0.9428

D =

-1.0000 + 0.7071i 0

0 -1.0000 - 0.7071i

>> lambda_1=D(1,1)

lambda_2=D(2,2)

lambda_1 =

-1.0000 + 0.7071i

lambda_2 =

-1.0000 - 0.7071i

>> v1=V(:,1)

v2=V(:,2)

v1 =

0 - 0.3333i

-0.9428

v2 =

0 + 0.3333i

-0.9428

>> v1=v1/norm(v1); v2=v2/norm(v2);

[10]
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Finally we modify the parameters: τa = 1.1, τb = 1.2, and L = 1.3. Having
thus modified gain.m, we take our output from save_your_work, add the last few
commands used in the instructions, and run the set of commands shown below.

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time, t

B
 (

−
),

 a
nd

 A
 (

−
−

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

B

A

Phase Plane

Figure 1.5. Output figures from following the directions given for
problem two. The top row are with the original values, the bottom
row are with the new values.

We present our final MATLAB worksheets below.
gain.m

function xdot=gain(t,x)

% This function codes the equations for the

% model of nonlinear gain control in the

% retina (Example 6, p. 37)

tau_a=1.1; tau_b=1.2; L=1.3;

B=x(1); A=x(2);

Bdot=(-B + L/(1+A))/tau_b;

Adot=(-A+2*B)/tau_a;

xdot=[Bdot; Adot];
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pln.m

figure(4) % open another figure

hold on

tspan=[0 20];

for i=0.2:0.2:1.8

x0=[0; i]; % defines initial conditions

[t, x]=ode23(’gain’, tspan, x0);

plot(x(:,1), x(:,2))

drawnow

[t, x]=ode23(’gain’, tspan, [i; 0]);

plot(x(:,1), x(:,2), ’-b’)

[t, x]=ode23(’gain’, tspan, [i; 2]);

plot(x(:,1), x(:,2), ’-b’)

[t, x]=ode23(’gain’, tspan, [2; i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

end

axis([0.2 1.0 0.4 1.8])

% Next, plot the nullclines

x1=0:0.05:2;

y1=2*x1; % A-nullcline

plot( x1, y1, ’-r’, ’linewidth’, 2) % plots A-nullcline

plot( 1.3./(1+x1), x1, ’-g’, ’linewidth’, 2) % plots B-nullcline; note the dot

% following in the expression of 1./(1+x1)

% It indicates that the division in arrays

% should be executed in term-by-term manner

% Compute the coorinates of the fixed point in the first quadrant

%

b_bar=(-1+sqrt(1+8*1.3))/4; a_bar=2*b_bar;

plot(b_bar, a_bar, ’ok’, ’linewidth’, 3) % indicate the fixed point on the plot

% Compute the Jacobian:

DF=[-1 -1/(1+a_bar)^2; 2 -1]; % ; indicates end of row

%Find the eigenvalues and the eigenvectors of DF

[V, D]=eig(DF); % eig is a matlab function which computes eigenvalues and eigenvectors

[12]
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% see http://www.mathworks.com/access/helpdesk/help/techdoc

% /index.html?/access/helpdesk/help/techdoc/ref/eig.html

% The eigenvalues are complex. Thus, the eigenvectors can be taken complex conjugate

% We shall need the real and imaginary part of one of them

v1=real(V(:,1));

v2=imag(V(:,1)); % extract the eigenvectors

v1=v1/norm(v1); v2=v2/norm(v2); % normalize

s=-1:1;

plot(b_bar+v1(1)*s, a_bar+v1(2)*s, ’--k’, ’linewidth’, 1)

% In the present case the subspaces

plot(b_bar+v2(1)*s, a_bar+v2(2)*s, ’--k’, ’linewidth’, 1)

% spanned by the eigenvectors are

% are not as informative as they would be

% if the eigenvalues were real. But we plot them anyway.

% Finally, add the axis lables and the title

xlabel(’B’)

ylabel(’A’)

title(’Phase Plane’)

print -deps pplane % save the figure

final form of save_your_work

clear all

tspan=[0 50];

x0=[1; 0.5];

[t,x]=ode23(’gain’, tspan, x0);

B=x(:,1);

A=x(:,2);

figure(1)

plot(t,B,’-b’)

hold on

plot(t,A,’--r’)

xlabel(’time, t’)

ylabel(’B (-), and A (--)’)

print -deps batraces

pln

b_bar=(-1+sqrt(1+8*1))/4; a_bar=2*b_bar;

DF=[-1 -1/(1+a_bar)^2; 2 -1];

[V, D]=eig(DF)

lambda_1=D(1,1)

lambda_2=D(2,2)

v1=V(:,1)

v2=V(:,2)

v1=v1/norm(v1); v2=v2/norm(v2);

Professor: Dr. Medvedev
Student: Timothy Jones
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Output from final form of save_your_work

V =

0 - 0.3333i 0 + 0.3333i

-0.9428 -0.9428

D =

-1.0000 + 0.7071i 0

0 -1.0000 - 0.7071i

lambda_1 =

-1.0000 + 0.7071i

lambda_2 =

-1.0000 - 0.7071i

v1 =

0 - 0.3333i

-0.9428

v2 =

0 + 0.3333i

-0.9428

[14]
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1.3.

Write a matlab code for plotting the phase portrait for the equation of pendulum in Problem
1. Compare it with your solution of Problem 1. Include the code and the phase plane plot.

We are now to use MATLAB to create the phase portrait for the equation of the
pendulum we addressed in problem one. Having worked through problem two, the
solution to this problem follows quite closely. We present the resulting figure and
the programs written for this figure below. As one would expect, our solution in
MATLAB exactly matches that found in problem one.

−8 −6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Phase Plane

Figure 1.6. Phase portrait for pendulum problem of problem one,
as made with MATLAB

prob3.m

function xdot=prob3(t,x)

xx=x(1);

yy=x(2);

xxdot=yy;

yydot=-sin(xx);

xdot=[xxdot; yydot];

prob3pp.m

figure(5)

hold on

tspan=[0 30];

for i=0:0.5:7

x0=[20;i];

[t,x]=ode23(’prob3’, tspan, x0);

plot(x(:,1),x(:,2))

drawnow

[t,x]=ode23(’prob3’, tspan, [20,-i]);

plot(x(:,1), x(:,2), ’-b’)

Professor: Dr. Medvedev
Student: Timothy Jones
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drawnow

[t,x]=ode23(’prob3’, tspan, [-20,i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

end

for i=-2:0.2:2

[t,x]=ode23(’prob3’, tspan, [2*pi+1/6,i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

[t,x]=ode23(’prob3’, tspan, [0*pi+1/6,i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

[t,x]=ode23(’prob3’, tspan, [-2*pi-1/6,i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

end

axis([-9 9 -5 5])

xlabel(’x1’)

ylabel(’x2’)

title(’Phase Plane’)

print -deps prob3pp

Finally in the command box we enter prob3pp and the figure is formed.

Note to self: command used to merge pdf files is:

gs -q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=s.pdf \\

first.pdf hw1.pdf gain_control.pdf

[16]
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2.1.

Plot nullclines for the ODEs (2.5.2 of Eckhoff and Holmes’ notes), find
all the equilibria and determine their stability types for the parameter
values specified above (you may additionally take τ = 20: how does
this time constant affect stability?). Repeat for K1 = 130, K2 = 110 and
for K1 = 150, K2 = 90 with the other parameters unchanged. In each case
plot nullclines and solution trajectories for five different initial conditions.
In the decision-making context, what is significant about the third case?

Let S(P ) = MP N

σN +P N for P ≥ 0 and S(P ) = 0 for P < 0. The ODE for this prob-
lem describes “a simple tow neuron network with the ’winner-take-all property”’:

dE1

dt
=

1

τ
(−E1 + S(K1 − 3E2))

dE2

dt
=

1

τ
(−E2 + S(K2 − 3E1))

E1 represents the spike rate of neuron 1 receiving external input K1, inhibited
(negative sign) by the spike rate E2 of neuron 2. This is:

dE1

dt
=

1

τ

(

−E1 +
M(K1 − 3E2)

N

σN + (K1 − 3E2)N

)

dE2

dt
=

1

τ

(

−E2 +
M(K2 − 3E1)

N

σN + (K2 − 3E1)N

)

We can do a phase plot with maple:

> restart;

> with(DEtools); with(plots);

> K1 := 120; K2 := 120; M := 100; sig := 120; N := 2; tau := 20;

> EQ1 := diff(E1(t), t) = (-E1(t)+M*(K1-3*E2(t))^N/(sig^N+(K1-3*E2(t))^N))/tau;

> EQ2 := diff(E2(t), t) = (-E2(t)+M*(K2-3*E1(t))^N/(sig^N+(K2-3*E1(t))^N))/tau;

> DEplot([EQ1, EQ2], [E1(t), E2(t)], t = 0 .. 100, E1 = -10 .. 60,

\ E2 = -10 .. 60, title = ’Choice’, arrows = medium);

E1
K10 0 10 20 30 40 50 60

E2

K10

10

20

30

40

50

60
Choice

Figure 2.1. Phase portraits for this function as compiled in
Maple. Here K1 = K2 = 120.
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We can plot these functions in Matlab as well:

function xdot=choice(t,x)

%Function for problem one of homework 2

K1=120; K2=120; M=100; sig=120; N=2; tau=20;

E1=x(1); E2=x(2);

E1dot=(-E1 + (M*(K1-3*E2)^N)/(sig^N + (K1-3*E2)^N))/tau;

E2dot=(-E2 + (M*(K2-3*E1)^N)/(sig^N + (K2-3*E1)^N))/tau;

xdot=[E1dot; E2dot];

/////////////////////////////////////////////////////

clear all

tspan=[0 300];

x0=[1; 0.5];

[t,x]=ode23(’choice’, tspan, x0);

E1=x(:,1);

E2=x(:,2);

figure(1)

plot(t,E1,’-b’)

hold on

plot(t,E2,’--r’)

xlabel(’time, t’)

ylabel(’E1 (-), and E2 (--)’)

print -deps batraces
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Figure 2.2. Matlab output with initial conditions x0 = (1, 0.5)
(left) x0 = (0.49, 0.51) (right). The winner take all result is present,
though when the initial conditions are close, the separation in re-
sults takes longer to achieve.

Now we wish to find its equilibria point. We disagree with the text that the fixed
points are (0, 50) and (50, 0), though are results agree closely. We find fixed points
at (20, 20), (46.58901055, 2.64175867), and (2.64175867, 46.58901055):

Professor: Dr. Medvedev
Student: Timothy Jones

[3]



Mathematics of Neuroscience HW 2

Maple code to find the fixed points:

> with(LinearAlgebra):

> f := (x, y) --> (-x+M*(K1-3*y)^N/(sig^N+(K1-3*y)^N))/tau;

> g := (x, y) --> (-y+M*(K2-3*x)^N/(sig^N+(K2-3*x)^N))/tau;

> K1 := 120; K2 := 120; M := 100; sig := 120; N := 2; tau := 20;

> sol := solve([f(x, y) = 0, g(x, y) = 0], [x, y]);

> alias(R1 = RootOf(_Z^2-4*_Z+5, label = _L4));

> alias(R2 = RootOf(13*_Z^2-16*_Z+1, label = _L8));

> sol;

[ [ 640 ]]

[[x = 20, y = 20], [x = 40 R1, y = 40 R1], [x = -40 R2 + ---, y = 40 R2]]

[ [ 13 ]]

> soln1 := (i) --> allvalues(R1)[i];

> soln2 := (i) --> allvalues(R2)[i];

> soln1(1);

2 + I

> soln1(2);

2 - I

> soln2(1); p := evalf(%);

8 1 (1/2)

-- - -- 51

13 13

0.0660439670

> soln2(2); q := evalf(%);

8 1 (1/2)

-- + -- 51

13 13

1.164725264

> evalf(-40*p+640/13);

46.58901055

> evalf(40*p);

2.641758680

> evalf(-40*q+640/13);

2.64175867

> evalf(40*q);

46.58901056

Just by looking at the phase plot we can guess that the fixed point at (20,20) is
a saddle, and the the other two are spiral sinks. However, this isn’t good enough,
and we do a linearization analysis as follows (in Maple):

> restart; K1 := 120; K2 := 120; M := 100; sig := 120; N := 2; tau := 20;

> v1 := (-x+M*(K1-3*y)^N/(sig^N+(K1-3*y)^N))/tau;

> v2 := (-y+M*(K2-3*x)^N/(sig^N+(K2-3*x)^N))/tau;

> with(LinearAlgebra); with(linalg);

> v := Vector(2, [v1, v2]);

> Vector[column](%id = 21087208)

> jacobian(v, [x, y]);

%Here I extracted the functions of the jacobian matrix for more control:

> mtopright := (y) -> -(3600-90*y)/(14400+(120-3*y)^2)-5*(120-3*y)^2*(-720+18*y)

\ /(14400+(120-3*y)^2)^2;

> mbotleft := (x)-> -(3600-90*x)/(14400+(120-3*x)^2)-5*(120-3*x)^2*(-720+18*x)

[4]
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\ /(14400+(120-3*x)^2)^2;

> alph := matrix([[-1/20, mtopright(46.58901056)], [mbotleft(2.614175867), -1/20]]);

> bet := matrix([[-1/20, mtopright(2.614175867)], [mbotleft(46.58901056), -1/20]]);

> eigenvalues(alph);

-0.05000000000 + 0.05097393436 I, -0.05000000000 - 0.05097393436 I

> eigenvalues(bet);

-0.05000000000 + 0.05097393436 I, -0.05000000000 - 0.05097393436 I

> gam := matrix([[-1/20, mtopright(20)], [mbotleft(20), -1/20]]);

> eigenvalues(gam);

3 -13

---, ---

100 100

We find that the fixed point at the center has one positive eigenvalue and one
negative eigenvalue. It is thus hyperbolic and obeys the Hartman-Grobman theo-
rem. We can thus conclude that this point is a saddle point.

The other two fixed points are also hyperbolic. There Jacobians numerically
work out to be:

(

− 1
20 0.039034

−0.06656 − 1
20

)

,

(

− 1
20 −0.06656

0.039034 − 1
20

)

There eigenvalues work out to be both

−0.05000000000+ 0.05097393436i,−0.05000000000− 0.05097393436i

Thus the eigenvectors will work out to be similar, but with opposite orientation.
We can see this clearly on the phase portrait plotted earlier. Since the real values
of the eigenvalues are negative, both points are attracting stable points.

Next we are to find the nullclines for this function. We use both Maple and
Matlab for this. In Maple we plot the nullclines against the phase portrait, and in
Matlab we plot the nullclines and numerous (more than five) solution trajectories.
In Maple we have:
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20

30

40

50

60
Choice

Figure 2.3. Nullclines as compiled in Maple.
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> restart; K1 := 120; K2 := 120; M := 100; sig := 120; N := 2; tau := 20;

> a := (x, y) -> (-x+M*(K1-3*y)^N/(sig^N+(K1-3*y)^N))/tau;

> b := (x, y) -> (-y+M*(K2-3*x)^N/(sig^N+(K2-3*x)^N))/tau;

> solve(a(x, y) = 0, y);

> solyleft := op(1, op(%)); solve(a(x, y) = 0, y); solyright := op(2, op(%));

> solve(b(x, y) = 0, x);

> solxleft := op(1, op(%)); solve(b(x, y) = 0, x); solxright := op(2, op(%));

> solve(solxright = x, y);

> solve(solxleft = x, y);

> fig1 := plot([solyleft, solyright, (100*(-80*x+1600+x^2))/(3200-80*x+x^2),

(100*(-80*x+1600+x^2))/(3200-80*x+x^2)], x = -10 .. 60, y = -10 .. 60);

> with(DEtools); with(plots);

> EQ1 := diff(E1(t), t) = (-E1(t)+M*(K1-3*E2(t))^N/(sig^N+(K1-3*E2(t))^N))/tau;

> EQ2 := diff(E2(t), t) = (-E2(t)+M*(K2-3*E1(t))^N/(sig^N+(K2-3*E1(t))^N))/tau;

> fig2 := DEplot([EQ1, EQ2], [E1(t), E2(t)], t = 0 .. 100, E1 = -10 .. 60,

E2 = -10 .. 60, title = ’Choice’, arrows = medium);

> display([fig1, fig2]);

In Matlab we produce the following plot:
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40
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E
2

Phase Plane

Figure 2.4. Nullclines as compiled in Maple.

figure(4) % open another figure

hold on

tspan=[0 160];

for i=-10:2:60

x0=[-10; i]; % defines initial conditions

[t, x]=ode23(’choice’, tspan, x0);

plot(x(:,1), x(:,2))

drawnow

[t, x]=ode23(’choice’, tspan, [i; -10]);

plot(x(:,1), x(:,2), ’-b’)

[t, x]=ode23(’choice’, tspan, [i; 60]);

[6]
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plot(x(:,1), x(:,2), ’-b’)

[t, x]=ode23(’choice’, tspan, [60; i]);

plot(x(:,1), x(:,2), ’-b’)

drawnow

end

axis([-10 60 -10 60])

% Next, plot the nullclines

x1=0:0.05:60;

y1=40*(x1-100+sqrt(x1*100-x1.^2))./(x1-100); % dotx=0-nullcline

y2=40*(x1-100-sqrt(x1*100-x1.^2))./(x1-100);

plot( x1, y1, ’-r’, ’linewidth’, 2) % plots dotx-nullcline

plot( x1, y2, ’-r’, ’linewidth’, 2) % plots dotx-nullcline

% The result for the other case (doty) is just the interpose of x<->y

plot( y1, x1, ’-r’, ’linewidth’, 2) % plots doty-nullcline

plot( y2, x1, ’-r’, ’linewidth’, 2) % plots doty-nullcline

% Compute the coorinates of the fixed point in the first quadrant

plot(2.614175867, 46.5890156, ’ok’, ’linewidth’, 3) % indicate the fixed point

plot(46.5890156, 2.614175867, ’ok’, ’linewidth’, 3) % indicate the fixed point

% Finally, add the axis lables and the title

xlabel(’E1’)

ylabel(’E2’)

title(’Phase Plane’)

print -deps pplane % save the figure

We are now to repeat this analysis for two more cases. Our next case is K1 = 130
and K2 = 110.

> restart; with(LinearAlgebra); with(linalg);

> K1 := 130; K2 := 110; M := 100; sig := 120; N := 2; tau := 20;

> f := (x, y)-> (-x+M*(K1-3*y)^N/(sig^N+(K1-3*y)^N))/tau;

> g := (x, y)-> (-y+M*(K2-3*x)^N/(sig^N+(K2-3*x)^N))/tau;

> sol := solve([f(x, y) = 0, g(x, y) = 0], [x, y]);

> alias(R1 =

RootOf(-5294258+12995789*_Z-7876248*_Z^2+1901718*_Z^3-200286*_Z^4+8181*_Z^5,

label = _L2));

> op(2, op(1, op(sol)));

> op(2, op(2, op(sol)));

> funcx := (z) ->

-(1318475/93528)*z-(179645/62352)*z^2+1304765/23382-(505/6928)*z^4+(5485/5196)*z^3;

> funcy := (z) -> 10*z;

> soln1 := (i)->allvalues(R1)[i];

> for i to 5 do a := evalf(soln1(i)); x = funcx(a); y = funcy(a) end do;

This results in an equation with five roots, only three of which are real. The
complex roots do not interest us for this current problem. The results:

a = 0.5902851517

x = 46.68516637

y = 5.902851517

a = 2.935629200

x = 10.88126817

y = 29.35629200

a = 4.532481166

x = 0.24726129

y = 45.32481166

a =

8.211726333 + 3.868115832i

x =

77.7983097 + 41.4277878i

y =

82.11726333 + 38.68115832i

a =

8.211726333 - 3.868115832i

x =

77.7983097 - 41.4277878i

y =

82.11726333 - 38.68115832i

We apply the linearization procedure, again using Maple; here we only show the
results-the procedure was the same as :

> restart; K1 := 130; K2 := 110; M := 100;

...

> alph := matrix([[-1/20, mtopright(5.902851517)],

[mbotleft(46.68516637), -1/20]]);

> gam := matrix([[-1/20, mtopright(45.32481166)],

[mbotleft(.24726129), -1/20]]);

> bet := matrix([[-1/20, mtopright(29.35629200)],

Professor: Dr. Medvedev
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[mbotleft(10.88126817), -1/20]]);

> eigenvalues(alph);

-0.05000000000 + 0.06071815859 I, -0.05000000000 - 0.06071815859 I

> eigenvalues(bet);

0.02469938912, -0.1246993891

> eigenvalues(gam);

-0.05000000000 + 0.02903015478 I, -0.05000000000 - 0.02903015478 I

Again, the outer fixed points are spiral sinks; the central point is a saddle point.
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Figure 2.5. Nullclines as compiled in Maple.

The mapping of the nullcline in Matlab procedes as in the previous case.
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Figure 2.6. Function plot as compiled in Matlab. Initial condi-
tions: (0.51,0.49)
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Figure 2.7. Nullclines as compiled in Matlab.

Our last case is K1 = 150 and K2 = 90. The result for this problem is that we
only find one non-complex fixed point at (45.67963035, 13.31910503). The Jacobian
for this fixed point works out to be:

(

− 1
20 −0.067646

0.073631 − 1
20

)

with eigenvalues:

−0.05000000000+ 0.07057550471i,−0.05000000000− 0.07057550471i

resulting in a single spiral sink.
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Figure 2.8. Phase portrait as compiled in Maple.

This last case causes one neuron to completely dominate the other:
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Figure 2.9. Nullclines as compiled in Maple.
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Figure 2.10. Nullclines as compiled in Matlab. Left: Initial cond-
tions: (0.51,0.49). Right: Initial condtions (0.51,55.51), yet E1 still
dominates after a short time period.
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Figure 2.11. Nullclines as compiled in Matlab. Initial conditions:
(0.51,55.51). τ = 20 on the left and τ = 220 on the right. As can
be seen, τ ’s effect is to regulate the rate at which equilibrium is
achieved.
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2.2.

a. Consider f(x) =

{

−y − x3

x − y3 (1)

As in the previous homework, linearization produces a Jacobian which is non-
hyperbolic (it’s eigenvalue’s real parts are zero) at the fixed point (0, 0):

J(f(x)) =

(

−2x2 −1
1 −3y2

)

∣

∣

(0,0) =

(

0 −1
1 0

)

Thus the Hartman-Grobman theorem does not apply, and we can not use lin-
earization to determine the stability of this function. For the sake of curiosity, we

Linearization results
will only give us
something qualita-
tively suggestive of
the local behavior,
but not necessar-
ily quantitatively
accurate.

temporarily following the linearization path. We have the following eigenvalue and
eigenvector combination:























(

−i −1
1 −i

) (

x1

x2

)

=

(

0
0

)

for λ1 = i ⇒ E1 =

(

1
−i

)

(

i −1
1 i

) (

x1

x2

)

=

(

0
0

)

for λ2 = −i ⇒ E2 =

(

1
i

)

We will not go into much detail here (this was covered fully in the previous home-
work), but our result will be similar.

In order to obtain more realistic solutions, we can take one of the solutions and
take its real and imaginary values:

X1 =

(

1
i

)

e−it = X1 =

(

1
i

)

(cos t − i sin t) =

(

cos t
sin t

)

+ i

(

− sin t
cos t

)

We apply the Wronskian test: The Wronskian tests
for linear indepen-
dence of solutions.

∣

∣

∣

∣

cos t − sin t
sin t cos t

∣

∣

∣

∣

= 1

Hence our general solution can now be written:

X = α1

(

cos t
sin t

)

+ α2

(

− sin t
cos t

)

Hence we see that our fixed point is a “center”. All that remains is for us to apply
initial value conditions.

We can compare this
to the solution for
the cycle in the pre-
vious homework and
note that the differ-
ence will be that this
cycle flows counter-
clockwise, whereas
in the previous prob-
lem, in which the Ja-
cobian had the op-
posite sign, the flow
was clockwise.

x1
K10 K5 0 5 10

x2

K10

K5

5

10

x1
K3 K2 K1 0 1 2 3

x2

K3

K2

K1

1

2

3

Figure 2.12. Phase portraits for the full function of this problem
(close up of equilbrium point shown in right figure).
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Using the same Maple codes as in the previous problem, we compute the phase
portraits for this system (in full, not the linearization) and find that the equilibrium
at the center is indeed a “center”, and seems to be attracting. That it is indeed
attracting will be shown via the Lyapunov test. Now we are to show that V (x, y) =

x1
K8 K6 K4 K2 0 2 4 6 8

x2

K4

K2

2

4

x1
K1.0 K0.5 0 0.5 1.0

x2

K1.0

K0.5

0.5

1.0

Figure 2.13. Phase portraits for the full function of this problem.

1
2

(

x2 + y2
)

is a Lyapunov function. In order for V (x, y) to be a Lyapunov function
for this particular system, we require that

dV

dt
= ∇V · f ≤ 0 (is positive definite) on some domain D ∋ 0

We have ∇V = xi + yj and so

dV

dt
= (xi + yj)·

(

(−y − x3)i + (x − y3)j
)

= −xy−x4+xy−y4 = −(x4+y4) ≤ 0 ∀x, y

We are thus assured that it is asymptotically stable (and Liapunov stable).

[12]
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b. Follow the same procedure for the Lorenz system.

The Lorenz system is given by the equation,

f(x) =





ẋ
ẏ
ż



 =





σ(y − x)
rx − y − xz

xy − bz





To prove stability for 0 ≤ r ≤ 1, we seek a Lyapunov function in the form:

L(x, y, z) = αx2 + βy2 + γz2

This functions needs to be positive definite, whereby we require α, β, γ, σ, r, b > 0.
We have further requirements in that it also must satisfy the condition that dV/dt
is negative definite, that is, we require:

dV

dt
= ∇V · f ≤ 0

We have:
∇V = 2αxi + 2βyj + 2γzk

Thus:
dV

dt
=

(

2ασxy − 2ασx2 + 2βyrx − 2βy2 − 2βyxz + 2γzxy − 2γbz2
)

We must show that V̇ ≤ 0 always in order to prove stability. We reorganize the
above as

dV

dt
= −

(

2ασx2 + 2βy2 + 2γbz2
)

+ (2ασ + 2βr)xy + (2γ − 2β)xyz

We first attempt to simplify by letting γ = β so that,

dV

dt
= −

(

2ασx2 + 2βy2 + 2βbz2
)

+ (2ασ + 2βr)xy

We which to sync the x and y terms so that we can write the above result in terms
of the negative of a square. We are thus motivated to let α = 1 and β = σ whereby,

dV

dt
= −2σ

(

x2 + y2 − (1 + r)xy
)

− 2σbz2

For r = 1,
dV

dt
= −2σ (x − y)

2 − 2σbz2 ≤ 0

and we are done. For 0 ≤ r < 1, we have that (1 + r) < 2 and for xy > 0,

x2 + y2 − (1 + r)xy > x2 + y2 − 2xy = (x − y)2 > 0

whereas if xy < 0 then the quantity in question is positive anyway and we have
shown stability.

We can use linearization to show the stability or instability for the Lorenz
system in terms of r 6= 1 as follows. The Jacobian for the Lorenz system is:

D(f(x)) =





−σ σ 0
r − (z = 0) −1 −x = 0

y = 0 x = 0 −b





We use the algebraic program Maple to compute the eigenvalues (which we could
do on paper, but Maple promises accuracy):

E = {1

2

(
√

1 − 2σ + σ2 + 4σr − σ − 1
)

, −1

2

(

σ + 1 +
√

1 − 2σ + σ2 + 4σr
)

,−b}

Here it is clear that all the real-parts are nonzero and thus we have a hyperbolic
case for 0 ≤ r < 1 (and as long as b is nonzero). At r = 1 the real parts vanish for

the first two cases since
√

1 − 2σ + σ2 + 4σ =
√

(1 + σ)2 = (1 + σ). However, we

Professor: Dr. Medvedev
Student: Timothy Jones
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have used a Lyapunov function to demonstrate stability for r = 1. We also see that
for r < 1, the eigenvalues are all negative, indicating the existence of asymptotic
stability. The first eigenvalue would be the only one we need worry about being
positive, but we note that the first eigenvalue can be written:

1

2

(
√

σ2 − 2σ + 1 + 4σr − (σ + 1)
)

and since
r < 1 σ2 − 2σ + 1 + 4σr < σ2 + 2σ + 1 = (σ + 1)2

r > 1 σ2 − 2σ + 1 + 4σr > σ2 + 2σ + 1 = (σ + 1)2

we see that we asymptotic stability for r < 1 and instability for r > 1. It is clear
that a bifurcation occurs at r = 1, and our next task is to identify this. We read
in Dr. Medvedev’s notes that:

Two simplest (and typical) cases when the equilibrium becomes non-
hyperbolic are when one (and only one) real eigenvalue becomes
0 and when a pair of complex conjugate eigenvalues crosses the
imaginary axis. The first case, under some additional conditions, is
called a saddle-node (SN) bifurcation and the second case is called
an Andronov-Hopf (AH) bifurcation.

The bifurcation here is Sadle-Node.

[14]
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2.3.

Follow the steps of analysis of the saddle node bifurcation in the handout (section 4.1)
to discuss the transcritical and pitchfork bifurcations for ẋ = rx − x2 and ẋ = rx − x3 respectively.

We briefly summarize the analysis of the handout. We consider a one-parater
family of flows in R

1 of the form ẋ = f(x, µ), x ∈ R
1 under the additional (though

unnecessary) assumption that f(0, 0) = 0. Further requirements are that fx(0, 0) =
0 (giving that for µ = 0, the equilibirum at x = 0 is nonhyperbolic), fxx(0, 0) 6= 0
and fµ(0, 0) 6= 0 for nondegeneracy (verifices the family of vecotr fields is typical
[generic]) and transversality (forcing the function to pass through the bifurcation).

The Taylor expansion of our dynamical equation gives:

ẋ = f(0, 0) + fx(0, 0)x + fµ(0, 0)µ + fxx(0, 0)x2 + fxµ(0, 0)xµ + fµµ(0, 0)µ2 + O(3)

= aµ + bx2 + cxµ + dµ2 + O(3)

Assume a > 0 and b > 0 and set the right hand side of the above equation to zero
to find the equilibria for small values of µ and x. Taking the lowest order terms,
we have:

bx2 = −aµ + h.o.t. → x±

0 (µ) = ±
√

−aµ

b
+ h.o.t.

where obviously we would need µ ≤ 0. Dr. Medvedev writes “A pair fo equilbiria
which exists for negative µ (|µ| small) collides at µ = 0 and disappears as µ becomes
positive.”

The stability of the equilibria is determined as follows:

f ′

x(x±

0 , µ) = 2bx±(µ) + h.o.t. = ±2b

√

aµ

b
+ h.o.t = ±2

√

baµ + h.o.t.

It is seen here that x+
0 (µ) is unstable and x−

0 (µ) is stable for µ < 0.
Now we look at the transcritical case, ẋ = µx − x2 + h.o.t. In this case we

would have a result along the lines of ẋ = µx − x2 + h.o.t. and so our equilibria
condition is x = 0 and x = µ. Here the equilibria doesn’t collapse after collision.
We see that

f ′

x(x0,µ
0 , µ) = µ − 2x

Stability for the x = 0 case changes with the sign of µ, i.e. goes from stable
(µ < 0) to unstable for (µ > 0). The case x = µ has the opposite case. Thus
stability is switched “transcritically”.

For the pitchfork case we have ẋ = µx − x3 + h.o.t. → x0 = 0,
√

µ : µ > 0.
For µ < 0 there is only one fixed point x0 = 0. At µ = 0 we have a split into three
equilibria points. To find stability we consider: f ′ = µ− 3x2 + h.o.t. Obviously for
the x0 = 0 case the stability changes with the sign of µ, i.e. it is stable for µ < 0
and unstable for µ > 0. For the other two cases we have f ′ = µ− 3(±√

µ)2 = −2µ
and both are stable.

Professor: Dr. Medvedev
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2.4.

The matlab code for the numerical experiments with the HH system of the
previous subsection is given in the Appendix to this lecture. Modify this
code to study the voltage responses in the ML system. For the ML system, use
(V0, n0) = (60.855, 0.01495) as the initial condition. Find the values for
the amplitude and the duration of stimulation which yield sub- and superthreshold
responses, as well as trains of AP. Repeat this numerical experiment for φ = 0.02.
Describe the effect of changing φ on the trains of AP generated 10 for prolonged
stimulation. To make sure that you entered the parameters correctly, compare
your numerics with that in Figure 6 for the same values of parameters.

Our modified Matlab code is:

function ML_stimulate(intensity,duration,delaytime)

global howstrong howlong delay

howstrong = intensity; % intensity of applied current

howlong = duration; % duration of applied current

delay = delaytime; % delaytime (or beginning time) of applied current

T_MAX = 250;

step = 0.05;

tspan=0:step:T_MAX;

x0 =[-60.855,0.01495]; % steady state values after transient time 10ms

%x = [v n m h];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

figure(1)

subplot(2,1,1)

plot(t,v);

axis([0 T_MAX -100 50]);

title(sprintf(’ML MODEL with I (applied current)’, num2str(howstrong)))

ylabel (’V (mV)’)

for i=1:length(t)

current(i)=inp(t(i));

end

subplot(2,1,2)

plot(t, current)

axis([0 T_MAX -100 max(current)+1]);

xlabel (’t (ms)’)

ylabel (’I (\muA/cm^2)’)

[16]
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function xdot = ml_syst(t,x)

I = inp(t);

v=x(1);

n=x(2);

gca=4.4;

gl=2

v2=18

Eca=120;

El=-60;

v3=2;

gk=8;

C=20;

v4=30;

Ek=-84;

v1=-1.2;

phi=0.04;

m=0.5*(1 + tanh((v-v1)/v2));

ninf=0.5*(1 + tanh((v-v3)/v4));

tau=1/(cosh((v-v3)/(2*v4)));

dv=(-gca*m*(v-Eca) - gk*n*(v-Ek)-gl*(v-El)+I)/C;

dn=phi*((ninf-n)/tau);

xdot=[dv dn]’; %column vector: ’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function I=inp(t)

global howstrong howlong delay

I = 100;

t_end = delay+howlong;

if (t >= delay) & (t<=t_end)

I = howstrong;

end;

For intensity = 10, duration = 1, and delay = 5 we plot v against t to make
sure that it resembles Figure 6 of the handout (though since we don’t know the
exact intensity/duration/delay used to produce figure six, they won’t be exactly
the same).

We find that for I = 0, I = 75 and I = 100 we find null, subthreshold, and
superthreshold behavior (trains of AP) respectively, in agreement with Figure 6 of
the hand out.

Professor: Dr. Medvedev
Student: Timothy Jones
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Figure 2.14. Voltage and current plots for I=100 (top), I=75
(middle) and I=0 (bottom figure) at φ = 0.04.

For comparison, stimulation for I=75 of (95,10,200), that is 20 above the baseline
I, 10 time units, 200 seconds after initiation, we get subcritical behavior:

Using the same units as above, but increasing the duration to 13 seconds (any-
thing below ≈ 13 seconds won’t work) we get another AP, supracritical behavior.

Increasing the stimulation intensity by 5, while keeping the durration at 10 has
the same effect.

[18]
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Figure 2.15. For voltage and current plots for I=75 and input of
(95,10,200), that is 20 above the baseline I, 10 time units duration,
200 seconds after initiation, we get subcritical behavior.
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Figure 2.16. For voltage and current plots for I=75 and input of
(95,13,200), that is 20 above the baseline I, 13 time units duration,
200 seconds after initiation, we get additional supercritical behav-
ior.
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Figure 2.17. For voltage and current plots for I=75 and input of
(100,10,200), that is 25 above the baseline I, 10 time units duration,
200 seconds after initiation, we get additional supercritical behav-
ior.
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Figure 2.18. For voltage and current plots for I=100 and input
of (10,1,200). The top graph is for φ = 0.02 and the bottom is for
φ = 0.04. As can be seen in the graph, phi decreases the frequency
of the AP train and widens the spikes.
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3.1.

Saddle-node on an invariant circle bifurcation. Consider a system of equations written
in polar coordinates:

ρ̇ = ρ(1 − ρ2)

θ̇ = 1 + µ − sin θ, p ≥ 0, θ ∈ S1

Sketch (by hand) the phase portraits for positive and negative values of µ near 0 and for
µ = 0. for small µ > 0, estimate the period of the limit cycle as a function of µ.

Obviously, ρ can’t be expanded in terms of small µ, but θ̇ can. Our expansion
will be in the form of

θ̇ = f(θ, 0) + fµ(θ, 0)µ + fµµ(θ, 0)µ2 + O(3)

= 1 − sin θ + µ

Obviously in this case the expansion takes on the same form as the function, and
so we are not helped with this method. It is obvious, though, that we have fixed
points at ρf = {0, 1} and θf = {arcsin(1 + µ), π − arcsin(1 + µ)} where the latter
follows from the fact that sin(A − B) = sinA cosB − cosA sin B.

We note that fθ(θf , µ) = − cos θf so that arcsin(1 + µ) is stable (fx < 0) until
µ = 0 and π − arcsin(1 + µ) is unstable (fθ > 0) until µ = 0. At µ = 0 the two
fixed points crash into each other. For µ > 0 the results are no longer purely real
and we no longer have fixed points. The fixed point for ρ = 0 is pallid, so we only
focus on ρ = 1.

Formally, we note that,

Df(θ, µ) =

(
1 − 3ρ2 0

0 − cos θ

) fixed points
︷︸︸︷→







(
−2 0
0 − cos(arcsin(1 + µ))

)

(
−2 0
0 − cos(π − arcsin(1 + µ))

)

For only the range µ ∈ [−1, 1] this function has real values. Write ζ =

{cos(arcsin(1 + µ)), π − cos(arcsin(1 + µ))} then we have λ =
−(2+ζ)±

√
(2+ζ)2−8ζ

2 .
The graph of arcsin is shown in the margin. For x ∈ (−1, 0), arcsin returns values
from [−π/2, 0], and for corresponding positive values of x it returns values from
[0, π/2]. The first fixed point Jacobian above will thus have one positive and one
negative diagonal component for µ ∈ [−1,−1]. The second will have both negative
diagonal components for the same values. Thus the Jacobians range (µ ∈ [−1, 0])
as:

x
K1.0 K0.5 0 0.5 1.0

K1.5

K1.0

K0.5

0.5

1.0

1.5

Df(θ, µ) =

(
1 − 3ρ2 0

0 − cos θ

) fixed points
︷︸︸︷→







(
−2 0
0 −(1...0)

)

(
−2 0
0 −(−1...0)

)

All eigenvalues will be real under these conditions (thus hyperbolic), and so the
Hartman-Grobman theorem applies. The top Jacobian yields, at maximum, the
secular equation λ2 + 3λ + 2 = 0 which gives two negative eigenvalues and is thus
fully stable. The second Jacobian gives one positive and one negative eigenvalue,
and is thus a saddle point. The plots below show this clearly. For µ > 1 the stable
points vanish. We have animated the evolution of the bifurcation for µ ∈ (−1, 1)
in both Cartesian and polar coordinates and have posted the animations on our
webpage:

http://www.physics.drexel.edu/~tim/programs/snic neuroscience/

We present a few of our graphs below.
We estimate the period by restricting ourselves to ρ = 1 and calculating:

[2]
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dθ

dt
= 1 + µ − sin θ →

∫ π/2

−π/2

dθ

1 + µ − sin θ
=

∫ T

0

dt

With the help of Maple (this is a difficult integral), we have (next page),

Figure 3.1. Phase portraits for this function as compiled in Mat-
lab in polar and Cartesian plot mode. In order we see µ = −1,
µ = −0.5, µ = 0 and µ = 0.5. The full animation of these plots
can be found at the cited webpage.

Professor: Dr. Medvedev
Student: Timothy Jones

[3]



Mathematics of Neuroscience HW 3

∫ 2π

0

dθ

1 + µ − sin θ
=

2i

[

ln

(

−i(1+µ)√
µ(2+µ)

)

− ln

(

i(1+µ)√
µ(2+µ)

)]

√

µ(2 + µ)

We use the fact that eix = cosx + i sinx, ln ax = ln a + lnx, ln 1
x = − lnx, and

lnxn = n lnx to rewrite one piece as:

2i

[

− iπ

2
+ ln(1 + µ) − 1

2
(2µ + µ2) − iπ

2
− ln(1 + µ) +

1

2
(2µ + µ2) ]

Whereby,

T =

∫ 2π

0

dθ

1 + µ − sin θ
=

2π
√

µ(2 + µ)

This is undefined for µ ≤ 0, as should be the case from what we learned earlier.

m
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Figure 3.2. The estimated period of the limit cycle as a function
of µ, in time units (y-axis). Here we plot for m (µ) from 0.1 to 1.
As µ goes beyond one, the estimated period asymptotically tends
towards zero.

Isolated periodic tra-
jectories are called
limit cycles. In
this case, for µ ∈
[−1, 0) there is a sta-
ble point on the limit
cycle and so

MATLAB code for this solution:

function STNI_run(muin)

global mu;

mu=muin;

tspan=[0 100];

figure(1)

axis([0 5 -pi pi])

hold on

for i=0:0.1:5

[4]
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x0=[i;-3.1415];

[t,x]=ode23(@SNIC,tspan,x0);

rho=x(:,1);

the=x(:,2);

plot(rho,the, ’-black’)

drawnow

end

for i=-3.1415:0.1:3.1415

x0=[5;i];

[t,x]=ode23(@SNIC,tspan,x0);

rho=x(:,1);

the=x(:,2);

plot(rho,the, ’-black’)

drawnow

end

for i=-pi:0.1:pi

x0=[0.1;i];

[t,x]=ode23(@SNIC,tspan,x0);

rho=x(:,1);

the=x(:,2);

plot(rho,the, ’-black’)

drawnow

end

y=-3.1415:0.001:3.1415;

plot(1, y, ’-r’, ’LineWidth’, 2)

x=0:0.001:5;

plot(x,asin(1+mu), ’-b’, ’LineWidth’, 2);

plot(x,pi-asin(1+mu), ’-g’, ’LineWidth’, 2);

xlabel(’rho’);

ylabel(’theta’);

print -dpng ’three’

function xdot=SNIC(t,x)

global mu

r=x(1);

t=x(2);

dr=r*(1-r^2);

dt=1 + mu - sin(t);

xdot=[dr dt]’; %COLUMN VEC ’

Professor: Dr. Medvedev
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3.2.

The matlab code for the numerical experiments with the HH system of the
previous subsection is given in the Appendix to this lecture. Modify this
code to study the voltage responses in the ML system. For the ML system, use
(V0, n0) = (60.855, 0.01495) as the initial condition. Find the values for
the amplitude and the duration of stimulation which yield sub- and superthreshold
responses, as well as trains of AP. Repeat this numerical experiment for φ = 0.02.
Describe the effect of changing φ on the trains of AP generated 10 for prolonged
stimulation. To make sure that you entered the parameters correctly, compare
your numerics with that in Figure 6 for the same values of parameters.

Our modified Matlab code is:

function ML_stimulate(intensity,duration,delaytime)

global howstrong howlong delay

howstrong = intensity; % intensity of applied current

howlong = duration; % duration of applied current

delay = delaytime; % delaytime (or beginning time) of applied current

T_MAX = 250;

step = 0.05;

tspan=0:step:T_MAX;

x0 =[-60.855,0.01495]; % steady state values after transient time 10ms

%x = [v n m h];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

figure(1)

subplot(2,1,1)

plot(t,v);

axis([0 T_MAX -100 50]);

title(sprintf(’ML MODEL with I (applied current)’, num2str(howstrong)))

ylabel (’V (mV)’)

for i=1:length(t)

current(i)=inp(t(i));

end

subplot(2,1,2)

plot(t, current)

axis([0 T_MAX -100 max(current)+1]);

xlabel (’t (ms)’)

ylabel (’I (\muA/cm^2)’)

[6]
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function xdot = ml_syst(t,x)

I = inp(t);

v=x(1);

n=x(2);

gca=4.4;

gl=2

v2=18

Eca=120;

El=-60;

v3=2;

gk=8;

C=20;

v4=30;

Ek=-84;

v1=-1.2;

phi=0.04;

m=0.5*(1 + tanh((v-v1)/v2));

ninf=0.5*(1 + tanh((v-v3)/v4));

tau=1/(cosh((v-v3)/(2*v4)));

dv=(-gca*m*(v-Eca) - gk*n*(v-Ek)-gl*(v-El)+I)/C;

dn=phi*((ninf-n)/tau);

xdot=[dv dn]’; %column vector: ’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function I=inp(t)

global howstrong howlong delay

I = 100;

t_end = delay+howlong;

if (t >= delay) & (t<=t_end)

I = howstrong;

end;

For intensity = 10, duration = 1, and delay = 5 we plot v against t to make
sure that it resembles Figure 6 of the handout (though since we don’t know the
exact intensity/duration/delay used to produce figure six, they won’t be exactly
the same).

We find that for I = 0, I = 75 and I = 100 we find null, subthreshold, and
superthreshold behavior (trains of AP) respectively, in agreement with Figure 6 of
the hand out.

Professor: Dr. Medvedev
Student: Timothy Jones
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Figure 3.3. Voltage and current plots for I=100 (top), I=75 (mid-
dle) and I=0 (bottom figure) at φ = 0.04.

For comparison, stimulation for I=75 of (95,10,200), that is 20 above the baseline
I, 10 time units, 200 seconds after initiation, we get subcritical behavior:

Using the same units as above, but increasing the duration to 13 seconds (any-
thing below ≈ 13 seconds won’t work) we get another AP, supracritical behavior.

Increasing the stimulation intensity by 5, while keeping the duration at 10 has
the same effect.

[8]
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Figure 3.4. For voltage and current plots for I=75 and input of
(95,10,200), that is 20 above the baseline I, 10 time units duration,
200 seconds after initiation, we get subcritical behavior.
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Figure 3.5. For voltage and current plots for I=75 and input of
(95,13,200), that is 20 above the baseline I, 13 time units duration,
200 seconds after initiation, we get additional AH behavior.

Finally we note that changing φ alters the frequency of the AP train.
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Figure 3.6. For voltage and current plots for I=75 and input of
(100,10,200), that is 25 above the baseline I, 10 time units duration,
200 seconds after initiation, we get additional AH behavior.

Figure 3.7. For voltage and current plots for I=100 and input of
(10,1,200). The top graph is for φ = 0.02 and the bottom is for
φ = 0.04. As can be seen in the graph, phi decreases the frequency
of the AP train and widens the spikes.

3.3.
[10]
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The homework project for Lecture 5 “The Hodgkin-Huxley model” (see notes for this lecture).

a. Plot the phase portrait for the ML model. Determine whether it is a type I
or type II model. Change the value(s) of some parameter(s) in this model to make
it of a different type.

b. Use phase plane analysis to discuss two mechanisms for the action potential
generation (excitability) in the Morris-Lecar model.

The Morris-Lecar model was formulated to “explain different patterns of electrical
activity observed in the barnacle muscle fiber”. It consists of only two differential
equations, making it simpler than the Hodgkin-Huxley model. The equations are,

C
dV

dt
= −gCam∞(V − ECa) − gKn(V − EK) − gL(V − EL) + I

dn

dt
= φ

n∞(V ) − n

τ(V )

m∞(V ) = 0.5

(

1 + tanh

(
V − ν1

ν2

))

n∞(V ) = 0.5

(

1 + tanh

(
V − ν3

ν4

))

τ(V ) =
1

cosh
(

V −ν3

2ν4

)

gCa 4.4mS/cm2 ECa 120mV gK 8mS/cm2 EK -84mV
gL 2mS/cm2 EL -60mV C 20µF/cm2 ν1 -1.2mV
ν2 18mV ν3 2mV ν4 30mV φ 0.04mS−1

We know (from having simulated this system, see:

http://www.physics.drexel.edu/~tim/programs/ml V

for an interesting animation of this system as V is varied from 0 to 150) that
this system undergoes a Andronov-Hopf Bifurcation. We pause here for a brief
review of the Andronov-Hopf Bifurcation. This review will follow that of S. Wiggins
in “Introduction to Applied Nonlinear Dynamical Systems and Chaos”, Springer-
Verlag 1990.

We begin by looking over a simple model,

ẏ = g(y, λ), y ∈ R
n, λ ∈ R

p

It is required that g ∈ Cr (the Morris-Lecar model, hereafter ML, satisfies this).
We take the linearization as, with fixed points y0, λ0,

ζ̇ = Dyg(y0, λ0)ζ, ζ ∈ R
n

For our current case, let C = 1 and we have the matrix:




− 1

2ν2

gCa

(

1 − tanh2(V −ν1

ν2

)
)

(V − ECa) − gCam∞ − gKn − gL −gk(V − Ek)

1
2ν4

((

1 − tanh2
(

V −ν3

ν4

))

cosh
(

V −ν3

ν4

)

+ 1
2

(

1 tanh
(

V −ν3

ν4

)

+ 2n
)

sinh
(

V −ν3

2ν4

))

−1





It would be tedious and wasteful of time to not use Maple at this point for such
a calculation, and we do so in order to find the Eigenvalues. These are plotted, and
the program written for this is given later.

The discussion of the deep details of the AH bifurcation are beyond the call of
this assignment. It involves use of the “Center Manifold” on which the dynamics
of a fixed point can be reduced for qualitative purposes, and the “Normal Form” of
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the equations in which the equations are cast in a coordinate system which provides
their ’simplest’ manifestation.

The key result is that at the conditions of an AH bifurcation, the dynamics result
in a defining equation that is induced when the real parts of the eigenvalue go to
zero and a complex conjugate set of imaginary parts does not:

(r(t), θ(t)) =

(√

−ud

a
,

[

ω +

(

c − bd

a

)

µ

]

t + θ0

)

We use Maple to calculate the eigenvalues (we don’t know whether or not an
analytical solution would be possible, though we think it would be quite involved).
We note in the plot (figure below) that the curve of the real part of the eigenvalue
very clearly has a positive derivative as it crosses the zero axis, and thus d > 0 as
predicted from the phase plot.

Figure 3.8. The real and imaginary parts of the eigenvalues
verses I. Notice that at nearly I=93.85, the real part of the eigen-
values crosses the Imaginary axis (go to zero) while the pre-existing
imaginary parts do not vanish; under conditions satisfied by this
system, this is the cause of the AH bifurcation.

[12]
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Figure 3.9. Left to right and top to bottom except last row:
Phase plot for I = 0, 25, 50, 75, 100, 125. Notice the AH Bifurcation
between I = 75 and I = 100. Further examination and analysis
of the eigenvalues will reveal exactly where this bifurcation occurs.
Last row: we focus in right before and after the real part of the
eigenvalues cross the zero axis.
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Figure 3.10. By using the maple code quoted here and solving
for the fixed points, we find a smooth trajectory for the fixed point
in the v verses n plane, in agreement with our animations of the
phase plot.

Figure 3.11. The real and imaginary parts of the eigenvalues
verses V.

[14]
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Figure 3.12. Here we plot the eigenvalues, real part (x-axis)
verses imaginary part (y-axis). The resulting shape is an obvious
signature of an AH bifurcation.

Figure 3.13. Left to right and top to bottom: Phase plot for
I = 100, 137.5, 175, 200. The bifurcation type is now SN, TYPE I.
We changed ν3 from 2 to 12 and ν4 from 30 to 120.
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Matlab code for phase plot of ML system:

function ML_stimulate(intensity,duration,delaytime,curr)

global howstrong howlong delay I

howstrong = intensity; % intensity of applied current

howlong = duration; % duration of applied current

delay = delaytime; % delaytime (or beginning time) of applied current

I=curr;

T_MAX = 750;

step = 0.05;

tspan=0:step:T_MAX;

%x = [v n m h];

figure(1)

axis([-80 60 -0.4 0.6])

hold on

for i=-80:7:60

x0=[i;-0.4];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

plot(v,n,’-black’)

drawnow

x0=[i;0.6];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

plot(v,n,’-black’)

drawnow

end

for i=-0.4:0.05:0.7

x0=[-80;i];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

plot(v,n,’-black’)

drawnow

x0=[60;i];

[t,x] = ode15s(@ml_syst, tspan, x0);

v=x(:,1);

n=x(:,2);

plot(v,n,’-black’)

drawnow

end

[16]
Professor: Dr. Medvedev
Student: Timothy Jones



Mathematics of Neuroscience HW 3

%I=70;

gca=4.4;

gl=2;

v2=18;

Eca=120;

El=-60;

v3=2;

gk=8;

C=20;

v4=30;

Ek=-84;

v1=-1.2;

phi=0.04;

vv=-80:0.01:60;

m=0.5*(1 + tanh((vv-v1)/v2));

ninf=0.5*(1 + tanh((vv-v3)/v4));

tau=1./(cosh((vv-v3)/(2*v4)));

%null1=(-gca*m*(vv-Eca) - gl*(vv-El)+I)./(gk*(vv-Ek));

null1=(I-gl*(vv-El)-gca.*m.*(vv-Eca))./(gk*(vv-Ek));

null2=ninf;

plot(vv , null1, ’-b’, ’LineWidth’, 2);

plot(vv, null2, ’r’, ’LineWidth’,2);

print -dpng ’ml’

Shell code for animating above

#!/bin/sh

j=1000

counter=0

while [ $counter -lt 301 ]

do

i=$counter/2

echo $i

unset DISPLAY

matlab >&! matlab.out <<EOF

ML_stimulate2(0,0,0,$i)

EOF

mv ml.png $j.png

let j=j+1

let counter=counter+1

done

Professor: Dr. Medvedev
Student: Timothy Jones

[17]



Mathematics of Neuroscience HW 3

Maple code for finding fixed points and eigenvalues

restart;

with(linalg); with(LinearAlgebra);

Digits := 20;

gca := 4.4; gl := 2; v2 := 18; eca := 120; el := -60;

v3 := 2; gk := 8; c := 20; v4 := 30; ek := -84;

v1 := -1.2; phi := 0.4e-1;

fd := fopen("correct2", WRITE);

for II from 40 by 0.01 to 150 do

unassign(’V’); unassign(’n’);

mm := proc (V) options operator, arrow; .5*(1+tanh((V-v1)/v2)) end proc;

nn := proc (V) options operator, arrow; .5*(1+tanh((V-v3)/v4)) end proc;

tt := proc (V) options operator, arrow; 1/cosh((1/2)*(V-v3)/v4) end proc;

dv := proc (V, n) options operator, arrow; (-gca*mm(V)*(V-eca)-gk*n*(V-ek)-gl*(V-el)+II)/c end

dn := proc (V, n) options operator, arrow; phi*(nn(V)-n)/tt(V) end proc;

ul := diff(dv(V, n), V);

ur := diff(dv(V, n), n);

bl := diff(dn(V, n), V);

br := diff(dn(V, n), n);

poly := {dv(V, n) = 0, dn(V, n) = 0};

a := fsolve(poly);

V := op(2, op(1, a));

n := op(2, op(2, a));

A := matrix([[ul(V, n), ur(V, n)], [bl(V, n), br(V, n)]]);

eigens := {eigenvalues(A)};

eigen1 := op(1, eigens); eigen2 := op(2, eigens);

if V < -10 then

if n*n < 1 then

fprintf(fd, "%f %f %f %f %f %f %f \n", V, n, Re(eigen1),

Im(eigen1), Re(eigen2), Im(eigen2), II)

end if

end if;

end do;

[18]
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3.4. Coda: The Chay Model. The following graphs demonstrate this students
attempt to recreate some of the data in the journal article “Reduction of a model
of an excitable cell to a one-dimensional map” by Georgi S. Medvedev, Physica D
202 (2005) 37-59. It is obvious that our code needs refinement, but the general
behavior of the system is evident.
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REPORT ON “THE DYNAMIC STRUCTURE UNDERLYING

SUBTHRESHOLD OSCILLATORY ACTIVITY AND THE ONSET

OF SPIKES IN A MODEL OF MEDIAL ENTORHINAL CORTEX

STELLATE CELLS”

TIMOTHY JONES

Abstract. The entorhinal cortex (EC) has been found to be a major infor-
mation hub for the hippocampus [1] and seems to play an important role in
memory. This part of the brain has been found to be among the first and most
severely damaged by Alzheimer’s disease as well as other dementing disorders;
young individuals with the Alzheimer’s related variant of the ApoE gene are
statistically found to have thinner entorhinal cortexes than do controls [2, 3].

A common neuron found in the EC is the spiny stellate cells. These cells
demonstrate, individually, subthreshold oscillation (STO) [4]. Rotstein, Op-
perman, White, and Kopell [5] discuss a particular conductance based model
for these cells [6] that reproduces the STO phenomenon. They seek to explain
the STOs in dynamical terms. The goal of this report is to summarize and
simulate their results as a final project for Math 723.

1. Subthreshold Oscillations Discovered and Modeled

1.1. Experimental results. The thrust of this report is dynamical, not physio-
logical, but we briefly discuss some physiological results from stellate cells of layer
II in the entorhinal cortex (ECIIsc). Alonso and Llinás demonstrated these STOs
in their 1989 Nature article [4] from which we present in Figure 1.1.

Figure 1.1. ECIIsc cell (left) under microscopic magnification.
The scale bar in the lower right of the left panel is 100µm. The
graph on the right represents experimental data from the neu-
ron stimulated with current. The oscillation becomes apparent at
5̃7mV, which the model we discuss replicates quite well. These fig-
ures are from [4]. False color introduced by this student to enhance
figure.
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1.2. Conductance model. Acker et al. [6] introduced a conductance model for
the ECIIsc cells. Before going into detail about this model, we demonstrate its
success in modeling the ECIIsc cells by including some graphs (Figure 1.2) of its
simulation, programed by this student in MATLAB. We conclude with 3D images
of the trajectory for Iapp = −2.5 as modeled in the ray tracer program POV-Ray.
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Figure 1.2. ECIIsc cell conductance model of Acker et al. (2003)
[6].From top to bottom: Action potentials; second panel zooms in
on the first one where subthreshold oscillation is apparent. The
third and forth panels show the behavior of Ih and INap whose role
in the model is explored in this report. These figures were made
via this student’s MATLAB simulation Acker Fig002.m (included
at the end of this report) based on this model.

Channels without
inactivation gates
are called persis-

tent, channels with
such gates are called
transient.

In a generic model, the current passing through a membrane due to a particular
type of current is given as I = ḡp(V − E) where p is the average proportion of
channels in the open state (a probability, basically), ḡ is the maximal conductance,
and E is the reverse potential of the current. In Hodgkin-Huxley type models, m
(and n for K+ and CL− channels) represents the probability that an activation
gate is in its open state, and h the probability that an inactivation gate is in the
open state. See Figure 1.3 for a simple schematic of these states.

The dynamics of the activation variables such as m are covered in [7] and ref-
erences therein. They are created to model experimental results. The dynamical
system discussed in this report has similarly been tailored to match experimental
results. The Acker et al. model is a seven dimensional system based on the interac-
tions of the following current channels: persistent sodium (INap), a two-component
(fast and slow) hyperpolerization-activated current (Ih), and the standard Hodgkin-
Huxley currents, i.e., sodium (INa), potassium (IK) and the leak current (IL). Iapp

is the applied bias current (DC, µA/cm2). C is the membrane capacitance /cm2.
We denote the membrane potential V (mV). The remaining currents are modeled
with the following equations:
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Figure 1.3. Figure modified from Izhikevich [7] from Armstrong
and Hille 1998.

INa = GNam3h(V − ENa)

Ik = GKn4(V − Ek)

IL = GL(V − EL)

INap = Gpp(V − ENa)

Ih = Gh(0.65rf + 0.35rs)(V − Eh)

The dynamical equations are:

C
dV

dt
= Iapp − INa

− Ik − IL − Ih − INap(1.1)

dm

dt
=

m∞(V ) − m

τm(V )
(1.2)

dh

dt
=

h∞(V ) − h

τh(V )
(1.3)

dn

dt
=

n∞(V ) − n

τn(V )
(1.4)

dp

dt
=

p∞(V ) − p

τp(V )
(1.5)

drf

dt
=

rf∞(V ) − rf

τrf (V )
(1.6)

drs

dt
=

rs∞(V ) − rs

τrs(V )
(1.7)

The definition of the various x and τx can be found in the codes included in this
report, and the original papers upon which this report are based. The physiological
details can be found in the literature.

2. Reduced model

To continue are discussion, we reproduce Figure 1 of our topic paper below.
Rotstein et al. note, from this figure, that τr,f and τr,s are much greater than
all other τx in the regime of the STO, what they call the subthreshold interval
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(STI), (compare Figure 2.1 with Figure 2.2). The main point upon which their
work hinges is the idea that in the STI, INa and IK are nearly inactive. From
Figure 2.1, left column, one can also approximate that m∞ n4

∞
≈ 0. Since τp is

so small in this regime, it quickly evolves and so one can use the approximation
p ≈ p

∞(v), and from the previous assumptions, m ≈ 0, INa ≈ 0, and IK ≈ 0 due to
their dependence on m and n.

Figure 2.1. Recreation of Figure 1 of [5]. Ion channel dynamics
for full seven dimensional SC model. Bottom row magnifies corre-
sponding top row. First column shows activation and inactivation
curves for the gating variables. Second column shows Voltage-
dependent time scales. The third column shows the second col-
umn for a larger time interval. These time scales are key to the
dynamical discussion of [5].

This sets up the reduced equations, given by,

C
dV

dt
= Iapp − Gpp∞(V )(V − ENa) − IL − Ih(2.1)

drf

dt
=

rf,∞(V ) − rf

τrf
(V )

(2.2)

drs

dt
=

rs,∞(V ) − rs

τrs
(V )

(2.3)

Next Rotstein et al. note that, as seen in Figure 2.1 at the third column, in the
STI regime, τr,s >> τr,f and so rf can be taken as a slow system in the fast/slow
decomposition. That is, we take rs as a parameter rather than as an evolving
variable. This brings us to our simplest possible system. In Figure 2.4, I use Maple
to compute the Eigenvalues for the fixed point of the fast system as a function of

4



Figure 2.2. Approximate recreation of Figure 2 of [5] made using
same MATLAB program created for Figure 1.2. Certain unknown
initial conditions made an exact recreation unlikely. Full SC model
with conditions given in program.

Figure 2.3. Approximate recreation of Figure 3 of [5] made using
same MATLAB program created for Figure 1.2. Certain unknown
initial conditions made an exact recreation unlikely. Full SC model
with conditions given in program.
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the variable of the slow system (rs). This is done by calculating the nullclines for
the two fast components of the reduced system, and solving for their intersection.
Then, for each fixed point, we perform the typical localization, and then solve for
the eigenvalues of the Jacobian. If the point is hyperbolic (nonzero real parts of
eigenvalues) then the Hartman- Grobman theorem indicates that the results for the
linearization of the system will match the results for the actual system (locally).

Center manifold theory can indicate the nature of the system at the point at
which the fixed point becomes non-hyperbolic, i.e. when the real part of the eigen-
values crosses the imaginary axis. The result is the Andronov-Hopf bifurcation
(sub-critical in this case).

Figure 2.4. Eigenvalues for the fast component of the reduced
SC model from [5] made using same MATLAB program created for
Figure 1.2. Closer look at generating area of STO. The signature
of a Hopf bifurcation is present.

The eigenvalue plot of Figure 2.4, created with the enclosed program eigen-

run.m, suggests the following: In the figure we see the amplitude of the Eigenval-
ues as plotted for the rs variable. from rs = 0.. ≈ 0.047215 we have two negative
real eigenvalues, indicating a fixed point. At around that point, the eigenvalues col-
lide and we now have two complex conjugate eigenvalues with negative real part.
This indicates the presence of a spiral fixed point. Around rs ≈ 0.087460 the real
part of the eigenvalues crosses the Imaginary axis, which is a signature for a Hopf
Bifurcation (unstable central point). At rs ≈ 0.095380 the imaginary components
of the eigenvalues collide and the fixed point becomes simply unstable (non-spiral)
and all trajectories should avoid this fixed point. In Figure 2.5, detailed further in
Figures 2.6 and 2.7, we see the dynamics indicated by the eigenvalues in the phase
plane.

Obviously, the results of the analysis for the fast part of the system will not
accurately describe the overall system; it does, however, give a strong indication of
the dynamics that drive the STO. We now turn our attention to an analysis of the
full reduced system.
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Figure 2.5. Approximate recreation of upper panel Figure 5 of
[5] made using same MATLAB program created for Figure 1.2.
Values of rs scan, from left to right and top to bottom: 0, 0.025,
0.050, 0.075, 0.0666..., and 0.089667.

Figure 2.6. Approximate recreation of of Figure 5 of [5] made
using same MATLAB program created for Figure 1.2. rs =
0.081667, 0.88333, before and after the Hopf bifurcation indicated
by the eigenvalues shown in Figure 2.4.
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Figure 2.7. Approximate recreation of lower panel of Figure 5
of [5] made using same MATLAB program created for Figure 1.2.
Values of rs scan, from left to right and top to bottom: 0.0766,
0.08, 0.0833, 0.0853, 0.0856, and 0.086.

3. Modeling of full reduced SC system

I wrote the enclosed C++ code to model the full three dimensional system using
Runge-Kutta IV method. In the three dimensional system, the STO motion never
settles to a fixed point; after a number of oscillations, the trajectory escapes (spike).
The reduced model has no mechanism for return. However, following Rotstein et
al., we introduce an artificial “reset” mechanism, i.e. the following line of code:

if(y[1]>-30){y[1]=-80; y[2]=0; y[3]=0; flag=0;}

This is justified in the article by the fact that under the full model, rf and rh

reset to near zero after each action potential (see Figure 2.3). The result of our
simulation of their simulation can be found in 3.1, with some additional detail.

8



After a certain threshold of applied current, the subthreshold oscillations can be
seen to grow more prominent; we demonstrate this evolution in Figure 3.2.

Figure 3.1. Approximate recreation of lower panel of Figure 6
of [5] made using same MATLAB program created for Figure 1.2.
Values of Iapp varied (from top to bottom) as -2.57, -2.558, -2.55,
-2.47. The right panel is a bit abstract: the green line is the static
rf nullcline. The red line is the trajectory with initial conditions
(V, rf , rs) = (−80, 0, 0). The blue line represents the difference
between the V and rf nullcline for the given value of V, rf , rs that
the trajectory has at the given V . The Purple line represents the
difference between the V and rs nullcline for the values of V, rf , rs

that the trajectory has at the given V . Since the system is allowed
to evolve in all three coordinates freely, no static nullclines for V
can be drawn in this diagram. The ”reset” in the left column is
artificial, see text for more details.
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Figure 3.2. Approximate recreation of Figure 6 of [5] made using
same MATLAB program created for Figure 1.2. Closer look at
generating area of STO.
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Figure 3.3. Close up of transitional area for foll reduced SC model.

space
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Figure 3.4. Eigenvalues for the fast component of the reduced
SC model from [5] made using same MATLAB program created
for Figure 1.2. Closer look at generating area of STO. This figure
and next are recreations of Figure 12 of [5].

-0.15

-0.1

-0.05

 0

 0.05

-56 -55.5 -55 -54.5 -54 -53.5 -53 -52.5 -52

’ALLleft.txt’ using 1:4
’ALLleft.txt’ using 1:5
’ALLleft.txt’ using 1:6

Figure 3.5. Zoom in of eigenvalues for the fast component of the
reduced SC model from [5] made using same MATLAB program
created for Figure 1.2. Closer look at generating area of STO. The
signature of a Hopf bifurcation is present (imaginary values not
shown).
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Acker Fig2.m

function Acker(input)

global Iapp

Iapp=input;

T_MAX=1000;

step=0.05;

tspan=0:step:T_MAX;

x0=[-0.2828, 0.3208, 0.0513, 0.5841, 0.3, 0.3, 0.3]

[t,x]=ode15s(@Acker_function, tspan, x0);

v=x(:,1);

m=x(:,2);

h=x(:,3);

n=x(:,4);

p=x(:,5);

rf=x(:,6);

rs=x(:,7);

ENa=55;

EK=-90;

EL=-65;

Eh=-20;

GNa=52;

GK=11;

GL=0.5;

Gp=0.5;

Gh=1.5;

C=1;

Ih=Gh*(0.65.*rf + 0.35.*rs).*(v-Eh);

INap=Gp.*p.*(v-ENa);

figure(1)

subplot(4,1,1)

plot(t,v);

axis([0 T_MAX -100 60]);

xlabel (’t (ms)’)

ylabel (’V (mv)’)

title(Iapp);

subplot(4,1,2);

plot(t,v);

axis([0 T_MAX -60 -50]);

xlabel (’t (ms)’)

ylabel (’zoom of V (mv)’)

subplot(4,1,3);

plot(t,-Ih);

axis([0 T_MAX 3 4]);

xlabel (’t (ms)’)

ylabel (’-Ih’)

subplot(4,1,4);
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plot(t,-INap);

axis([0 T_MAX 3 6]);

xlabel (’t (ms)’)

ylabel (’-INap’)

print -dpng ’acker1’

Acker function (included inside the above and below Acker variations, this is
the kernel of the main SC model)

function xdot = Acker_function(t,x)

global Iapp

v=x(1);

m=x(2);

h=x(3);

n=x(4);

p=x(5);

rf=x(6);

rs=x(7);

ENa=55;

EK=-90;

EL=-65;

Eh=-20;

GNa=52;

GK=11;

GL=0.5;

Gp=0.5;

Gh=1.5;

C=1;

am=-0.1*(v+23)/(exp(-0.1*(v+23))-1);

bm=4*exp(-(v+48)/18);

ah=0.07*exp(-(v+37)/20);

bh=1/(exp(-0.1*(v+7))+1);

an=-0.01*(v+27)/(exp(-0.1*(v+27))-1);

bn=0.125*exp(-(v+37)/80);

ap=1/(0.15*(1+exp(-(v+38)/6.5)));

bp=exp(-(v+38)/6.5)/(0.15*(1+exp(-(v+38)/6.5)));

rfi=1/(1+exp((v+79.2)/9.78));

trf=0.51/(exp((v-1.7)/10) + exp(-(v+340)/52)) + 1;

rsi=1/(1+exp((v+2.83)/15.9))^58;

trs=5.6/(exp((v-1.7)/14) + exp(-(v+260)/43)) + 1;

tp=0.15;

pinf=1/(1+exp(-(v+38)/6.5));

mi=am/(am+bm);

tm = 1/(am+bm);

dm=(mi -m)/tm;

hi=ah/(ah+bh);

th = 1/(ah+bh);

dh=(hi -h)/th;

ni=an/(an+bn);

tn = 1/(an+bn);

dn=(ni -n)/tn;

pi=ap/(ap+bp);
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tp = 1/(ap+bp);

dp=(pi -p)/tp;

drf=(rfi -rf)/trf;

drs=(rsi -rs)/trs;

dv=Iapp - GNa*m^3*h*(v-ENa) - GK*n^4*(v-EK) - GL*(v-EL)

- Gh*(0.65*rf + 0.35*rs)*(v-Eh) - Gp*p*(v-ENa);

xdot=[dv dm dh dn dp drf drs]’;

Acker Fig1.m

function Acker(input)

global Iapp

Iapp=input;

T_MAX=1000;

step=0.05;

tspan=0:step:T_MAX;

v=-100:0.05:100;

am=-0.1.*(v+23)./(exp(-0.1.*(v+23))-1);

bm=4.*exp(-1.*(v+48)/18);

tm = 1./(am+bm);

ah=0.07.*exp(-1.*(v+37)/20);

bh=1./(exp(-0.1.*(v+7))+1);

th = 1./(ah+bh);

mi=am./(am+bm);

hi=ah./(ah+bh);

an=-0.01.*(v+27)./(exp(-0.1.*(v+27))-1);

bn=0.125.*exp(-(v+37)/80);

tn = 1./(an+bn);

ap=1./(0.15*(1+exp(-1.*(v+38)/6.5)));

bp=exp(-(v+38)/6.5)./(0.15*(1+exp(-1.*(v+38)/6.5)));

tp = 1./(ap+bp);

rfi=1./(1+exp((v+79.2)/9.78));

trf=0.51./(exp((v-1.7)/10) + exp(-1.*(v+340)/52)) + 1;

rsi=1./(1+exp((v+2.83)/15.9)).^58;

trs=5.6./(exp((v-1.7)/14) + exp(-1.*(v+260)/43)) + 1;

tp=0.15;

pinf=1./(1+exp(-(v+38)/6.5));

ni=an./(an+bn);

tn = 1./(an+bn);

ni=an./(an+bn);

miX=(-0.1*(0+23)/(exp(-0.1*(0+23))-1))/( -0.1*(0+23)/(exp(-0.1*(0+23))-1)

+ 4*exp(-(0+48)/18));

hiX=( 0.07*exp(-(-20+37)/20) ) / ( 0.07*exp(-(-20+37)/20)

+ 1/(exp(-0.1*(-20+7))+1) );

pinfX=1/(1+exp(-(0+38)/6.5));

niX= ( -0.01.*(60+27)/(exp(-0.1*(60+27))-1) ) / ( -0.01*(60+27)

/(exp(-0.1*(60+27))-1) + 0.125*exp(-(60+37)/80) );

figure(1)
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hold on

subplot(2,3,1)

hold on

axis([-100 100 -0.2 1.2]);

plot(v,mi, ’-b’);

text(v(:,1800),mi(:,1800),’\leftarrow m_\infty’,’HorizontalAlignment’,’left’)

plot(v,hi, ’-r’);

text(v(:,1500),hi(:,1500),’\leftarrow h_\infty’,’HorizontalAlignment’,’left’)

plot(v,pinf, ’-g’);

text(v(:,2000),pinf(:,2000),’p_\infty’,’HorizontalAlignment’,’left’)

plot(v,ni, ’--b’);

text(v(:,3000),ni(:,3000)-0.07,’n_\infty’,’HorizontalAlignment’,’left’)

plot(v,rsi, ’--r’);

text(v(:,500),rsi(:,500),’\leftarrow r_{s,\infty}’,’HorizontalAlignment’,’left’)

plot(v,rfi, ’--g’);

text(v(:,500),rfi(:,500),’\leftarrow r_{f,\infty}’,’HorizontalAlignment’,’left’)

subplot(2,3,4)

hold on

axis([-65 -45 -0.2 1.2]);

plot(v,mi, ’-b’);

plot(v,hi, ’-r’);

plot(v,pinf, ’-g’);

plot(v,ni, ’--b’);

plot(v,rsi, ’--r’);

plot(v,rfi, ’--g’);

subplot(2,3,2)

hold on

axis([-100 100 0 10]);

plot(v,tm, ’-b’);

text(v(:,1700),tm(:,1700)+0.4,’\tau_m’,’HorizontalAlignment’,’right’)

plot(v,th, ’-r’);

text(v(:,1500),th(:,1500),’\leftarrow \tau_h’,’HorizontalAlignment’,’left’)

plot(v,tp, ’-g’);

text(-80,tp+0.4,’\tau_p’,’HorizontalAlignment’,’left’)

plot(v,tn, ’--b’);

text(v(:,300),tn(:,300)-0.07,’\tau_n’,’HorizontalAlignment’,’left’)

plot(v,trs, ’--r’);

text(v(:,2000),trs(:,2000),’\leftarrow \tau_{r,s}’,’HorizontalAlignment’,’left’)

plot(v,trf, ’--g’);

text(v(:,1500),trf(:,1500),’\leftarrow \tau_{r,f}’,’HorizontalAlignment’,’left’)

subplot(2,3,5)

hold on

axis([-65 -45 0 8]);

plot(v,tm, ’-b’);

plot(v,th, ’-r’);

19



plot(v,tp, ’-g’);

plot(v,tn, ’--b’);

plot(v,trs, ’--r’);

plot(v,trf, ’--g’);

subplot(2,3,3)

hold on

axis([-100 100 0 350]);

plot(v,tm, ’-b’);

plot(v,th, ’-r’);

plot(v,tp, ’-g’);

plot(v,tn, ’--b’);

plot(v,trs, ’--r’);

text(v(:,1000),trs(:,1000),’\leftarrow \tau_{r,s}’,’HorizontalAlignment’,’left’)

plot(v,trf, ’--g’);

text(v(:,1000),trf(:,1000),’\leftarrow \tau_{r,f}’,’HorizontalAlignment’,’left’)

subplot(2,3,6)

hold on

axis([-65 -45 0 350]);

plot(v,tm, ’-b’);

plot(v,th, ’-r’);

plot(v,tp, ’-g’);

plot(v,tn, ’--b’);

plot(v,trs, ’--r’);

plot(v,trf, ’--g’);

Acker FIG5.m: MATLAB code written to recreate Figure 5 from main journal
article.

function ARM(input)

global rsNULL

rsNULL=input;

Iapp=-2.5;

ENa=55;

EK=-90;

EL=-65;

Eh=-20;

GNa=52;

GK=11;

GL=0.5;

Gp=0.5;

Gh=1.5;

C=1;

tspan=[0 350];

figure(2)

axis([-80 -40 0 0.15])

hold on

for i=-80:2:-40

x0=[i; 0; rsNULL];
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[t,x]=ode23(@AckerRM_function, tspan, x0);

vv=x(:,1);

nn=x(:,2);

plot(vv,nn, ’-black’)

x0=[i; 0.15; rsNULL];

[t,x]=ode23(@AckerRM_function, tspan, x0);

vv=x(:,1);

nn=x(:,2);

plot(vv,nn, ’-black’)

end

for j=0:0.002:0.15

x0=[-80; j; rsNULL];

[t,x]=ode23(@AckerRM_function, tspan, x0);

vv=x(:,1);

nn=x(:,2);

plot(vv,nn, ’-black’)

x0=[-40; j; rsNULL];

[t,x]=ode23(@AckerRM_function, tspan, x0);

vv=x(:,1);

nn=x(:,2);

plot(vv,nn, ’-black’)

end

v=-80:0.1:-40;

pinf=1./(1+exp(-1.*(v+38)/6.5));

rfNULL1=(Iapp - GL.*(v-EL) - Gh*(0.35*rsNULL).*(v-Eh)

- Gp.*pinf.*(v-ENa))./(Gh*0.65.*(v-Eh));

rfNULL2=1./(1+exp((v+79.2)/9.78));

plot(v,rfNULL1, ’-b’);

plot(v,rfNULL2, ’-r’);

title(rsNULL);

print -dpng ’acker1’

function xdot = AckerRM_function(t,x)

global rsNULL

Iapp=-2.5;

v=x(1);

rf=x(2);

rs=x(3);

ENa=55;

EK=-90;

EL=-65;

Eh=-20;

GNa=52;

GK=11;

GL=0.5;

Gp=0.5;

Gh=1.5;

C=1;
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am=-0.1*(v+23)/(exp(-0.1*(v+23))-1);

bm=4*exp(-(v+48)/18);

ah=0.07*exp(-(v+37)/20);

bh=1/(exp(-0.1*(v+7))+1);

an=-0.01*(v+27)/(exp(-0.1*(v+27))-1);

bn=0.125*exp(-(v+37)/80);

ap=1/(0.15*(1+exp(-(v+38)/6.5)));

bp=exp(-(v+38)/6.5)/(0.15*(1+exp(-(v+38)/6.5)));

rfi=1/(1+exp((v+79.2)/9.78));

trf=0.51/(exp((v-1.7)/10) + exp(-(v+340)/52)) + 1;

rsi=1/(1+exp((v+2.83)/15.9))^58;

trs=5.6/(exp((v-1.7)/14) + exp(-(v+260)/43)) + 1;

tp=0.15;

pinf=1/(1+exp(-(v+38)/6.5));

drf=(rfi -rf)/trf;

drs=0;

dv=Iapp - GL*(v-EL) - Gh*(0.65*rf + 0.35*rs)*(v-Eh) - Gp*pinf*(v-ENa);

xdot=[dv drf drs]’;

eigenrun.m: This is a Maple program designed to solve for the fast part of the
reduced SC system’s eigenvalues.

restart: with(linalg): with(LinearAlgebra): Digits := 13:

fa := fopen("left.txt", WRITE):

fb :=fopen("right.txt",WRITE);

ENa := 55: EK := -90:

EL := -65: Eh := -20:

GNa := 52: GK := 11:

GL := .5: Gp := .5:

Gh := 1.5: C := 1:

Iapp := -2.5:

for rsN from 0 by 0.00001 to 0.1 do

pinf := proc (v) options operator, arrow; 1/(1+exp((-1)*(v+38)/6.5)) end proc:

rfNULL1 := (Iapp-GL*(v-EL)-.35*Gh*rsN*(v-Eh)-Gp*pinf(v)*(v-ENa))/(.65*Gh*(v-Eh)):

rfNULL2 := 1/(1+exp((v+79.2)/(9.78))):

vFIX1a := fsolve(rfNULL1 = rfNULL2, v = -60 .. -51):

rfFIX1a := 1/(1+exp((vFIX1a+79.2)/(9.78))):

vFIX2a := fsolve(rfNULL1 = rfNULL2, v = -51 .. -40):

rfFIX2a := 1/(1+exp((vFIX2a+79.2)/(9.78))):

rfi := 1/(1+exp((v+79.2)/(9.78))):

trf := .51/(exp((v-1.7)*1/10)+exp(-(v+340)*1/52))+1:

rsi := 1/(1+exp((v+2.83)/(15.9)))^58:

trs := 5.6/(exp((v-1.7)*1/14)+exp(-(v+260)*1/43))+1:

drf := proc (v, rf) options operator, arrow; (rfi-rf)/trf end proc:

dv := proc (v, rf) options operator, arrow; Iapp-GL*(v-EL)

-Gh*(.65*rf+.35*rsN)*(v-Eh)-Gp*pinf(v)*(v-ENa) end proc;

ul := diff(dv(v, rf), v): f1 := unapply(ul, v, rf):

ur := diff(dv(v, rf), rf): f2 := unapply(ur, v, rf):

bl := diff(drf(v, rf), v): f3 := unapply(bl, v, rf):

br := diff(drf(v, rf), rf): f4 := unapply(br, v, rf):

A := matrix([[f1(vFIX1a, rfFIX1a), f2(vFIX1a, rfFIX1a)],
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[f3(vFIX1a, rfFIX1a), f4(vFIX1a, rfFIX1a)]]):

eigens := {eigenvalues(A)}:

eigen1 := op(1, eigens); eigen2 := op(2, eigens):

B := matrix([[f1(vFIX2a, rfFIX2a), f2(vFIX2a, rfFIX2a)],

[f3(vFIX2a, rfFIX2a), f4(vFIX2a, rfFIX2a)]]):

eigens2 := {eigenvalues(B)}:

eigen21 := op(1, eigens2); eigen22 := op(2, eigens2):

fprintf(fa, "%f %f %f %f %f %f %f \n", vFIX1a, rfFIX1a, Re(eigen1), Im(eigen1),

Re(eigen2), Im(eigen2),rsN):

fprintf(fb, "%f %f %f %f %f %f %f \n", vFIX2a, rfFIX2a, Re(eigen21), Im(eigen21),

Re(eigen22), Im(eigen22),rsN):

end do:

eigenall.m: This is a Maple program designed to solve for the reduced SC
system’s eigenvalues.

restart: with(linalg): with(LinearAlgebra): Digits := 15:

fa := fopen("ALLleft.txt", WRITE):

ENa := 55: EK := -90:

EL := -65: Eh := -20:

GNa := 52: GK := 11:

GL := .5: Gp := .5:

Gh := 1.5: C := 1:

for Iapp from -58.1 by 0.0001 to 10 do

pinf := proc (v) options operator, arrow; 1/(1+exp((-1)*(v+38)/6.5)) end proc:

rfi := 1/(1+exp((v+79.2)/(9.78))):

trf := .51/(exp((v-1.7)*1/10)+exp(-(v+340)*1/52))+1:

rsi := 1/(1+exp((v+2.83)/(15.9)))^58:

trs := 5.6/(exp((v-1.7)*1/14)+exp(-(v+260)*1/43))+1:

drf := (rfi-rf)/trf:

dv := Iapp-GL*(v-EL)-Gh*(.65*rf+.35*rs)*(v-Eh)-Gp*pinf(v)*(v-ENa);

drs := (rsi-rs)/trs:

f1 := unapply(dv, (v, rf, rs)):

f2 := unapply(drf, (v, rf, rs)):

f3 := unapply(drs, (v, rf, rs)):

fixed := fsolve({f1(v, rf, rs) = 0, f2(v, rf, rs) = 0, f3(v, rf, rs) = 0},

{v=-80..-50, rf = 0 .. 1, rs = 0 .. 1}):

assign(fixed):

vFIXED := v:

rfFIXED := rf:

rsFIXED := rs:

unassign(’v’, ’rs’, ’rf’):

vec := Vector(3, [f1(v, rf, rs), f2(v, rf, rs), f3(v, rf, rs)]);

A := evalf(subs({v = vFIXED, rf = rfFIXED, rs = rsFIXED}, jacobian(vec, [v, rf, rs]))):

ev := eigenvectors(A):

fprintf(fa, "%f %f %f %f %f %f %f %f %f %f \n", vFIXED, rfFIXED, rsFIXED, Re(ev[1][1]),

Re(ev[2][1]), Re(ev[3][1]), Im(ev[1][1]), Im(ev[2][1]), Im(ev[3][1]),Iapp ):

end do:
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all.sh: This is a typical shell script used to create frames for films that run the
above MATLAB programs.

#!/bin/sh

j=1000

jj=3000

counter=-2570

while [ $counter -lt -2200 ]

do

i=‘echo $counter 1000 | awk ’{ print $1/$2}’‘

echo $i

./ai $i

./null $i

echo "set terminal postscript color" > gnu_pre.dat

echo "set output ’$j.ps’" >> gnu_pre.dat

echo "set title ’Iapp=$i’" >> gnu_pre.dat

echo "set terminal postscript color" > gnu_pre2.dat

echo "set output ’$jj.ps’" >> gnu_pre2.dat

echo "set title ’Iapp=$i’" >> gnu_pre2.dat

cat gnu_pre.dat gnu.dat > gnuout.dat

cat gnu_pre2.dat gnu2.dat > gnuout2.dat

gnuplot gnuout.dat

gnuplot gnuout2.dat

mogrify -format jpg $j.ps

mogrify -format jpg $jj.ps

mogrify -rotate 90 $j.jpg

mogrify -rotate 90 $jj.jpg

rm $j.ps

rm $jj.ps

let j=j+1

let jj=jj+1

let counter=counter+1

done

ARM input.c: This C code was used, in conjunction with the above shell
script, to create a series of images for the full reduced SC system.

//An ARM iterator

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
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#include "nr.h"

#include "nrutil.h"

#include "nrutil.c"

//#include "rk4.c"

void rk4(double a, double y[], double dydx[], int n, double x, double h, double yout[],

void (*derivs)(double,double, double [], double []))

{

int i;

double xh,hh,h6,*dym,*dyt,*yt;

dym=dvector(1,n);

dyt=dvector(1,n);

yt=dvector(1,n);

hh=h*0.5;

h6=h/6.0;

xh=x+hh;

for (i=1;i<=n;i++) yt[i]=y[i]+hh*dydx[i];

(*derivs)(a,xh,yt,dyt);

for (i=1;i<=n;i++) yt[i]=y[i]+hh*dyt[i];

(*derivs)(a,xh,yt,dym);

for (i=1;i<=n;i++) {

yt[i]=y[i]+h*dym[i];

dym[i] += dyt[i];

}

(*derivs)(a,x+h,yt,dyt);

for (i=1;i<=n;i++)

yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);

free_vector(yt,1,n);

free_vector(dyt,1,n);

free_vector(dym,1,n);

}

int main(int argc, char *argv[]){

int i1,i2,i3,j,n1,n,N; double x,yold; double h=0.01; double *y;

double *dydx; double *yout;

n=3;

int flag=100;

double a=atof(argv[1]);

// printf("%f \n", a);

FILE* fd = fopen("armout", "w");

FILE* fe = fopen("armout2", "w");

y = dvector(1,n); dydx = dvector(1,n); yout = dvector(1,n);

y[1]=-80;

y[2]=0.0;

y[3]=0.0;

25



x=0.0;

for(i2=1; i2<=400000; i2++){

x = x + h;

derivs(a,x,y,dydx);

rk4(a,y,dydx,n,x,h,yout,derivs);

for(j=1; j<=n; j++){y[j]=yout[j];}

// yold = y[1];

// if(y[1]<-40){

///GRAB THE NULLCLINES

double Iapp=a;

//printf("%f \n", Iapp);

double v=y[1];

double rf=y[2];

double rs=y[3];

double ENa=55;

double EK=-90;

double EL=-65;

double Eh=-20;

double GNa=52;

double GK=11;

double GL=0.5;

double Gp=0.5;

double Gh=1.5;

double C=1;

double am=-0.1*(v+23)/(exp(-0.1*(v+23))-1);

double bm=4*exp(-(v+48)/18);

double ah=0.07*exp(-(v+37)/20);

double bh=1/(exp(-0.1*(v+7))+1);

double an=-0.01*(v+27)/(exp(-0.1*(v+27))-1);

double bn=0.125*exp(-(v+37)/80);

double ap=1/(0.15*(1+exp(-(v+38)/6.5)));

double bp=exp(-(v+38)/6.5)/(0.15*(1+exp(-(v+38)/6.5)));

double rfi=1/(1+exp((v+79.2)/9.78));

double trf=0.51/(exp((v-1.7)/10) + exp(-(v+340)/52)) + 1;

double rsi=pow(1/(1+exp((v+2.83)/15.9)),58);

double trs=5.6/(exp((v-1.7)/14) + exp(-(v+260)/43)) + 1;

double tp=0.15;

double pinf=1/(1+exp(-(v+38)/6.5));

double rfNULL1=(Iapp - GL*(v-EL) - Gh*(0.35*rs)*(v-Eh) - Gp*pinf*(v-ENa))

/(Gh*0.65*(v-Eh));

double rfNULL2=1/(1+exp((v+79.2)/9.78));

double rsNULL1=(Iapp - GL*(v-EL) - Gh*(0.65*rf)*(v-Eh) - Gp*pinf*(v-ENa))

/(Gh*0.35*(v-Eh));

double rsNULL2=pow(1/(1+exp((v+2.83)/15.9)),58);
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//double rfNULL3=pow(1/(1+exp((v+2.83)/15.9)),58);

///////////////////////////////////////////////////////////////

fprintf(fd,"%f %f %f %f \n", y[1], y[2], y[3], x);//}

if(y[1]>-30){y[1]=-80; y[2]=0; y[3]=0; flag=0;}

if(flag>10){ fprintf(fe,"%f %f %f %f %f %f %f \n", y[1], y[2], y[3],

x,rfNULL2, rfNULL2-rfNULL1,rsNULL2-rsNULL1);}

} //ends i2 loop

printf("%f \n", y[1]);

} //ends main

void derivs(double a, double x, double y[], double dydx[]){

double Iapp=a;

//printf("%f \n", Iapp);

double v=y[1];

double rf=y[2];

double rs=y[3];

double ENa=55;

double EK=-90;

double EL=-65;

double Eh=-20;

double GNa=52;

double GK=11;

double GL=0.5;

double Gp=0.5;

double Gh=1.5;

double C=1;

double am=-0.1*(v+23)/(exp(-0.1*(v+23))-1);

double bm=4*exp(-(v+48)/18);

double ah=0.07*exp(-(v+37)/20);

double bh=1/(exp(-0.1*(v+7))+1);

double an=-0.01*(v+27)/(exp(-0.1*(v+27))-1);

double bn=0.125*exp(-(v+37)/80);

double ap=1/(0.15*(1+exp(-(v+38)/6.5)));

double bp=exp(-(v+38)/6.5)/(0.15*(1+exp(-(v+38)/6.5)));

double rfi=1/(1+exp((v+79.2)/9.78));

double trf=0.51/(exp((v-1.7)/10) + exp(-(v+340)/52)) + 1;

double rsi=pow(1/(1+exp((v+2.83)/15.9)),58);

double trs=5.6/(exp((v-1.7)/14) + exp(-(v+260)/43)) + 1;

double tp=0.15;

double pinf=1/(1+exp(-(v+38)/6.5));

dydx[1]=Iapp - GL*(y[1]-EL) - Gh*(0.65*y[2] + 0.35*y[3])*(y[1]-Eh) - Gp*pinf*(y[1]-ENa);

dydx[2]=(rfi -y[2])/trf;

dydx[3]=(rsi -y[3])/trs;

}
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