
MATHIEU’S EQUATIONS AND THE IDEAL RF-PAUL TRAP

TIMOTHY JONES

Abstract. Of great use to physics is the ion trap. Though there are vari-
ous models in use, we focus here on Paul style models. To do so, we need
understand Mathieu’s equations and their corresponding solutions in enough
detail to grasp the function of the Paul ion trap. In this report, we explore
the behavior of Mathieu’s equation and their solution for the Paul ion trap.

1. The basic theoretical foundation of the Paul trap

To confine an ion, we should require a force such that F = −kr. What would
this entail for an electrical potential? Since the electric field is proportional to the
force, and is equal to the divergence of the potential, we should require

Φ ∝ (αx2 + βy2 + γz2)

That is, we require an electric quadrupole field, say,

(1.1) Φ =
Φ0

2r2
0

(αx2 + βy2 + γz2)

Equation 1.1 must obey that condition imposed on all potentials where there is no
free charge distribution, namely that

∇2Φ = 0 → α + β + γ = 0

We can satisfy this in more than one way. The two of import are that associated
with the linear Paul Trap, whose initial manifestations were not as a trap but as a
focusing tunnel of sorts, but which can be turned into a ‘race track’ ion trap,

(1.2) α = 1 = −γ, β = 0 → Φ =
Φ0

2r2
0

(x2 − z2)

and that associated with the “Ionenkäfig”, the chamber rf Paul ion trap

(1.3) α = 1 = β, β = 0 → Φ =
Φ0

r2
0 + 2z2

0

(r2 − 2z2), at 2z2
0 = r2

0

Figure 1.1. The linear rf Paul trap (a) and the chamber rf Paul
trap (b). This Figure from [1]

1



Such potentials can be provided via hyperbolic electrodes. We can perform a
successive over relaxation of a cross section of these electrodes and find that indeed a
two-dimensional stable equilibrium is created at the center (though this is unstable
in the third dimension, z) when we satisfy the above conditions (Figure 1.2, also
see our report on the SOR method).

Figure 1.2. SOR calculation for hyperbolic electrodes. The outer
box is held at ground, the horizontal electrodes held at V and the
vertical ones held at -V. The grid was 1000 by 1000, our tolerance
was 0.0001.

In both cases, we have a repulsive force in the z direction which must be avoided.
This can be done via the clever mechanism of rotating the field so that the focusing
and defocusing is applied alternatively in each direction. If done at the right set of
frequencies, the ion will maintain a stable orbit near the center of the ion trap.

A way to visualize this is with W. Paul’s mechanical analog [1, 2]. Paul made
an equivalent potential as that described above by carving an hyperbolic saddle
surface out of plexiglass. Placing a ball on top of this surface would result in the
ball falling off of it, of course. But if the surface is rotated at a proper rate, the
ball will stay on the surface (Figure 1.3).

Figure 1.3. The mechanical analog to the rf Paul trap
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The applied potential is thus

(1.4) Φ0 = U + V cosωt

If the particle has a charge e and mass m, then its equation of motion are

ẍ +
e

mr2
0

(U + V cosωt)x = 0

z̈ − e

mr2
0

(U + V cosωt)z = 0(1.5)

Since cosine is an even function, we can generalize this to

(1.6) η̈ + (a − 2q cos(2τ))η, a =
4eU

mr2
0ω

2
, q =

−2eV

mr2
0ω

2
, τ =

ωt

2

For the z equation, a → −a. The solution to this equation is simple enough though
not trivial, and we give an informal derivation below.

2. Mathieu’s Equation, solution, and stability

2.1. Basics and Flouqent’s Theorem. Our derivation below can be found in
greater detail and better form in many references [3, 4, 5], and our derivation
follows the spirit of these. An equation such as Mathieu’s equation,

(2.1) η̈ + (a − 2q cos(2τ))η = 0

is of a class of differential equations of the type [7],

(2.2) L[y] = y′′ + p(t)y′ + q(t)y = 0

Any two fundamental solutions to this equation, y1(t), y2(t), will satisfy the set of
boundary value equations,

c1y1(t0) + c2y2(t0) = y0

c1y
′
1(t0) + c2y

′
2(t0) = y′

0

}

Y c = y

We thus require that the determinant of Y (called the Wronskian) is not equal to
zero,

(2.3) W (Y ) = det(Y ) =

∣

∣

∣

∣

y1(t0) y2(t0)
y′
1(t0) y′

2(t0)

∣

∣

∣

∣

6= 0

The set of even/odd solutions:

y1 : y(t0) = 1, y′(t0) = 0
y2 : y(t0) = 0, y′(t0) = 1

}

W (Y ) =

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1

Are thus fundamental sets of solutions. We may follow Floquet’s theorem [3], which
tells us that Mathieu’s equation has at least one solution ∋
(2.4) y(z) : (y(z + π) = σy(z)) Floquet’s Theorem

The proof of this is outlined as follows.
Since Mathieu’s equations will have an even (w1(η)) and odd (w2(η)) solution

pair, these two functions may define any other solution, e.g. consider

w1(η + π) = αw1(η) + βw2(η) → w′

1(η + π) = αw′

1(η) + βw′

2(η) ∋
w1(0) = w′

2(0) = 1, w′

1(0) = w2(0) = 0 ⇒ w1(π) = α, w′

1(π) = β ∋
w1(η+π) = w1(π)w1(η)+w′

1(π)w2(η), as well, w2(η+π) = w2(π)w1(η)+w′

2(π)w2(η)

Let

A =

(

w1(π) w′
1(π)

w2(π) w′
2(π)

)

, w(η) =

(

w1(η)
w2(η)

)

∋ Aw(η) = w(η + π)

According to Floquet’s theorem, we thus require,

|A − σI| = 0
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an eigenvalue equation which can be satisfied with the proper value of σ. We
consider further that Mathieu’s equation has a solution of the form eµηφ(η)

σ = eµπ, φ(η) = e−µηy(η) ∋ φ(η + π) = e−µ(η+π)y(η + π) = e−µηy(η) = φ(η)

2.2. Hill’s Method solution. With Floquent’s theorem we assume a series solu-
tion, due to G. W. Hill,

(2.5) w = eµηφ(η) = eµη
∞
∑

r=−∞

c2re
2riη =

∞
∑

r=−∞

c2re
(µ+2ri)η

When we put this into Mathieu’s equation,
∞
∑

r=−∞

c2r

(

(µ + 2ir)2 + a − 2q(
e2iη + e−2iη

2
)

)

e(µ+2ri)η = 0

matching terms in power of r, we get the equation

(2.6) −qc2r−2 +
(

(µ + 2ir)2 + a
)

c2r − qc2r+2 = 0

Multiplying through by −1 = i2, and then dividing by the middle term,

(2.7)
q

(2r − µi)2 − a
c2r−2 + c2r +

q

(2r − µi)
2 − a

c2r+2 = 0

We now define
γ2r =

q

(2r − µi)2 − a

That these coefficents, ci have non-trivial solutions requires the infinite determinant
∆ to vanish for noninfinite r:

(2.8) ∆(iµ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·
γ−2 1 γ−2

γ0 1 γ0

γ2 1 γ2

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

But of course, this is not a simple object to understand and solve. We can approach
this problem from a rather clever angle introduced by E. T. Whittaker.

Consider the function

λ =
1

cosπiµ − cosπ
√

a

Like our determinant, λ has a simple pole at a = (2r − iµ)2, so that the function

ζ = ∆(iµ) − κλ

has no singularities if κ is chosen properly and is bound at infinity, where ∆(iµ) = 1
since the γ functions all vanish and the diagonal term is all that remains, and λ = 0
since cosh(x) limits to zero as x tends towards infinity.

℧ = ∆(iµ) − κλ → 1 − 0

By Liouville’s theorem (of complex calculus), since this limits to a constant, it is a
constant always, so we have

κ =
∆(iµ) − 1

λ
Next we consider the µ = 0 case and find,

κ = (∆(0) − 1)(1 − cosπ
√

a) → ∆(iµ) − 1

λ
= (∆(0) − 1)(1 − cosπ

√
a)

Next we suppose that µ is chosen to satisfy our requirement that the determinant
vanish. We thus have

cosπiµ−cosπ
√

a = (1−∆(0))(1−cosπ
√

a) → iµ =
1

π
cos−1

(

1 − ∆(0)(1 − cosπ
√

a)
)
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Recall that our solution took the form,

w = eµηφ(η)

This solution will be unbounded unless µ ∈ ℑ, in which case we have

(2.9) µ =
1

π
cos−1

(

1 − ∆(0)(1 − coshπ
√

a)
)

We can easily encode this result, say,

if(a>=0){ mu=acos( 1 - (d[100])*(1-cos(pi*sqrt(a)))) / (pi);}

if(a<0){ mu=acos( 1 - (d[100])*(1-cosh(pi*sqrt(fabs(a))))) / (pi);}

if (mu != mu){mu=0.000000;} //If mu=nan then make it zero

But first we must calculate ∆(0). This task has been made exceedingly simple by
the recent work of J. E. Sträng [5] who has found an efficient recursion formula.

2.3. Sträng’s recursion formula for ∆(0). First we note that by the symmetry
of ∆(0), γ−n = γn. Following Sträng, we define

(2.10)

Ai =

























1 γ2i 0
γ2(i−1) 1 γ2(i−1)

0 γ2(i−2) 1
· · · · · ·

· · · · · ·
1 γ2(i−2) 0

γ2(i−1) 1 γ2(i−1)

0 γ2i 1

























We have ∆i = det(Ai) ∋ ∆(0) = limi→∞ ∆i. We can decompose Ai in terms of
Ai−1,

(2.11) Ai =













1 γ2i

γ2(i−1) . . .
. Ai−1 .
. . . γ2(i−1)

γ2i 1













A Laplace decomposition yields
(2.12)

det(Ai) =

∣

∣

∣

∣

∣

∣

∣

∣

. . .

. Ai−1 .

. . . γ2(i−1)

γ2(i) 1

∣

∣

∣

∣

∣

∣

∣

∣

− γ2i

∣

∣

∣

∣

∣

∣

∣

∣

γ2(i−1) . . .
. rAi−1 .
. . . γ2(i−1)

γ2i 1

∣

∣

∣

∣

∣

∣

∣

∣

Here rAi−1 represents Ai−1 with its left most column chopped off. Again, follow-
ing Sträng we define lA as the matrix A with its rightmost column removed, uA
the matrix A with its lowest row removed, lA the matrix A with its upper most
row removed. Ultimately, uldr(Ai−1) = Ai−2, and given the symmetry involved,
det(rd(Ai−1)) = det(ul(Ai−1)). Following this procedure we find

(2.13) ∆i = ∆i−1 − 2γ2iγ2(i−1)det(rd(A2(i−1))) + (γ2iγ2(i−1))
2∆i−2

We also note, similarly using Lapalcian decomposition,

Ωi = det(ul(Ai)) = det(rd(Ai)) → Ωi = det(Ai−1) − γ2iγ2(i−1)Ωi−2
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so that
∆i−1 − Ωi

γ2iγ2(i−1)
= Ωi−1 = det(rd(Ai−1))

and

∆i = ∆i−1 + 2(Ωi − ∆i−1) + (γ2iγ2(i−1))
2∆i−2

∆i + ∆i−1 − (γ2iγ2(i−1))
2∆i−2)

2
= Ωi ⇒ ∆i−1 + ∆i−2 − (γ2(i−1)γi−2)

2∆i−3)

2
= Ωi−1

Plugging this into Equation 2.13,

∆i = (1−γ2iγ2(i−1))∆i−1+
(

(γ2iγ2(i−1))
2 − γ2iγ2(i−1)

)

∆i−2+γ2iγ2(i−1)(γ2(i−1)γ2(i−2))
2∆i−3

Define α2i = γ2iγ2(i−1) and 1 − α2i = β2i and find,

(2.14) ∆i = β2i∆i−1 − α2iβ2i∆i−2 + α2iα
2
2(i−1)∆i−3

We can recursively solve for ∆(0) = limi→∞ ∆i to as much accuracy as nessessary,
though the program presented below found convergence to a fair tolerance quite
quickly. We first must “seed” the recurssion with the first three ∆i. This can be
done by hand, though we have deferred to the kindess of our computer algebraic
program Maple instead.

Maple finds,

with(linalg):

C:=matrix([[1,e6,0,0,0,0,0],[e4,1,e4,0,0,0,0],[0,e2,1,e2,0,0,0],

[0,0,e0,1,e0,0,0],[0,0,0,e2,1,e2,0],[0,0,0,0,e4,1,e4],[0,0,0,0,0,e6,1]]):

dc:=det(C);

dc := -2*e2^2*e0*e4^2*e6+e2^2*e4^2-2*e4^2*e2*e0*e6^2+2*e2*e4^2*e6

+e4^2*e6^2+2*e2^2*e0*e4+4*e2*e0*e6*e4-2*e2*e4-2*e6*e4-2*e2*e0+1

A:= matrix([[1,e4,0,0,0],[e2,1,e2,0,0],[0,e0,1,e0,0],

[0,0,e2,1,e2],[0,0,0,e4,1]]):

da:=det(A);

da := 1-2*e2*e4-2*e2*e0+2*e2^2*e0*e4+e2^2*e4^2

B:=matrix([[1,e2,0],[e0,1,e0],[0,e2,1]]):

db:=det(B);

db := 1-2*e2*e0

Our program seeks to find all stable values of µ, i.e. those that satisfy Equation
2.9 as real values (i.e. all iso-µ for which µ is exclusively imaginary.

Our code finds all such iso-µ by looping through the a and q axis. If our µ
formula returns “nan” which is the C language’s way of saying not a real number,
then we set the value of µ to zero, though of course it is only the imaginary part of
µ which is actually zero. We perform a contour plot on our data output and find
the elegant avian like image of the stability region of Mathieu’s equation (Figure
2.1).

For the quadropole field, the rf linear Paul trap, we have the following stability
regime (Figure 2.2). The original stability diagram is simply reflected about the
x-axis as a → −a between the two.

For the chamber rf Paul trap, we recall that for the z direction we must allow
for (a, q) → (2a, 2q) (Equation 1.3), and so the lowest region of stability (and the
largest region at that) has a slightly different look (Figure 2.4).
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Figure 2.1. Stability diagram for Mathieu’s general equation

Figure 2.2. Stability diagram for linear rf Paul trap; stable re-
gions are those in which the two stability diagrams intersect.

Figure 2.3. Stability diagram for linear rf Paul trap, closer view
of lowest region of mutal stability (intersection).

3. C Progam for calculating the stability regions of Mathieu’s

equation

Many thanks to Christian Schneider for spotting typos here!
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Figure 2.4. Stability diagram for rf Paul trap, lowest region of
stability (intersection of isobars).

#include<stdio.h>

#include<math.h>

int main(){

FILE *fp; // Prepare to print to file

fp=fopen("mat.dat","w");

int m,i,j;

float e[200],d[101],alpha,beta,alpha1,mu,a,q;

float pi=3.141592653589;

a=0.5;

q=0;

for(q=-10;q<10;q+=0.02){ //Loop over the desired

for(a=-5;a<10;a+=0.07){ //a-q region

for(m=0;m<=248;m+=2){

e[m]=q/((m*m*1.0)-a);} //Set all components

//The first seed determinants, from Maple worksheet

d[3]=-2*e[2]*e[2]*e[0]*e[4]*e[4]*e[6]+e[2]*e[2]*e[4]*e[4]

-2*e[4]*e[4]*e[2]*e[0]*e[6]*e[6]+2*e[2]*e[4]*e[4]*e[6]

+e[4]*e[4]*e[6]*e[6]+2*e[2]*e[2]*e[0]*e[4]+4*e[2]*e[0]*e[6]*e[4]-

2*e[2]*e[4]-2*e[6]*e[4]-2*e[2]*e[0]+1;

d[2]=1-2*e[2]*e[4]-2*e[2]*e[0]+2*e[2]*e[2]*e[0]*e[4]+e[2]*e[2]*e[4]*e[4];

d[1]=1-2*e[2]*e[0];

d[0]=1;

for(m=4; m<=100; m++){ //Here goes Strang’s interation method

alpha=e[2*m]*e[2*(m-1)];
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beta=1-alpha;

alpha1=e[2*(m-1)]*e[2*(m-2)];

d[m]=beta*d[m-1] - alpha*beta*d[m-2] + alpha*alpha1*alpha1*d[m-3]; }

//Find mu, make seperate case for -a situation

if(a>=0){ mu=acos( 1 - (d[100])*(1-cos(pi*sqrt(a)))) / (pi);}

if(a<0){ mu=acos( 1 - (d[100])*(1-cosh(pi*sqrt(fabs(a))))) / (pi);}

if (mu != mu){mu=0.000000;} //If mu=nan then make it zero

fprintf(fp,"%f %f %f \n", q, a, mu);}fprintf(fp,"\n");}

}

As a final note, we wish to add the code used for gnuplot. One run was to outline
the edge of the µ = 0 isobar, since gnuplot does not plot contour this (starts with
0.05). The second run does the overall contouring as seen in the above figures.

For the border outline:

set data style lines

set contour base

set cntrparam levels discrete 0.001

set nosurface

set view 0,0

splot ’so2.txt’

For the inner contours:

set data style lines

set cntrparam levels 20

set contour

set nosurface

set view 0,0

splot ’so2.txt’

4. Activation of the equation for the ideal rf Paul trap

Now that we have demonstrated the fundamentals of Mathieu’s equation, we can
apply it more directly to the ideal rf Paul. Here we follow the outline from [8].

4.1. Kapitsa’s Secular Approximation. We neglect the DC potential U for now
and assume the equations of motion are of the form, for the rf Paul Ideal chamber
ion trap:

r̈ +
2e

m(r2
0 + 2z2

0)
(V cosωt)r = 0

z̈ − 4e

m(r2
0 + 2z2

0)
(V cosωt)z = 0(4.1)

Define do = r2
0 +2z2

0 . Assume that the r and z motion can be partitioned into large-
amp slow “secular” motion r and z, and small-amp high frequency micromotion rµ,
zµ at the frequency of the applied potential ω. Then our equations become
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r̈ + r̈µ = − 2e

md2
0

(V cosωt)(r + rµ)

z̈ + ẍµ =
4e

md2
0

(V cosωt)(z + zµ)(4.2)

(rµ ≪ r, r̈µ ≫ r̈) −→ rµ ≈ +

(

2eV

md2
0ω

2
r cosωt

)

,

(zµ ≪ z, z̈µ ≫ z̈) −→ zµ ≈ −
(

4eV

md2
0ω

2
z cosωt

)

∋

r̈ ≈ −
((

4eV

md2
0

cosωt

)

−
(

4e2V 2

m2d4
0

cos2 ωt

))

r,

z̈ ≈
((

8eV

md2
0

cosωt

)

−
(

16e2V 2

m2d4
0

cos2 ωt

))

z ∋

r̈ ≈
(

2e2V 2

m2d4
0ω

2

)

r → r ≈ − cos(

√
2eV

md2
0ω

t) = cosωrt

z̈ ≈ −
(

8e2V 2

m2d4
0ω

2

)

z → z ≈ cos(
2
√

2eV

md2
0ω

t) = cosωzt

Evidently, ωr = ωz/2. We can thus write,

rtot ≈ − cos(ωzt/2)

(

1 − 2eV

md2
0ω

2
cosωt

)

ztot ≈ cos(ωzt)

(

1 − 4eV

md2
0ω

2
cosωt

)

The results of these approximations are graphically displayed in Figures 4.1 and
4.2 created with the following C code:

float w=53;

float wz=4;

float r,z;

float t=0.0;

while(t<1000){

r=-cos(wz*t/2)*(1-0.3*cos(w*t));

z=cos(wz*t)*(1-0.6*cos(w*t));

t+=0.01;}

Figure 4.1. Secular approximation time series
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Figure 4.2. Secular approximation orbits

4.2. A solution with Mathieu’s Equation. For a more formal analysis refer to
[6]. Starting with the equation,

d2z

dη2
+ (az − 2qz cos(2η)) z = 0, η =

ωt

2
, az =

−16eU

md2
0ω

2
, qz =

−8eV

md2
0ω

2

We apply Floquet’s theorem and the subsequent corollary to suppose solutions of
the form,

u1(η) = eµηφ1(η), u2(η) = e−µηφ2(η)

The conditions for stability require that µ be purely imaginary. It is typical to
write µ = α + iβ, and so we can take a fourier expansion of the φ, and recalling
that the original equation contains cos(2η), we assume a general solution,

z(η) = A

∞
∑

n=−∞

C2nei(2n+β)η + B

∞
∑

n=−∞

C2ne−i(2n+β)η

z(η) = A′

∞
∑

n=−∞

C2n cos((2n + β)η)

As before, we can find a useful recurssion relation. Define:

D2n ≡ az − (2n + β)2

qz
−→ D2nC2n − C2n−2 − C2n+2 = 0

When n = 0 we have

D0 =
az − β2

qz
=

C−2

C0
+

C2

C0

With this recurssion relationship we may solve for β with increasing levels of accu-
racy, for example,

C2n =
C2n−2

D2n
+

C2n+2

D2n

=

C2n−4

D2n−2
+ C2n

D2n−2

D2n
+

C2n

D2n+2
+ C2n+4

D2n+2

D2n

As a first approximation, we set C±4 = 0 and obtain

D0 =
1

D−2
+

1

D2

a − β2

q
= q

(

1

a − (−2 + β)2
+

1

a − (2 + β)2

)
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When we assume 4 ≫ β2, β, a we obtain the approximation,

β =

√

a +
q2

2

If we take U = 0 ∋ a = 0 then we find we have recovered the approximation of
the previous section,

ωz =
2
√

2eV

md2
0ω

From such references as [8] we know that the next approxmation is

β =

√

az + q2
z

(

1
2 + a

8

)

+ q4

128

1 − q2
(

3
8 + 5a

16

)

The motion will have frequencies of (2n+β), of which the lowest and second to the
lowest correspond roughly with the secular approximation secular and micromotion.
We could carry this process on ad infinitum ad nauseum. This is but one method to
solve for β. The other method is the numerical method we used to find the stable
points of the iso-µ. A third method is to use the more technical solutions to the
Mathieu equation devoloped by the mathematicians. We will close this report with
a brief review of one such solution.

5. Technical details

This form of the solution can be found in many references ([4] for example).
We need consider the case in which our bound periodic solution to the Mathieu
equation is of integral order (integer ×π) and fractional order νπ where ν is real
but may be rational or irrational.

5.1. Integral order. We write the Mathieu equation as

d2y

dz2
+ (a − 2q cos(2z))y = 0

And consider the case when q = 0 and write a = m2 and have solutions± cosmz, ± sinmz.
We then suppose that the case when q is nonzero can be taken into account as a
series based on this initial solution. Let

(5.1) a = 1 +

∞
∑

i=1

αiq
i

Then we suppose that

(5.2) y = cos z +

∞
∑

i=1

qici(z)

We determine the nature of the ci functions as follows. Plugging our solution into
the Mathieu equation, we get

y′′ = − cos z +
∞
∑

i=1

qic′′i (z)

ay = cos z +

∞
∑

i=1

qi

(

ci + αi cos z +

i−1
∑

k=1

αici−k

)

12



Using the identity

2 cos(1
2 (A + B)) cos(1

2 (A − B))

=
(e1/2(A+B)+e−1/2(A+B))(e1/2(A−B)+e−1/2(A−B)))

2

= eA+e−A

2 + eB+e−B

2

= cosA + cosB

−(2q cos 2z)y = −q(cos(z) + cos(3z) − 2 cos(2z)

∞
∑

i=1

qi+1c1

Coefficents are matched:

q0 cos z = cosz = 0

q1 c′′1 + c1 − cos(3z) + (α1 − 1) cos z = 0

q2 c′′2 + C2 + α1c1 − 2c1 cos 2z + α2 cos z = 0

The particular solution corresponding to (α1 − 1) cos z is 1/2(1 − α1)z sin z which
is not bounded, thus we require that α1 = 1 such that

c′′1 + c1 = cos 3z

w′′ + w = A cosmz → w = −A cosmz

(m2 − 1)
∋

c1 = −1

8
cos 3z

The arguments presented before imply that

α2 = −1

8
∋ c′′2 + c2 =

1

8
cos 3z − 1

8
cos 5z

⇒ c2 = − 1

64
cos 3z +

1

192
cos 5z

Following [4], we write

α3 = − 1

64
, c3 = − 1

152

(

cos 3z

3
− 4 cos 5z

9
+

cos 7z

18

)

and so we find the c functions can be represted by “cosine-elliptic” function,

ce1(z, q) = cos z − 1

8
q cos 3z +

1

64
q2

(

− cos 3z +
cos 5z

3

)

−

q3

512

(

cos 3z

3
− 4 cos 5z

9
+

cos 7z

18

)

+ O(q4)(5.3)

(5.4) a = 1 + q − q2

8
− q3

64
+ O(q4)

5.2. Fractional order. Now we suppose solutions of the form

(5.5) ceν(z, q) = cos νz +

∞
∑

r=1

qrcr(z)

(5.6) a = v2 +

∞
∑

r=1

αrq
r

13



Quoting again our references [4, 3], the above procedure may be applied to find,

ceν(z, q) = cos νz − q

4

(

cos(ν + 2)z

ν + 1
− cos(ν − 2)z

ν − 1

)

+
q2

32

(

cos(ν + 4)z

(ν + 1)(ν + 2)
+

cos(ν − 4)z

(ν − 1)(ν − 2)

)

+ O(q3)(5.7)

(5.8) a = v2+
q2

2(ν2 − 1)
+

(5ν2 + 7)q4

32(ν2 − 1)3(ν3 − 4)
+

(9ν4 + 58ν3 + 29)q6

64(ν2 − 1)5(ν2 − 4)(ν2 − 9)
+ · · ·

The latter can be rewritten,

(5.9) v2 = a− q2

2(ν2 − 1)
− (5ν2 + 7)q4

32(ν2 − 1)3(ν3 − 4)
− (9ν4 + 58ν3 + 29)q6

64(ν2 − 1)5(ν2 − 4)(ν2 − 9)
−· · ·

A first approximation is ν2 = a. Putting this into the q2 coefficient gives a second
approximation,

ν2 = a − q2

2(a − 1)

And repeating the process gives

ν2 = a − a − 1

2(a − 1)2 − q2
q2 − 5a− 7

32(a − 1)3(a − 4)
q4 + O(q6)

Finally we note that ν2 = (m + β)2 (the integral and fractional component), we
have the approximation

(5.10) β ≈
(

a − a − 1

2(a − 1)2 − q2
q2 − 5a + 7

32(a − 1)3(a − 4)
q5

)1/2

− m

The cosine functions have sine equivalents which we have not included for the sake
of brevity. These formulations are not uncommon in the literature, though for
obvious reasons the previous derivations were presented in fuller context as they
seem to be the preferred method of dealing with the Mathieu equation. But alas,
after presenting so many ways of looking at Mathieu’s equation, like Pandora’s box,
last out is hope.

6. Mathieu & Maple, forever

Maple ‘help’ tells us about a number of Mathieu related functions in her tool
box, including:

The Mathieu functions MathieuC(a, q, x) and MathieuS(a, q, x) are

solutions of the Mathieu differential equation.

MathieuC and MathieuS are even and odd functions of x, respectively.

MathieuFloquet(a, q, x) is a Floquet solution of Mathieu’s equation.

where nu = MathieuExponent(a, q) is the characteristic exponent and

P(x) is a Pi periodic function.

We present a few plots to demonstrate the usefullness of these functions below.
This report has treated, in some detail, the mathematics behind the ideal rf Paul
trap. Of course, the actual realization of the trap differs in many important ways
from its ideal, but we may approach these realizations, in their many forms, with
a fundamental understanding of their operational basis.

14



Figure 6.1. On the left, the ion is trapped with secular and mi-
cromotion; on the right, unbound orbit, the ion is lost forever.

Figure 6.2. A bound orbit, different formal solution ce, and a
few of its components

Figure 6.3. The components of the ce function
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Figure 6.4. Fascinating behavior of µ as q is varried, a transition
from bound to unbound behavior
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