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Abstract. How long does it take for a wave function to collapse? This ques-
tion, asked by a skeptical undergraduate many years ago, was never properly
answered by his unfortunate professor. And so, many years later, the question
stands.

The goal of this report is to explore this question as modern theory might
approach it. We will find that the subtext of the question, a profound skepti-
cism about the postulate of wave-collapse, remains unanswered.

The theoretical program of decoherence can “effectively” replace the wave-
collapse and even tell us how long the transition from the quantum realm
to the classical realm will take. Though we are still left with a mystery, it
is a mystery which has been pushed off the table in regards to experimental
physics.
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1. What is Decoherence?

It is best to introduce decoherence with a simple example. Before doing so, we
need to have something to decohere. The job of decoherence is to bring a quantum
system into an apparently classical state. What especially differentiates a quantum
system from a classical system is the concept of a superposition of states. In the
classical realm of physics, we would say that a particle is at a position (x,y,z). In the
quantum realm, the formalism allows us to state that a particle is in a superposition
of positions (say, (x1, y1, z1) and (x2, y2, z2)). However, as the canon of quantum
mechanics postulates, when we actually measure the position of this particle, we
will find it at either of the two positions, that is, we will have “collapsed the wave

function” into one or the other state. A classical mind (which we all have) would
ask, what does this mean? This is the so called “measurement problem”. David
Albert puts it better when he writes,

The dynamics and the postulate of collapse are flatly in contradic-
tion with one another ... the postulate of collapse seems to be right
about what happens when we make measurements, and the dynam-
ics seems to be bizarrely wrong about what happens when we make
measurements, and yet the dynamics seems to be right about what
happens whenever we aren’t making measurements. [2]

Let us be more explicit about what he means here. It was von Neumann [12]
who first articulated the so called “dynamical dualism” that haunted the original
formulations of quantum mechanics, though Bohr touched on the issue earlier in
proposing the “quantum leap” into states which, like the wave collapse, is proposed
as a dynamically discontinuous process. Primarily, the evolution of a quantum
system is described by the Shrödinger equation,

(1.1) i~
∂

∂t
|ψ〉 = H |ψ〉,

applying to a system under isolation. There is also the evolution that occurs due
to measurement, and this is the infamous collapse:

(1.2) |ψ〉 =
∑

n

cn|n〉 −→ |ni〉

Technically, Equation 1.2 is called by von Neumann the “first intervention” and
Equation 1.1 is the “second intervention.” The first intervention is what we will
identify as the wave collapse. It describes a superposition of states suddenly ‘col-
lapsing’ into one eigenstate, the measurement.

If theoreticians could provide a mechanism within the context of quantum me-
chanics in which the evolution superficially described by von Neumann’s first in-
tervention is achieved, without the need for an ad hoc mechanism or the insistence
that we live in a universe in which “consciousness or spirit...play an important and
fundamental role” in physical phenomenon [16], they will have made great progress
in solidifying quantum mechanics (even further) as a sufficient theory. By this we
mean that the protests that quantum mechanics is somehow incomplete (e.g. the
EPR paradox [6]) can be better addressed (beyond Bell’s theorem).

Given the substantial success of quantum mechanics in correctly predicting the
outcome of every experiment thus far conceived and executed to test it, we would
prefer that any mechanism designed to describe what occurs when a measurement
is taken does so in the context of standard quantum mechanics, which is to say,
does not require a modification of the Shrödinger equation.

The alternative is to accept a modification of the standard formulation of quan-
tum mechanics. There are many various “collapse models” one could consider ( [10],
see also [11] as a short, reasonable example). And though it serves a physicist well to
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consider fresh, new ideas, it also serves us well to realize that such ideas are almost
always wrong. In any case, these alternatives are not the focus of this report.

Decoherence offers a theoretical framework in which the measurement problem
can be swept under the carpet (pushed into a system larger than that which we
can observe). The effect is that quantum mechanics can be studied and presented
to a student without the need for the ad hoc “wave collapse” being presented as a
primary tool of the theory. One can achieve, in many cases, the same apparent effect
of a wave collapse without recourse to von Neumann’s mysterious first intervention.

Thus we clarify that decoherence is not a new theory unto itself, but is instead
an efficient and fruitful repackaging of theory. It does not solve the measurement
problem, and most certainly wouldn’t have satisfied the reservations of Einstein in
his later years. Nevertheless, given its elegance in providing an apparent transition
from the quantum realm to the classical realm, and its experimental success, we
believe the time has come that decoherence be incorporated into graduate level
quantum mechanics courses. This report is designed to be a self-contained intro-
duction to the topic appropriate for a graduate student.

Our presentation will be fairly more detailed than that typically found in the
literature [8, 9] and by necessity will serve as minor introduction to quantum optics
(the reader is also referred to the appendix as needed).

2. Theoretical Example of Superposition

Unique to wave theories is the concept of superposition of states. Indeed, the
interference of states is often used as a defining characteristic of quantum systems
such that the destruction of a pre-existing interference pattern is identified with a
transition into the classical realm (“the appearance of the classical world” [15]).

In demonstrating the mathematics of decoherence, the simplest system we could
possibly start with must entail at least two states capable of superposition. We
consider a simple harmonic oscillator in the state,

(2.1) |ψ〉 = |α1〉 + |α2〉
Generically, we define α as an eigenvalue of the annhilation operator state of the

oscillator,

(2.2) |α〉 = exp(−|α|2
2

)

∞∑

n=0

αn

√
n!
|n〉

These so called coherent states represent a quantum system which is very close
to being in a classical state (see appendix). Let us ignore, for now, the need for
normalization (or if preferred, assume the system is normalized as is). It is well
known that the Hamilton for such a system is simply given by

H = ~ωa†a

The unitary evolution of this wave function is,

(2.3) |ψ(t)〉 = exp(−iωa†at)(|α1〉 + |α2〉)
Note that

exp(−iωa†at) exp(−|α|2
2

)

∞∑

n=0

αn

√
n!
|n〉 = exp(−|α|2

2
)

∞∑

n=0

αn

√
n!

exp(−iωtn)|n〉
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It can be written,

(2.4) |ψ(t)〉 = (|α1 exp(−iωt)〉 + |α2 exp(−iωt)〉)
The density matrix is

(2.5) ρ(t) =

2∑

i,j=1

|αi exp(−iωt)〉〈αj exp(−iωt)〉|

To get a clear picture of the interference this superposition entails, we can take a
look at this system in the coordinate representation. We have that,

a|α〉 = α|α〉 =
1√
2~ω

(ωq + ip)|α〉

We can thus obtain,

(2.6) 〈q′|α〉 =
( ω

π~

)1/4

exp

(

− ω

2~
q′2 +

√

2ω

~
αq′ − |α|2 + α2

2

)

Let |αi exp(−iωt)〉 ≡ |αi(t)〉. Then we can write,

〈q′|ρ(t)|q′〉 = 〈q′|




∑

i,j

|αi〉〈αj |



 |q′〉

(2.7) 〈q′|ρ(t)|q′〉 = |〈q′|α1(t)〉|2 + |〈q′|α2(t)〉|2 + 2Re〈q′|α1(t)〉〈α2(t)|q′〉
The latter follows from the fact that the two cross terms will be conjugates, and
for any complex number z, z + z∗ = 2Re(z). We can partition this function into
real and imaginary parts as follows. We write

α(t) = α exp(−iωt) = α(cosωt− i sinωt)

We note that

α2 + |α|2
2

=
α(cos2 ωt− sin2 ωt− 2i cosωt sinωt+ cos2 ωt+ sin2 ωt)

2

= α2

(

cos2 ωt− i

2
sin 2ωt

)

(2.8)

Thus,

〈q′|α〉 =
( ω

π~

)1/4

exp

(

−
(√

ω

2~
q′ − α cosωt

)2
)

exp i

(

−
√

2ω

~
αq′ sinωt+

α2

2
sin 2ωt

)

It is now conventional to chose a simple case in which α1 ≡ α and α2 ≡ −α,

(2.9) |〈q′|α1,2〉|2 =

√
ω

π~
exp

(

−
(√

ω

~
q′ ±

√
2α cosωt

)2
)

≡ I2
1,2

The convenient ±α form makes calculation of the cross term easy, and it is,

(2.10) 2Re〈q′|α1(t)〉〈α2(t)|q′〉 = 2I1I2 cos

(

2

√

2ω

~
αq′ sinωt

)

≡ 2I1I2 cos θ(t)

(2.11) 〈q′|ρ(t)|q′〉 =

ℵ
︷ ︸︸ ︷

classical
︷ ︸︸ ︷

I2
1 + I2

2 +

χ
︷ ︸︸ ︷

quantum interference
︷ ︸︸ ︷

2I1I2 cos θ(t)

If Decoherence is to bring us into the classical realm, χ must be destroyed. Let
us be more explicit here. Equation 2.11 gives us only partial information, i.e. the
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probabilities for any given position q’. To represent the density matrix in proper
form, we need integrate over all positions, i.e. the density matrix is

(2.12)

∫ ∞

−∞

(
I2
1 I1I2 cos θ(t)

I2I1 cos θ(t) I2
2

)

dq′

A classical density matrix would not have off diagonal terms. The total probability
of finding the particle in one state or the other is given by

(2.13) Tr

(∫ ∞

−∞

(
I2
1 I1I2 cos θ(t)

I2I1 cos θ(t) I2
2

)

dq′
)

=

∫ ∞

−∞

(
I2
1 + I2

2

)
dq′ = 1

Experimental demonstration of the effect of superposition has made much progress
in the last decade, and we discuss one such example in the next section.

3. Experimental Example of Superposition

A review of an experiment in which superposition is demonstrated follows. We
focus specifically on work done by the Laboratoire Brossel in Paris [3, 4, 1]. In their
experiments using Ramsey interferometry, a microwave cavity, and an ensemble of
Rydberg atoms, the Paris team not only demonstrate quantum superposition, but
they were also able to demonstrate decoherence. The reader curious for more detail
than presented here is especially encouraged to read the theoretical proposal of
Davidovich et al. [3].

The experimental set up is shown in Figure 3.1. A resonant cavity (C) is pre-
pared to contain a field off resonance with the |g〉 → |e〉 resonance , though for the
following two examples this cavity is inactive (but plays a crucial part in the deco-
herence experiment). The Paris group uses a high-Q cavity, where Q = 2πνε/P , is
a measure of the efficiency of the cavity in storing a field (ε is the energy stored, ν is
the resonant frequency, and P = −dE/dt is the energy loss) such that the average
lifetime of a resonant photon in the cavity is proportional to Q [17] and thus has a
relatively long relaxation time. A coherent state is injected from (S) into the cavity
(C) in a later experiment discussed regarding decoherence.

Two low-Q cavities are used (R1, R2) to apply microwave fields produced by
S’. B represents a “black-box” which prepares Rydberg atoms (atoms with one
valence electron in an extremely high n state), and (De) and (Dg) are detectors
which provide an electric field that is sufficient to ionize the Rydberg atoms in
their excited state (De) or ground state (Dg). Laser beams L1, L1’ are used to
select for atoms of the proper velocity, and the L2, B setup excites Rydberg atoms
into their circular states (high quantum number n). The entire setup is enclosed
and cooled to 0.6K to make thermal radiation negligible.

Figure 3.1. Experimental setup from [1] Paris group (1996)
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Henceforth we shall assume ideality and ignore experimental details which de-
tract from the flow of our report. The actual experiment followed closely. The
Rydberg atoms are excited into the states |e〉 or |g〉 corresponding to quantum
number n = 51 and n = 50 respectively. The |e〉 → |g〉 transition frequency is
51.099 GHz [3], and cavities R1 and R2 contain fields resonant with this transition.

To describe what happens to the atom as it passes through R1 toward C and
R2, we need to introduce (briefly) the semi-classical Rabi model [7] appropriate for
such resonance. The derivation is simpler in the semi-classical form, but similar
results can be obtained (see appendix) in the full quantum (i.e. Jaynes-Cummings
model) derivation. Furthermore, it can be demonstrated that the fields in R1 and
R2 behave classically and so do not produce entanglement, thus justifying a semi-
classical approach [18]. We assume an atom capable of being in two states (a good
approximation for a Rydberg atom under controlled circumstances), |e〉 and |g〉
where ω0 = (Ee − Eg)/~ and the laser field produces a frequency ω ≈ ω0. We
assume an interaction Hamiltonian of simply Hi(t) = V0 cosωt. The state vector
can be written,

(3.1) |ψ(t)〉 = Cg(t) exp(−iEgt/~)|g〉 + Ce(t) exp(−iEet/~)|e〉

Using the time-dependent Schrödinger equation gives

ζ = 〈e|V |g〉

Ċg = − i

~
ζ cosωt exp(−iω0t)Ce

Ċe = − i

~
ζ cosωt exp(−iω0t)Cg

A valid assumption has us suppose that Cg(0) = 1 and Ce(0) = 0, and using
the identity cosωt = (eiωt + e−iωt)/2, we make application of the “Rotating wave
approximation” where terms ω + ω0 are disregarded and terms ω − ω0 are kept
(since ω is in near resonance, this latter term dominates the behavior),

Ċg = − i

2~
ζ exp(−i∆t)Ce

Ċe = − i

2~
ζ exp(+i∆t)Cg

0 = C̈e − i∆Ċe +
ζ2Ce

4~2

Here ∆ = ω0 − ω is called the detuning of the atomic transition frequency and
laser field. After assuming a characteristic solution of exp(iλt) we arrive at a

characteristic equation of λ± = (∆±
√

∆2 + ζ2/~2)/2, and fitting the given initial
conditions, one finds,

Ce(t) = A+ exp(iλ+t) +A− exp(iλ−t)

A± = ∓ ζ

2~

1
√

∆2 + η2/~2

ΩR =
√

∆2 + ζ2/~2

Ce(t) = i
ζ

ΩR~
exp(i∆t/2)

Cg(t) = exp(i∆t/2)

(

cos(ΩRt/2) − i
∆

ΩR
sin(ΩRt/2)

)
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To introduce the concept of π/2 and π pulses, we consider the case when ∆ = 0.
Then

Pe(t) = |Ce(t)|2 = sin2(ζt/2~)

Pg(t) = cos2(ζt/2~)

Define the atomic inversion as W (t) = Pe(t) − Pg(t) = − cos(ζt/~). Thus we see
how the probability of an atom exposed to a resonant field being in one state or
the other is dependent upon the time exposed to the field. We make this explicit
in the following table.

Pulse→ π: t = π~/ζ π/2: t = π~/2ζ
W(t) 1 0

Status Ce = 1, Cg = 0 Ce = i/
√

2, Cg = 1/
√

2

Thus we see the necessity for monokinetic Rydberg atoms (though in actuality one
gets quasimonokinetic Rydberg atoms [3]). The speed of the atoms will determine
their time exposed to the R1 and R2 fields, and thus the state function. In order
to obtain the statistics necessary to make quantum mechanical measurements, we
desire the ability to nearly perfectly replicate the initial state (the state preparation
procedure). The Paris group demonstrated this ability and the Rabi oscillation in
1995 [5] under a similar but simpler apparatus shown in Figure 3.1. They repeat
the state preparation on a large set of Rydberg atoms, select those of a certain
speed which will result in a corresponding exposure time to the resonant field, and
record the the state of the atom after exiting the field. For each selected t, about
20,000 are measured and their state probability (|e〉 → +1, |g〉 → +0) is averaged.

Figure 3.2. Experimental Rabi oscillations from [4, 5] Paris
group. Initial state is |e〉 with a π pulse corresponding to a collec-
tive shift to the ground state. The dampening of the oscillation is
due to technical imperfections in the experiment.

Now let us explore the progress of a Rydberg atom in the larger Paris group
experiment. We will follow one atom, and suppose it starts out simply in the
excited state, |ψa〉 = |e〉. The atom has a velocity such that its time through the
R1 resonance chamber is a π/2 pulse, and the atom exits in the state, ideally,

(3.2) |ψa〉 =
1√
2
(|g〉 + |e〉)
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However, realistically we expect the detuning will be non-zero, which introduces a
phase difference,

|g〉 → |g〉 + exp(iφ)|e〉√
2

, |e〉 → − exp(−iφ)|g〉 + |e〉√
2

Here φ ≈ ΩR T where T is the exposure time to the second “Ramsey” beam. We
see that the atom has two identical paths for ending up in each of the electronic
states, and thus enters the superposition.

Figure 3.3. Possible paths for the wave function.

The probability of finding the atom in |g〉 is thus the squared sum of the ampli-
tude of the two possible paths, i.e.,

(3.3) Pg =
1 − cosφ

2

This is exactly what the Paris team found in one such experiment [4]. There result
is shown in Figure 3.4.

Figure 3.4. Experimental evidence of Ramsey fringes from the
superposition of two quantum paths (from [4]). The fringes have
85% contrast due to various non-idealities in the experimental set-
up.

Thus we have seen both theoretical and real-world examples of quantum effects
that must be removed by decoherence.
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4. Theoretical Example of Decoherence

We now note that the conditions we have thus far considered are highly artificial.
What if we consider an interaction with the environment? A simple model for an
environmental Hamiltonian might be a set of harmonic oscillators,

HE =
∑

j

~ωjb
†
jbj

As developed elsewhere, we can write the interaction Hamiltonian as

HI =
∑

j

gj(a
†bj + ab†j)

A reasonable way to look at this is to see that if the field gains a photon (a†) then
the single oscillator should loose one bj and vice versa; the prefactor gj is a coupling
constant that will generally depend on the specifics of the system. The system is
now governed by the total Hamiltonian,

H =

H0

︷ ︸︸ ︷

~ωa†a+
∑

j

~ωjb
†
jbj +

∑

j

gj(a
†bj + ab†j)

︸ ︷︷ ︸

HI

Let us call the new density operator corresponding to our environmentally coupled
system ρSE (S: Single original oscillator; E: Environment) where the individual
density operators can be retrieved via a trace, i.e.

ρS = TrE(ρSE) =
∑

E

〈E|ρSE |E〉 Trace over environment states

ρE = TrS(ρSE) =
∑

S

〈S|ρSE |S〉 Trace over local states

The dynamics of the system evolve as (Liouville equation),

(4.1) i~
dρSE

dt
= [H, ρSE ]

We commit a unitary transform to simplify this equation as follows (the so-called
interaction picture). Let Uo = exp( i

~
H0t), then

ρse = UoρSEU
†
o

We can then easily find that (since [H0, H0] = 0, letting UoHIU
†
o ≡ Hi),

dρse

dt
=

i

~
[H0 − UoHU

†
o , ρse]

= − i

~
[Hi, ρse](4.2)

With n = a†a, it is demonstrable that,

exp(ηn)a exp(−ηn) = exp(−η)a
exp(ηn)a† exp(−ηn) = exp(η)a†(4.3)

And so we have,

(4.4) Hi =
∑

j

~gj

(

a†bj exp(i(ω − ωj)t) + ab†j exp(−i(ω − ωj)t)
)
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We now follow Orszag and, avoiding some complicated calculations, present a path
to the so called master equation[8]. Equation 4.2 is integrated and then reapplied
to yield,

(4.5)
dρse

dt
=

1

i~
[Hi, ρse(0)] − 1

~2

∫ t

0

[Hi(t
′), [Hi(t

′), ρse(t
′)]]dt′

It is typically not a bad approximation to assume that the environment (bath) is
large enough to be unperturbed by the local system, i.e. we assume that (Markovian
assumption):

ρse(t) = ρs(t) ⊗ ρe(0)

It follows that

TrB[Hi(t), ρse(0)] = 0

Taking the trace of the Equation 4.5 gives,
(4.6)
dρs

dt
= −i∆ω[a†a, ρs(t)] +A[a, ρs(t)a

†] +A[aρs(t), a
†] +B[a†, ρs(t)a] +B[a†ρs(t), a]

Here,

∑

j

→
∫

D(ωj)dωj

∆ω = P

∫ ∞

0

g(ωj)
2D(ωj)

ω − ωj
dωj

Tre(b
†
jbkρe(0)) = δjk〈nj〉

Tre(bjbjρe(0)) = 0

A = πg(ω)2D(ω)(1 + 〈n(ω)〉)
B = πg(ω)2D(ω)〈n(ω)〉

Let γ = 2(A−B) = 2πg(ω)2D(ω). The master equation becomes
(4.7)
dρs

dt
= −i∆ω[a†a, ρs(t)]−

γ

2
(1+〈n(ω)〉)(ρs(t)a

†a+a†aρs(t)−2aρs(t)a
†)−γ

2
〈n(ω)〉(c.c.)

We simplify things even further by considering only the simplest of baths, where
T ≈ 0 thus 〈n(ω)〉 ≈ 0 ≈ ∆ω, and the master equation is simply

(4.8)
dρs

dt
= −γ

2
(ρs(t)a

†a+ a†aρs(t) − 2aρs(t)a
†)

Now we are ready to examine the evolution of our simple model. We recall that it
was χ which Decoherence need destroy to produce the classical state of ρs. We now
apply the master equation to this system and see what happens to these off-diagonal
terms.

Conventionally, we start with the so-called normally ordered characteristic func-
tion,

XN(η, t) = Tr(ρs(t) exp(ηa†) exp(−η ∗ a)
We take the time derivative of this function, and using the property

[a, f(a, a†)] = ~
∂f(a, a†)

∂a†

[a†, f(a, a†)] = −~
∂f(a, a†)

∂a

[a†a, exp(ηa†) exp(−η∗a)] = ηa†) exp(ηa†) exp(−η∗a) + η∗ exp(ηa†) exp(−η∗a)a
11



producing [8, 9]

∂XN

∂t
= Tr

(
dρ

dt
exp(ηa†) exp(−η∗a)

)

(4.9)

= −γ
2

(

η
∂XN(η, t)

∂η
+ η∗

∂XN(η, t)

∂η∗

)

(4.10)

=
∂XN(η, t)

∂η(t)

∂η(t)

∂t
+
∂XN (η, t)

∂η∗(t)

∂η∗(t)

∂t
(4.11)

The solution to this equation is of the form

XN(η, t) = XN

(

η exp

(−γt
2

)

, 0

)

Where η → η(t) = η exp
(
−γt
2

)
. Finding our initial conditions as

XN (η, 0) = Tr(ρ(0) exp(ηa†) exp(−η∗a))
=

∑

i,j

(
〈αj | exp(ηa†) exp(−η∗a)|αi〉

)

=
∑

i,j

〈αj |αi〉 exp(ηα∗
j − η∗αi)(4.12)

It then follows that,

(4.13) XN (η, 0) =
∑

i,j

〈αj |αi〉 exp(ηα∗
j − η∗αi) exp(−γt

2
)

Now it is time to note that since

|α〉 = exp(−|α|2/2)

∞∑

n=0

αn

√
n!
|n〉

And thus,

〈α1|α2〉 = exp(−(|α1|2 + |α2|2)/2)

∞∑

n=0

αn
1α

n
2√
n!

and α → α exp(γt/2), the density matrix becomes,

(4.14) ρi,j = 〈αi|αj〉1−exp(−γt)|αj exp(−γt/2)〉〈αi exp(−γt/2)|
When γt≪ 1 we can approximate the prefactor on the cross terms by exp(−2|α|2γt).
It is conventional to define tc = 1/2γ|α|2 so that, along with the condition that
α→ α exp(−γt/2), our interference term becomes,

(4.15) 〈q′|ρ(t)|q′〉 = I2
1 (q′) + I2

2 (q′) + 2I1(q
′)I2(q

′) cos θ(t) exp(−t/tc)
In terms of the density matrix,

ρs =

∫ ∞

−∞

(
I2
1 I1I2 cos θ(t)

I2I1 cos θ(t) I2
2

)

dq′

Decoherence
︷︸︸︷−→

∫ ∞

−∞

(
I2
1 I1I2 cos θ(t) exp(−t/tc)

I2I1 cos θ(t) exp(−t/tc) I2
2

)

dq′

−→
∫ ∞

−∞

(
I2
1 0
0 I2

2

)

dq′

Measurement Problem
︷︸︸︷−→

(
0 0
0 1

)

or

(
1 0
0 0

)
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The diagonal states will decay into the ground state as they reach equilibrium
with the bath. However, this decay will generally be much slower than the decoher-
ence. Finally we must note that decoherence has brought us into a classical density
matrix, but the question still remains about which state we will find the particle in
when an actual measurement is taken.

We summarize that decoherence is that part of dampening, caused by a coupling
to an environment, which produces a decay (a stronger decay) of off-diagonal ele-
ments of a density matrix. Thus, in short time, the local quantum density matrix
assumes a classical appearance. Since Decoherence is much quicker than normal
dissipation, it has become a major engineering problem in the search for a quantum
computer.

5. Experimental Example of Decoherence

We now engage the full apparatus seen in Figure 3.1. The cavity (C) is loaded
with a coherent field that is off resonance with the |e〉 → |g〉 transition frequency but
instead is tuned close to a seperate transition ( |e〉 → |i〉 transition (n=52, 48.180
GHz)). The cavity is designed so that the atom traverses the field adiabatically [3].
An atom in the state |e〉 will thus interact with this field, and so we need to consider
the full quantum case of Rabi oscillation as the phase of the coherent cavity field
will be shifted. However, the principle is the same as in the semi-classical case,
so that we simply state the result. The coherent field will be phase shifted by the
presence of any atom in the |e〉 state.

After leaving R1, the atom is in the state

(5.1) |ψ1〉 =
|e〉 + |g〉√

2

It passes through (C) adiabatically so that no exchange of photons is allowed.
However, the coherent field |α〉 in the chamber will be phased shifted if the atom is
in state |e〉, and as before, a proper selection of experimental variables and atomic
velocity (≈ 100m/s [3]) can bring this shift into a particular value (π in this case).
More generally (which we will follow in the dissipation case) the phase shift is
exp(−iπa†a).

Thus the field and atom become entangled after passage, i.e.,

(5.2) |ψ1,f 〉 =
|e;−α〉 + |g;α〉√

2

As before, the atom now passes through R2 where it undergoes an π/2 pulse such
that the state becomes,

(5.3) |ψ1,f 〉 =
|e;−α〉 − |e;α〉 + |g;α〉 + |g;−α〉

2

The field state is now entangled (in a coherent superposition) so that a measurement
of the atom (finding it in either |e〉 or |g〉) will “project” the field into the state,

|ψf 〉 =
|α〉 + exp(iµ)| − α〉

√

2(1 + cosµ exp(−2a2))

{
µ = 0 Atom found in |g〉
µ = π Atom found in |e〉

Next we send in a second atom. We assume that this second atom is sent in quickly
enough (a time T later) after the first that relaxation can be neglected. After the
second atom passes R1, the system state is given as (taking the normalization factor

as
√

2 for simplicity),

|ψ2,f 〉 =
1

2

(
(|e〉 + |g〉) ⊗ (|α〉 + eiµ| − α〉)

)
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The density operator with decay and decoherence will be,

(5.4) ρaf (T ) =
1

2
(|e〉 + |g〉)(〈e| + 〈g|) ⊗ ρf (T )

Here ρf (T ) is the density operator of the field which has undergone the decay and
decoherence introduced in the previous section, i.e.

ρf (T ) =
1

N2
(|αe−γT/2〉〈αe−γT/2| + | − αe−γT/2〉〈−αe−γT/2|

+ exp
(
−2|α|2(1 − e−γT )

)
(eiµ| − αe−γT/2〉〈αe−γT/2|

+e−iµ|αe−γT/2〉〈−αe−γt/2|))
In cavity (C), the atom becomes entangled with the field so that we can write in
the non-decay case,

(5.5) |ψ2,f 〉 =
1

2

(
|e;−α〉 + |g;α〉 + eiµ(|e;α〉 + |g;−α〉)

)

The decayed density matrix is,

ρaf =
1

2

(

|e〉〈e|e−iπa†aρf (T )eiπa†a + |g〉〈g|ρf(T ) + |e〉〈g|e−iπa†aρf (T ) + |f〉〈e|ρf (T )eiπa†a
)

Next the atom passes through R2 and the wave function becomes,

|ψ2,f 〉 =
1

2
√

2
(|e;−α〉 + |g;−α〉 + |g;α〉 − |e;α〉(5.6)

+eiµ(|e;α〉 + |g;α〉 + |g;−α〉 − |e;−α〉)(5.7)

With decay, the density matrix is,

ρaf =
1

4
((|e〉 + |g〉)(〈e| + 〈g|)e−iπa†aρf (T )eiπa†a + (−|e〉 + |g〉)(−〈e| + 〈g|)ρf (T )

(|e〉 + |g〉)(−〈e| + 〈g|)e−iπa†aρf (T ) + (−|e〉 + |g〉)(〈e| + 〈g|)ρf (T )eiπa†a)

Following Davidovich et al., we write the probability of finding the second atom in
|e〉 or |g〉 as

P (
g
e

)(T ) =
1

2

(

1 ± Re(Tr(e−iπa†aρf (T )))
)

=
1

2
(1 ± Re(

1

N2
(〈αe−γT/2| − αe−γT/2〉 + 〈−αe−γT/2|αe−γT/2〉

+ exp(−2|α|2(1 − e−γT )(eiµ〈αe−γT/2|αe−γT/2〉 + e−iµ〈−αe−γT/2| − αe−γT/2〉))

=
1

2
(1 ± Re

(
2

N2

(
exp(−2|α|2e−γT ) + exp(−2|α|2(1 − e−γT )) cosµ

)
)

)

=
1

2

(

1 ± exp(−2|α|2e−γT ) + exp(−2|α|2(1 − e−γT )) cosµ

1 + (cosµ)e−2|α|2

)

Since µ = 0 corresponds to the first atom being detected in the ground state, and
µ = π corresponds to the first atom being detected in the excited state, one can
calculate P (g, e;T ), P (e, e;T ), and so on. Davidovich et al., for example, plot
P(g,e,T) and P(e,e,T) as shown in Figure 5.1.

An experiment testing these predictions was first carried out in 1996 by the Paris
team [1]. Based on these theoretical predictions, this team measured the average
conditional probability, i.e.

(5.8) η =

(
Pee

Pee + Peg

)

−
(

Pge

Pge + Pgg

)

They find strong agreement with theoretical predictions, as seen in Figure 5.2.
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Figure 5.1. Probabilities of detecting second atom in state |e〉
depending on initial state of the first atom (numerical from [3]).
Initial decay is decoherence effect. Plateau at 0.5 is classical like-
state. Decay at large T corresponds to relaxation of system into
the ground state (Pgg → 1 as t/γT →≫ 1.)

Figure 5.2. Correlation signal decay due to decoherence. The top
line and bottom line represents different phases induced by differ-
ent detuning in the (C) chamber. The dashed line corresponds
to a higher detuning and thus a less intefered state and decoheres
slower accordingly. Circles and triangles correspond to experimen-
tal results. τ = 40µs and T is varied. See [1] for details.

6. Conclusion

The Paris group, and other research groups we will discuss in our presentation,
have demonstrated the action of decoherence in reducing quantum density matrices
into classical form via a coupling of the system under study with a background
environment.
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