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Abstract. What is too often referred to as the Lorentz (it was Ludwig Lorenz
in 1867, not Hendrik Lorentz, who first proposed this gauge) is commonly used
and so we present a brief introduction.

1. Potential Equations ↔ Maxwell’s Equation.

In Lorenz’s paper [1] he begins with scaler and vector potentials (in retarded
from) and derives Maxwell’s equations from these equations. Typically, texts start
with Maxwell’s equations and develop the Lorenz Gauge [2, 3] which has the benefit
of seeming less ad hoc. Here we present a graphical representation of the develop-
ment.

We begin with the Maxwell equations in general form,

∇ · E =
ρ

ε0
∇× E = −∂B

∂t

∇ · B = 0 ∇× B = µ0J + µ0ε0
∂E

∂t

We note that

∇ · B = 0 ⇒ B ≡ ∇× A 3 ∇× E = − ∂

∂t
(∇× A)

∴ ∇×
(

E +
∂A

∂t

)

= 0 ⇒ E +
∂A

∂t
= −∇V 3 E = −∇V − ∂A

∂t

3 ∇ · E =
ρ

ε0
→

(1.1) ∇2V +
∂

∂t
(∇ · A) = − ρ

ε0

Finally we note that

∇× B = µ0J + µ0ε0
∂E

∂t
→ ∇× (∇× A) = µ0J − µ0ε0∇

(

∂V

∂t

)

− µ0ε0
∂2A

∂t2

Since

∇× (∇× A) = ∂jεijk(∂iAj) + ∂jεijk(∂jAi) = ∇(∇ · A) −∇2A,

we have

(1.2)

(

∇2A − µ0ε0
∂2A

∂t2

)

−∇
(

∇ · A + µ0ε0
∂V

∂t

)

= −µ0J
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Figure 1.1. Maxwell’s Equations ↔ Potential Equations

2. Gauges

Equations 1.1,1.2 are not unique. Suppose A′ = A + a and V ′ = V + b, we do
not violate Maxwell’s equations if

∇× a = 0 ⇒ a = ∇λ

and

∇b +
∂a

∂t
= 0 3 ∇

(

b +
∂λ

∂t

)

= 0 ⇒ b +
∂λ

∂t
= f(t), ∇f = 0.

Typically one redefines λ → λ +
∫ t

0 f(t′)dt′, returning the general gauge transform,

A′ = A + ∇λ(2.1)

V ′ = V − ∂λ

∂t
(2.2)

Two common gauges are the Coulomb and Lorenz. The Coulomb gauge has us take
λ so that ∇ · A = 0. Thus Equation 1.1 simplifies to a harmonic equation:

∇2V = − ρ

ε0
3 V (r, t) =

1

4πε0

∫

ρ(r′, t)

|r − r′|dτ ′

Unfortunately this does not do much to simplify the defining equation for the vector
potential,

∇2A − µ0ε0
∂2A

∂t2
= −µ0J + µ0ε0∇

(

∂V

∂t

)

The Lorenz gauge has us chose ∇ · A + µ0ε0
∂V
∂t

= 0. Define the d’Alembertian as

∇2 − µ0ε0
∂2

∂t2
≡ �. Then the Lorenz gauge reduces the potential equations to

�
2V = − ρ

ε0
(2.3)

�
2A = −µ0J(2.4)
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3. Quantization of an electromagnetic field with standing waves

Maxwell’s equations for a source free environment are

∇ ·D = ∇ ·B = 0(3.1)

∇×E = −∂B

∂t
(3.2)

∇×H =
∂D

∂t
(3.3)

In this environment, B = µoH and D = εoE
The simplicity of these four equations begs for even further simplification, whereby

we introduce the vector potential,

∇×A ≡ B −→ E = −∂A

∂t
−∇V

There are many ways to fit these equations while maintaining the validity of the
Maxwell equations. The coulomb potential suffices and is preferrable due to its
simplicity: ∇ · A = 0, V = 0. The identity ∇ × ∇ × A = ∇(∇ · A) + (∇ · ∇)A
coupled with our previous assertation and equation 3 above yield

(3.4) ∇2A =
1

c2

∂2A

∂t2

We will quantize this centralized magnetic potential. To completely specify the
field we would have to describe its values for all points in space; it is customary to
develop the quantization in a theoretical cube, and then let the volume of the cube
expand to infinity to accomplish a full discription.

Our derivation can consider standing or plane waves. The case of standing waves
is quicker. We assume the magnetic potential has a solution of form

(3.5) A(r, t) =
1

εo

∑

l

qlul(r)

Under this seperation of variables,

ql∇2ul =
ul

c2

d2ql

dt2
−→ c2

ul

∇2ul =
1

ql

d2ql

dt2
≡ −ω2

l(3.6)

3 ∇2ul +
ω2

l

c2
ul = 0,

d2ql

dt2
+ ω2

l ql = 0(3.7)

Being in the standing wave regime, there can be no currents on the boundary,
implying that ul|tangential = 0 and ∇ × ul|normal = 0. But of course, we have
already doomed ourselves to the fact that ∇ · ul = 0. These consequences become
important as follows.

The energy stored by our electromagnetic field is

H =
1

2

∫

(εoE
2 + µoH

2)dv =
1

2

∫

(

εo

(

∂A

∂t

)2

+ µo (∇× A)
2

)

dv

We assume via our target solution that our spatial modes will have the orthog-
onality

(3.8)

∫

ul · umdv = δl,m
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Using this orthogonality, we have

(3.8) H =
1

2

∑

l

(

dql

dt

)2 ∫

u2
l dv +

c2

2

∑

l

q2
l

∫

(∇× ul)
2 dv

The rightmost integral can be taken with an algebraic manipulation. We examine
it as follows:

(∇× ul) · (∇× ul) ≡ B · (∇× A)

A snap shot of the latter yields:

Bk(∇iAj) = ∇i(AjBk)

This suggest the generating equation

∇ · (A × B) : ∇iAjBk −∇iAkBj = Bk(∇iAj) − Ak(∇iBj)

Thus our vector identity is

∇ · (A × B) = B · (∇× A) − A · (∇× B)

More appropriate for our needs, we rearrange the previous equation to find:

B · (∇× A) = ∇ · (A × B) + A · (∇× B)

Reidentifying A = ul and B = ∇× ul, we have

(∇× ul) · (∇× ul) = ∇ · (ul ×∇× ul) + ul · (∇×∇× ul)

Remembering that this is under a volume integral, we quickly see that the first
term Stokes away as a surface integral which our previously established boundary
conditions founded as zero. The second term is taken care of by the use of a previous
vector identity. Catching up, we have

(3.8) H =
1

2

∑

l

(

dql

dt

)2

+
c2

2

∑

l

q2
l

∫

ul · (∇(∇ · ul) −∇2ul)dv

With equation 7 and our boundary conditions, this becomes,

(3.8) H =
1

2

∑

l

(

(

dql

dt

)2

+ ω2
l q2

l

)

≡
∑

l

Hl

This form is fully equivalant to the harmonic oscillator, and with the following set:

pl =
dql

dt
(3.9)

ql =

√

~

2ωl

(a†
l + al)(3.10)

pl = i

√

~ωl

2
(a†

l − al)(3.11)

we complete the standing wave quantization by concluding that

(3.11) H =
1

2

∑

l

~ωl

(

a†
l al + ala

†
l

)
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4. Quantization of an electromagnetic field using plane waves

Also common to find in the literature is the following version of the quantization
of the electromagnetic field.

We rejoin the previous discussion, interjecting now the more complicated at-
tempted solution.

(4.0) A(r, t) =
∑

m

√

~

2ωmεo

(

am(t)um(r) + a†
m(t)u∗

m(r)
)

As before, it follows that,

∇2um(r) +
ω2

c2
um(r) = 0(4.1)

∂2am

∂t2
+ ω2am = 0(4.2)

It follows, using plane waves,

am(t) = ame−iωmt(4.3)

a†
m(t) = a†

meiωmt(4.4)

um(r) =
em√

v
eikm·r @ k2

m =
ω2

m

c2
(4.5)

Here, following the notation of Orszag, em represents the appropriate unit vector.
Requiring only periodic boundary conditions: A(r + Lem) = A(r) 3 km =
2π(m1i + m2j + m3k)/L. We thus have,

(4.5) A(r, t) =
∑

m

√

~

2ωmεov
em

(

amei(km·r−ωmt) + a†
me−i(km·r−ωmt)

)

Again,

H =
1

2

∫

(

εo

(

∂A

∂t

)2

+
1

µo

(∇× A)
2

)

dv

By sight we see that the result of this integral will come down to:
(

−iaeα + ia†e−α
)

·
(

−iaeα + ia†e−α
)

+
(

iaeα − ia†e−α
)

·
(

iaeα − ia†e−α
)

Thus we are really concerned with:

2
(

−iaeα + ia†e−α
)

·
(

−iaeα + ia†e−α
)

= −2aae2α − a†a†e−2α + 2
(

aa† + a†a
)

Only the latter term survives through the integration (due to the periodic boundary
conditions), and we again conclude that:

(4.5) H =
1

2

∑

l

~ωl

(

a†
l al + ala

†
l

)
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