PHYS 305-Assignment \#1

Make sure your name is listed as a comment at the beginning of all your work. Your work must be sent as a single tar file.

Purpose: Accuracy analysis in summing series and programming practice.

Using C or $\mathrm{C}++$ and gnuplot

1. Write a program to sum the series

$$
\zeta(s) \equiv \sum_{n=1}^{\infty} n^{-s}
$$

for $s=2$. Stop your calculation when the next term in the series is less than $\epsilon=10^{-6}$ times the current sum. Print out your result to 9 decimal places. How many terms in the sum are needed? Repeat with $\epsilon=10^{-9}$. Does it make a difference if you carry out the calculations in double precision (double) instead of single precision (float)? Why or why not? This question should be answered as output to the user.
2. Repeat for $\zeta(4.5)$.
3. Write a program to sum the series

$$
f_{N}(x)=\sum_{n=1}^{N} \frac{2}{\pi}\left[1-(-1)^{n}\right] \frac{\sin (n x)}{n}
$$

This is the Fourier series representation of the step function

$$
f(x)=\left\{\begin{array}{rr}
-1, & -\pi<x<0 \\
1, & 0<x<\pi
\end{array}\right.
$$

Plot $f(x), f_{1}(x), f_{5}(x), f_{10}(x)$, and $f_{100}(x)$ on a single graph, for $0 \leq x<\pi$ in steps of $\delta x=\pi / 500$.
4. What value of N is needed to determine the integral $\int_{0}^{\pi} \sin x d x$ to a relative accuracy of $\epsilon=10^{-4}$? (How do you go about determining the relative accuracy in this case?) What value of N is needed for $\epsilon=10^{-6}$? Answer this question using the trapezoidal rule and the Simpson rule.

