How to be a Computational Physicist after you've taken all the classes

Travis Hoppe

Drexel University
March 11, 2010

Caveats ...

- This is a personal list
- This is not comprehensive (backups? reg-ex? debugging? database management?)
- This is a non-essential list

1 How to present

2 How to learn

3 How to ask for help

4 How to manage

5 How to navigate

6 Putting it together

LaTeX

- LaTeX is NOT WYSIWYG
- LaTeX forces you to focus on content
- LaTeX is Portable
- LaTeX is Pretty!
- LaTeX is Free!

Table

`Oh, I've had such a curious dream!' said Alice, and she told her sister, as well as she could remember them, all these strange Adventures of hers that you have just been reading about; and when she had finished, her sister kissed her, and said, `It was a curious dream, dear, certainly: but now run in to your tea; it's getting late.' So Alice got up and ran off, thinking while she ran, as well she might, what a wonderful dream it had been.|
'Oh, I've had such a curious dream!' said Alice, and she told her sister, as well as she could remember them, all these strange Adventures of hers that you have just been reading about; and when she had finished, her sister kissed her, and said, 'It was a curious dream, dear, certainly: but now run in to your tea; it's getting late.' So Alice got up and ran off, thinking while she ran, as well she might, what a wonderful dream it had been.

[^0]
Wang-Landau Density of States Calculation in Crowded Protein Environments

Travis Hoppe, Jian-Min Yuan
Drexel University

 a second pass was wsod to dotormine tho MiE.E. The wproach onsurvea


```
Adapted from :
http://amath.colorado.edu/documentation/LaTeX/basics/example.html
```

\documentclass[12pt]\{article\}

\title\{My Sample \LaTeX\{\} Document\}

\author\{Travis Hoppe\}
\begin\{document\} }
\maketitle $\%$ automatic title!
This is (very) short primer to LaTeX

\section\{Formulae; inline vs. displayed\}

I insert an inline formula by surrounding it with a pair of
single $\backslash \$$ symbols; what is $\$ \mathrm{x}=3$ \times $5 \$$?
For a \emph\{displayed\} formula, use double-
\$
before and after --- include no blank lines!
$\$ \$ \backslash m u \wedge\{\backslash a l p h a+3\}+(\backslash a l p h a \wedge\{\backslash$ beta $\}+\backslash$ theta_\{
Use the \emph\{equation\} environment to get numbered formulae, e.g.,
\begin\{equation\} }
$y_{-}\{i+1\}=x_{-}\{i\}^{\wedge}\{2 n\}-\backslash \operatorname{sqrt}\{5\} x_{-}\{i-1\}^{\wedge}\{n\}+\backslash \operatorname{sqrt}\left\{x_{-}\{i-2\}^{\wedge} 7\right\}-1$
\end\{equation\} }
\begin\{equation\} }
$\backslash f r a c\{\backslash$ partial $u\}\{\backslash$ partial $t\}+\backslash n a b l a \wedge\{4\} u+\backslash n a b l a \wedge\{2\} u+$
\frac12 $|\backslash n a b l a ~ u|^{\wedge}\{2\}^{\sim}=\sim c^{\sim} 2$
\end\{equation\} }
\end\{document\} \% End of document. }

My Sample LATEX Document

Travis Hoppe
March 11, 2010

This is (very) short primer to LaTeX

1 Formulae; inline vs. displayed

I insert an inline formula by surrounding it with a pair of single $\$$ symbols; what is $x=3 \times 5$? For a displayed formula, use double- $\$$ before and after include no blank lines!

$$
\mu^{\alpha+3}+\left(\alpha^{\beta}+\theta_{\gamma}+\delta+\zeta\right)
$$

Use the equation environment to get numbered formulae, e.g.,

$$
\begin{align*}
& y_{i+1}=x_{i}^{2 n}-\sqrt{5} x_{i-1}^{n}+\sqrt{x_{i-2}^{7}}-1 \tag{1}\\
& \frac{\partial u}{\partial t}+\nabla^{4} u+\nabla^{2} u+\frac{1}{2}|\nabla u|^{2}=c^{2} \tag{2}
\end{align*}
$$

Project Euler

Often we are faced with learning a new programming language (or some new library from a known one).

- Textbooks: Will give a good detailed instruction to the language. Often too comprehensive - will detail many features irrelevant to you
- Verbal instruction (that's me!): Allows immediate feedback with questions. Less of a hands-on approach, the information is given but rarely self-analyzed
- Practice : Programing is as much of an art as it is a science - by far best way to learn

Choosing good material is hard - after all you don't know the language in the first place!

Time and time again, you will encounter the same problems in a different setting.

Project Euler

- Project Euler is a great collection of problems that require three elements needed for physics, mathematics, critical thinking and tight coding practices.
- Once you solve a problem you are given access to a forum where you can see answers from other users. These answers span the gamut of languages from C++, Python, Ruby, Perl, Assembly, Scheme, Delphi, etc...
- Often your solution is not as clever as others - use them to learn!

Stack Overflow

- The typical response to a dumb (not naive) question is to Google it (JFGI).
- There are times when Google fails - this is often because you don't know how to ask the right question in the first place!
- Similar to looking up how to spell a word in a dictionary when you don't know how to spell it!

When Google fails and Wikipedia is not specific enough - turn to the most helpful programming message board created:

Istackoverflow

The site leverages the communication of a form, while encouraging participation through points. In short, it's the ultimate nerd video game.

Read a file in reverse order using python

tagged
python $\times 19593$
file $\times 1809$

reverse	$\mathbf{7 6}$

asked
11 days ago
viewed
157 times
latest activity
11 days ago

Wanted: Senior Web

Designer/Developer - Director of Technology at Seed Media Group LLC (New York, NY 10010). See this and other great job listings at jobs.stackoverflow.com.

Related

Reverse proxy capable pure python webserver?

Reverse proxy capable pure python webserver?

Python Reverse Generator
Reverse engineering a statistics data file from my insulin pump controller filter to reverse lines of a text file Using Cups Reverse Orientation on a

BitBucket

bitbucket

- Small projects : 100 lines of code
- Large projects : (Linux kernel 2.6.32 12m LOC) (Windows Server 2003 50m LOC)
- Impossible to manage with one central location for the code, graphics, UI, etc...
- Solution: Code repository, allow pieces to be checked out when needed

Unix

Learning to navigate across your system is akin to learning to use the mouse. Is it necessary?

Commands to know

- locate find files by name
- ssh OpenSSH SSH client (remote login program)
- scp secure copy (remote file copy program)
- grep print lines matching a pattern
- awk pattern scanning and text processing language
- man an interface to the on-line reference manuals
- history GNU History Library
- cat, head, tail concatenate files and print on the standard output
- chmod chown change file owner and group
- top display Linux tasks
- ps, pkill look up or signal processes based on name and other attributes

Lit-Py

```
# {\Large Mandbrot Set} \\
# The Mandelbrot set $M$ is defined by a family of complex quadratic polynomials
$P_c:\mathbb C\to\mathbb C$ given by: $P_c: z\to z^2 + c$ where $c$ is a complex parameter.
For each $c$, one considers the behavior of the sequence $(0, P_c(0), P_c(P_c(0)), P_c(P_c(P_c(0))),
\ldots)$ obtained by iterated function $P_c(z)$ starting at critical point $z = 0$, which either escapes
to infinity or stays within a disk of some finite radius. The Mandelbrot set is defined as the set of all
points $c$ such that the above sequence does not escape to infinity.\\
# \textbf{Create a grid}
from pylab import *
X = linspace(-1.5, .8, 200)
Y = linspace(-1, 1, 200)
XG,YG = meshgrid(X,Y)
G = zeros(XG.shape)
# \textbf{Define the Mandelbrot function}
def MBset(c, z=0):
    for n in xrange(80):
        if abs(z)>2: break
        z=z**2 + c
    return n
# Test the function to see if it is working properly
print MBset(1 + .5J)
# \textbf{Compute Mandelbrot set}, note that XG and YG are the grid coordinates
for ix in ndindex(G.shape):
    G[ix] = MBset( XG[ix] + YG[ix]*1J )
# \textbf{Plot the result}
imshow(G, extent=(-1.5, .8,-1,1), interpolation='nearest')
show()
```


Mandbrot Set

The Mandelbrot set M is defined by a family of complex quadratic polynomials $P_{c}: C \rightarrow C$ given by: $P_{c}: z \rightarrow z^{2}+c$ where c is a complex parameter. For each c, one considers the behavior of the sequence $\left(0, P_{c}(0), P_{c}\left(P_{c}(0)\right), P_{c}\left(P_{c}\left(P_{c}(0)\right)\right), \ldots\right)$ obtained by iterated function $P_{c}(z)$ starting at critical point $z=0$, which either escapes to infinity or stays within a disk of some finite radius. The Mandelbrot set is defined as the set of all points c such that the above sequence does not escape to infinity.
as the set of all
Create a grid

from pylab import *

$\mathrm{X}=\operatorname{linspace}(-1.5, .8,200)$
$\mathrm{Y}=$ linspace $(-1,1,200)$
$\mathrm{XG}, \mathrm{YG}=$ meshgrid (X, Y)
$\mathrm{G}=\operatorname{zeros}$ (XG.shape)
Define the Mandelbrot function
def MBset ($c, z=0$):
for n in xrange (80):
if abs $(z)>2$: break
$\mathrm{z}=\mathrm{z} * * 2+\mathrm{c}$
return n
Test the function to see if it is working properly

print MBset ($1+.5 \mathrm{~J}$)

$\geqslant 2$
Compute Mandelbrot set, note that XG and YG are the grid coordinates
for ix in ndindex (G.shape) :
$G[i x]=\operatorname{MBset}(X G[i x]+Y G[i x] * 1 J)$

Plot the result

imshow(G, extent=($-1.5, .8,-1,1$), interpolation='nearest') show()

[^0]: Figure: Microsoft Office

