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An excellent way to waste an afternoon

Random Matrix Theory
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What do you know, really?

Each branch of physics makes certain assumptions and simplifications.
Break it down on what is ‘known’.

Classical - Exact: H
Quantum - Exact in a probable sense: Ψ
Fluid Mech - Averaged: u

Statistical Mechanics - Ensemble averaged: Z

Random Matrix Theory - Ensemble only: Aij ∈ GUE
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How could this possibly be useful?

First formally studied in physics by Wigner (yes that one) via detailed
atomic models

Eigenvalues of the Hamiltonian would give the energies but Wigner
supposed that the exact numbers entries do not matter per se

The ensemble from which they are chosen from should have the same
statistics, thus ‘average’ predictions should be correct.

Choose an ensemble of matrices that have the same symmetries as
your system.
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Ensembles of matrices?

GOE (Gaussian orthogonal ensemble) probability density:

exp
(
−NTr(H2)

γ2

)
ΠdHµν

ΠdHµν product of differentials of the independent matrix elements,
N matrix size, Gaussian factor introduced to render integrals over
space convergent (cutoff). Characterized by a single parameter γ,
with dimensions of energy. γ Determines the mean-level spacing.

Look at statistics of eigenvalues λ: Nearest neighbor spacing

Stay with me, pictures are coming!
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Typical λ Spacings for different systems

2003     July–August     297www.americanscientist.org

periodic random jiggled erbium eigenvalues zeta zeros primes bridges railroad tree rings quakes bicycling

Figure 1. One-dimensional distributions each consist of 100 levels. From left to right the spectra are: a periodic array of evenly spaced lines; a ran-
dom sequence; a periodic array perturbed by a slight random “jiggling” of each level; energy states of the erbium-166 nucleus, all having the same
spin and parity quantum numbers; the central 100 eigenvalues of a 300-by-300 random symmetric matrix; positions of zeros of the Riemann zeta
function lying just above the 1022nd zero; 100 consecutive prime numbers beginning with 103,613; locations of the 100 northernmost overpasses and
underpasses along Interstate 85; positions of crossties on a railroad siding; locations of growth rings from 1884 through 1983 in a fir tree on Mount
Saint Helens, Washington; dates of California earthquakes with a magnitude of 5.0 or greater, 1969 to 2001; lengths of 100 consecutive bike rides. 
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Quantum Chaos
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Quantum Chaos as a function of Integrability
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Wigner and Girkos Law

Eigenvalue spacing for Real (Symmetric) Matrix Standard Normal
Distributions

Girko’s Law predicts eigenvalues spacing will cover the unit disc uniformly.
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Bonus! Connections to Riemann-Zeta function

One of the most famous functions in mathematics:

ζ(s) =
∞∑
n=1

1
ns

One afternoon (over tea) the Hugh Montgomery was explaining to colleges
about the spacings of the zeros of this function. He found that the pair
correlation between two of them was:

1−
(

sinπx
πx

)2

Freeman Dyson walks over and recognizes this as the exact same result he
got, for the Gaussian Unitary Ensemble!
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Is it hot in here or am I imagining things?

Complex Temperatures
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Since Stat. Mech. was to easy

Motivation comes from the theory of phase transitions:

F = −kT lnZ

Z(T, J) =
∑

e−βEi(J)

Phase transitions occur where the free-energy is non-analytic.

Make the substitution x = eJ (Yang-Lee) or y = eβ (Fisher)

Z(T, J) =
N∑
i

yEi = 0

has complex roots, which in the thermodynamic limit N →∞, may
collapse onto the real axis.

If a root does lie on the real axis then phase transition will occur!

This can NOT happen in finite systems!

Can use renormalization, and finite-size scaling tricks to find the
critical points
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Cayley Trees == Beethe Lattice

As a sample system, look at the Ising Bethe (yes that one) lattice:

Often times this model is exactly solvable for a given H.

Surface area ∝ Number of nodes (very unusual!)
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Fractal T ∈ C? ... oh yeah, I went there

Yang-Lee partition function zeros for the Ising Cayley tree
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om-nom-nom

Fisher partition function zeros for the Ising Cayley tree
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YL and Fisher Zeros

Partition function zeros for one-dimensional Blume-Capel

Figure: Yang-Lee Zeros Figure: Fisher Zeros
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Why punk rock helps me study

Stochastic Resonance
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When messy is good

Nonlinear system where noise helps otherwise weak signal induce
transitions between stable equilibrium states.

Started with studies of ice-age periodicity

Applicable to Schmitt riggers, ring-laser experiments, neurological
inputs, Josephson Junctions and more...
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Simplest example of Stochastic Resonance

Overdamped Brownian motion in bistable potential with periodic forcing:

ẋ(t) = ((1/2)x2 − (1/4)x4) +A0 cos(Ωt+ φ) + ξ(t)

< ξ(t)ξ(0) >= 2Dδ(t) < ξ(t) >= 0

ξ(t) is a Wigner process, ie. white, Gaussian noise. Function has two
peaks at +/− xm = 1. In absence of forcing x(t) fluctuates around local
minima according to Kramers rate:

rK =
1√
2π

exp(−∆V/D)

At resonant values of D the ‘signal’ (ie. the value that Ω can be detected
from the noise) is at maximized:

SNR ∝
(
ε∆V
D

)2

e−∆V/D
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SR Potential Example
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SR: JJ Example
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