PHYS 114 Contemporary Physics II - Rec 1
 January 9, 2008

Angular Momentum

Feel free to use old code you have written before, as long as it belongs to you.

- Create a 'solar system' of three planets. Let each planet have a mass equal to $1,2,3 \mathrm{~kg}$ respectively. These bodies are to interact via the gravitational forces. Give the planets some initial velocity so they have an interesting, semi-stable trajectory.
- While the simulation is running, denote the center of mass of the system by a small green sphere. This should be continuously updated to reflect the current center of mass.

As a series of text labels, print the following the the screen during the simulation:

- The angular momentum of the system using the origin as the reference point:

$$
\begin{equation*}
\mathbf{L}_{0}=\sum \mathbf{r}_{i} \times \mathbf{p}_{i} \tag{1}
\end{equation*}
$$

- The angular momentum of the system using the reference point $\langle 7,-2,3\rangle$:

$$
\begin{equation*}
\mathbf{L}_{1}=\sum \mathbf{r}_{i}^{\prime} \times \mathbf{p}_{i}^{\prime} \tag{2}
\end{equation*}
$$

- The angular momentum of the center of mass about the origin:

$$
\begin{equation*}
\mathbf{L}_{C M}=\mathbf{R} \times \mathbf{P} \tag{3}
\end{equation*}
$$

- The angular momentum about the center of mass (the double primes denote the coordinates using the center of mass as the origin)

$$
\begin{equation*}
\mathbf{L}_{\text {aboutCM }}=\sum \mathbf{r}_{i}^{\prime \prime} \times \mathbf{p}_{i}^{\prime \prime} \tag{4}
\end{equation*}
$$

For full credit, identify at least two constants of motion from the above equations. Include this information as text to the user or as a comment in your code. Please don't forget your name in the beginning of your comments as well!

