PHYSICS 113: Contemporary Physics -
Final Exam Formula Sheet

$$
\vec{F}_{n e t}=\frac{d \vec{p}}{d t}
$$

For a single timestep:
Not every equation here will actually be needed on the exam, and some may be needed more than once. Process of elimination is not a terribly good strategy.
Physical Constants:

$$
\begin{gathered}
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
h=6.626 \times 10^{-34} \mathrm{Js} \\
\hbar=1.05 \times 10^{-34} \mathrm{Js}
\end{gathered}
$$

Units:

$$
\begin{gathered}
1 \mathrm{~N}=\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2} \\
1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} \\
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
\end{gathered}
$$

A Handy Math relation:

$$
(1+x)^{n} \simeq 1+n x
$$

Fundamental Physical Definitions:

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t} \\
\vec{a} & =\frac{d \vec{v}}{d t}
\end{aligned}
$$

Projectile Motion

$$
\begin{gathered}
\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
\vec{v}=\vec{v}_{0}+\vec{a} t
\end{gathered}
$$

From Newton's Laws (in relativity):

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \\
& \vec{p}=\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}} \\
& \vec{v}=\frac{\vec{p} / m}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}}
\end{aligned}
$$

$$
\Delta \vec{p}=\vec{F}_{n e t} \Delta t
$$

$$
\begin{aligned}
\Delta \vec{r} & =\vec{v} \Delta t \\
& =\frac{\vec{p} / m}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}} \Delta t \\
& \simeq \frac{\vec{p}}{m} \Delta t
\end{aligned}
$$

Springs:

$$
F=-k x
$$

Which has the solution:

$$
x(t)=x_{0} \cos \left(\omega_{0} t\right)
$$

where

$$
\omega_{0}=\sqrt{k / m}
$$

Young's Modulus:

$$
\frac{F}{A}=Y \times \frac{\Delta L}{L}
$$

Pendulums:

$$
\omega_{0}=\sqrt{g / l}
$$

The Force of Gravity:

$$
\vec{F}_{1, g}=\frac{G m_{1} m_{2}}{r^{2}} \hat{r}_{12}
$$

Near the surface of the earth:

$$
\vec{F}_{g}=-m g \hat{j}
$$

Properties of a circular orbit:

$$
\begin{aligned}
& \vec{a}_{c}=-\frac{v^{2}}{r} \hat{r} \\
& v=\sqrt{\frac{G M}{r}}
\end{aligned}
$$

Work:

$$
\begin{aligned}
& W=\vec{F} \cdot \Delta \vec{r} \\
& W_{e x t}=\Delta E
\end{aligned}
$$

$$
P=\frac{W}{\Delta t}=\vec{F} \cdot \vec{v}
$$

Energy:

$$
\begin{gathered}
\frac{d E}{d t}=\vec{v} \cdot \frac{d \vec{p}}{d t} \\
E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}} \\
E=m c^{2}+K+U \\
E^{2}=\left(m c^{2}\right)^{2}+(p c)^{2} \\
K=m c^{2}(\gamma-1) \\
K \simeq \frac{p^{2}}{2 m}
\end{gathered}
$$

Potential Energy:

$$
\frac{d U}{d x}=-F_{x}
$$

For a Mass on a Spring:

$$
U_{s}=\frac{1}{2} k x^{2}
$$

Gravitational Potential Energy:

$$
U_{g}=-\frac{G m_{1} m_{2}}{r}
$$

Near the Surface of the earth:

$$
U_{g}=m g y
$$

Special Relativity:

$$
\begin{aligned}
\Delta x^{\prime} & =\gamma \Delta x-v \gamma \Delta t \\
\Delta t^{\prime} & =\gamma \Delta t-\frac{v}{c^{2}} \gamma \Delta x \\
u^{\prime} & =\frac{u-v}{1-\frac{u v}{c^{2}}} \\
\Delta x & =\gamma \Delta x^{\prime}+v \gamma \Delta t^{\prime} \\
\Delta t & =\gamma \Delta t^{\prime}+\frac{v}{c^{2}} \gamma \Delta x^{\prime} \\
u & =\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
\end{aligned}
$$

Heat and Friction
Contact Friction:

$$
F_{r}=\mu F_{N}
$$

Viscous Friction:

$$
F_{v}=-b v
$$

Air Resistance

$$
\begin{gathered}
F_{a}=-\frac{1}{2} C \rho A v^{2} \\
v_{t}=\sqrt{\frac{2 m g}{C \rho A}} \\
\Delta E=Q+W \\
Q=\Delta E_{\text {thermal }}=m C \Delta T
\end{gathered}
$$

Quantized Energy:

$$
E_{\gamma}=E_{u}-E_{l}=h \nu
$$

Hydrogen:

$$
E_{n}=-\frac{13.6 e \mathrm{~V}}{n^{2}}
$$

QHO:

$$
E_{n}=(n+1 / 2) \hbar \omega
$$

Wave, Photons and Quantum Mechanics:

$$
\begin{gathered}
c=\lambda \nu \\
k \equiv \frac{2 \pi}{\lambda} \\
p=\frac{h \nu}{c}=\frac{\hbar}{\lambda} \\
P(x) d x=|\psi(x)|^{2} d x
\end{gathered}
$$

Center of Mass:

$$
\begin{gathered}
\vec{r}_{c o m}=\frac{\sum_{i} m_{i} \vec{r}_{i}}{M_{t o t}} \\
\vec{v}_{c o m}=\frac{\sum_{i} m_{i} \vec{v}_{i}}{M_{t o t}} \\
\vec{P}_{\text {tot }}=M_{t o t} \vec{v}_{c o m} \\
I=\sum_{i} m_{i} r_{i}^{2} \\
I_{\text {disk }}=\frac{1}{2} M R^{2} \\
I_{\text {sphere }}=\frac{2}{5} M R^{2}
\end{gathered}
$$

$$
E_{r o t}=\frac{1}{2} I \omega^{2}
$$

Collisions:
1-d elastic:

$$
\begin{aligned}
& p_{3}=p_{1}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)+p_{2}\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) \\
& p_{4}=p_{1}\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right)+p_{2}\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right)
\end{aligned}
$$

2-d elastic (ϕ is the scatter angle of the second particle which is initially stationary):

$$
\cos \theta=\frac{m_{1}+m_{2}-2 m_{2} \cos ^{2} \phi}{\sqrt{m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2}-4 m_{1} m_{2} \cos ^{2} \phi}}
$$

