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Chapter 2

The Momentum Principle
In this chapter we introduce the Momentum Principle, the first of three fun-
damental principles of mechanics which together make it possible to pre-
dict and explain a very broad range of real-world phenomena (the other two
are the Energy Principle and the Angular Momentum Principle). In Chap-
ter 1 you learned how to describe positions and motions in 3D, and we dis-
cussed the notion of “interaction” where change is an indicator that an
interaction has occurred. We introduced the concept of momentum as a
quantity whose change is related to the amount of interaction occurring.
The Momentum Principle makes a quantitative connection between
amount of interaction and change of momentum.

The major topics in this chapter are:
• The Momentum Principle, relating momentum change to interaction
• Force as a quantitative measure of interaction
• The concept of a “system” to which to apply the Momentum Principle

2.1 The Momentum Principle

Newton’s first law of motion, “the stronger the interaction, the bigger the
change in the momentum,” states a qualitative relationship between mo-
mentum and interaction. The Momentum Principle restates this relation in
a powerful quantitative form that can be used to predict the behavior of ob-
jects. The validity of the Momentum Principle has been verified through a
very wide variety of observations and experiments. It is a summary of the way
interactions affect motion in the real world.

As usual, the capital Greek letter delta (∆) means “change of” (some-
thing), or “final minus initial.” The “net” force  is the vector sum of all
the forces acting on an object. We will study forces in detail in this chapter.
Examples of forces include 

• the repulsive electric force a proton exerts on another proton
• the attractive gravitational force the Earth exerts on you
• the force that a compressed spring exerts on your hand
• the force on a spacecraft of expanding gases in a rocket engine
• the force of the air on the propeller of an airplane or swamp boat

Time interval short enough

We require a “short enough time interval” for the Momentum Principle to
be valid, in the sense that the net force shouldn’t change very much during
the time interval. If the net force hardly changes during the motion, we can
use a very large time interval. If the net force changes rapidly, we need to

THE MOMENTUM PRINCIPLE

 

(for a short enough time interval ∆t)

In words: change of momentum (the effect) is equal to the net force
acting on an object times the duration of the interaction (the cause).

∆p Fnet∆t=

Fnet
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use a series of small time intervals for accuracy. This is the same issue we met
with the position update relation, , where we need to use a
short enough time interval that the velocity isn’t changing very much, or
else we need to know the average velocity during the time interval.

Since  (“final minus initial”), we can rearrange the
Momentum Principle like this:

UPDATE FORM OF THE MOMENTUM PRINCIPLE

 (for a short enough time interval ∆t)

or, written out:

This update version of the Momentum Principle emphasizes the fact that if
you know the initial momentum, and you know the net force acting during
a “short enough” time interval, you can predict the final momentum. It’s an
interesting fact of nature that the x component of a force doesn’t affect the
y or z components of momentum, as you can see from these equations. 

The Momentum Principle written in terms of vectors can be interpreted
as three ordinary scalar equations, for components of the motion along the
x, y, and z axes:

Note how much information is expressed compactly in the vector form of
this equation, . In some simple situations, for example, if
we know that the y and z components of an object’s momentum are not
changing, we may choose to work only with the x component of the momen-
tum update equation.

The Momentum Principle has been experimentally verified in a very wide
range of phenomena. We will see later that it can be restated in a very gen-
eral form: the change in momentum of an object plus the change in mo-
mentum of its surroundings is zero (Conservation of Momentum). In this
form the principle can be applied to all objects, from the very small (atoms
and nuclei) to the very large (galaxies and black holes), though understand-
ing these systems in detail requires quantum mechanics or general relativi-
ty.

Historically, the Momentum Principle is often called “Newton’s second
law of motion.” We will refer to it as the Momentum Principle to emphasize
the key role played by momentum in physical processes.

You are already familiar with change of momentum  and with time in-
terval . The new element is the concept of “force.”

2.1.1 Force

Scientists and engineers employ the concept of “force” to quantify interac-
tions between two objects. The net force, the vector sum of all the forces act-
ing on an object, acting for some time  causes changes of momentum
(Figure 2.1). Like momentum or velocity, force is described by a vector,
since a force has a magnitude and is exerted in a particular direction. Mea-
suring the magnitude of the velocity of an object (in other words, measur-
ing its speed) is a familiar task, but how do we measure the magnitude of a
force? 

rf ri vavg∆t+=

∆p pf pi– Fnet∆t= =

pf pi Fnet∆t+=

pxf pyf pzf, ,〈 〉 pxi pyi pzi, ,〈 〉 Fx Fy Fz, ,〈 〉 ∆t( )+=

pxf pxi Fnet x, ∆t+=

pyf pyi Fnet y, ∆t+=

pzf pzi Fnet z, ∆t+=

pf pi Fnet∆t+=

∆p
∆t

Figure 2.1 The bigger the net force, the
greater the change of momentum.

∆p Fnet∆t=
∆t
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A simple way to measure force is to use the stretch or compression of a a
spring. In Figure 2.2 we hang a block from a spring, and note that the spring
is stretched a distance s. Then we hang two such blocks from the spring, and
we see that the spring is stretched twice as much. By experimentation, we
find that any spring made of the same material and produced to the same
specifications behaves in the same way. Similarly, we can observe how much
the spring compresses when the same blocks are supported by it. We find
that one block compresses the spring by the same distance , and two
blocks compress it by  (Figure 2.3). (Compression is considered nega-
tive stretch, because the length of the spring decreases.)

We can use a spring to make a scale for measuring forces, calibrating it in
terms of what force is required to produce a given stretch. The SI unit of
force is the “newton,” abbreviated as “N.” One newton is a rather small
force. A newton is approximately the downward gravitational force of the
Earth on a small apple, or about a quarter of a pound. If you hold a small
apple at rest in your hand, you apply an upward force of about one newton,
compensating for the downward pull of the Earth.

The spring force law

A “force law” describes mathematically how a force depends on the situa-
tion. In this chapter we’ll learn about various force laws, including the grav-
itational force law and the electric force law. For a spring, the magnitude of
the force exerted by a spring on an object attached to the spring is given by
the following force law:

THE SPRING FORCE LAW (MAGNITUDE)

 is the absolute value of the stretch; formally:

 is the length of the relaxed spring
 is the length of the spring when stretched or compressed

 is the “spring stiffness” 

The constant  is a positive number, and is a property of the particular
spring: the stiffer the spring, the larger the spring stiffness, and the larger
the force needed to stretch the spring. Note that s is positive if the spring is
stretched ( ) and negative if the spring is compressed ( ).

We will see later that this equation can be rewritten as a vector equation,
which gives both the magnitude and the direction of the force.

In the following, be sure to work through the “stop and think” activities before read-
ing ahead. To learn the material, you need to engage actively with the questions posed
here, not just read passively.

? Suppose a certain spring has been calibrated so that we know that
its spring stiffness  is 500 N/m. You pull on the spring and observe
that it is 0.01 m (1 cm) longer than it was when relaxed. What is the
magnitude of the force exerted by the spring on your hand?

The force law gives . Note that the
total length of the spring doesn’t matter; it’s just the amount of stretch or
compression that matters.

? Suppose that instead of pulling on the spring, you push on it, so the
spring becomes shorter than its relaxed length. If the relaxed length of
the spring is 10 cm, and you compress the spring to a length of 9 cm,
what is the magnitude of the force exerted by the spring on your hand?

Figure 2.2 Stretching of a spring is a mea-
sure of force.

s
2s s

2 s

s
2s

Figure 2.3 Compression of a spring is also a
measure of force.

Fspring ks s=

s

s ∆L L L0–= =

L0
L

ks

ks

L L0> L L0<

ks

Fspring 500 N/m( ) +0.01 m 5 N= =
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The stretch of the spring in SI units is

. 

The force law gives

. 

The magnitude of the force is the same as in the previous case. Of course
the direction of the force exerted by the spring on your hand is now differ-
ent, but we would need to write a full vector equation to incorporate this in-
formation.

Reciprocity

In the preceding example, you pushed on a spring, compressing it, and we
calculated the force exerted by the compressed spring on your hand. Of
course, your hand has to exert a force on the spring in order to keep it com-
pressed. It turns out that the force exerted by your hand on the spring is
equal in magnitude (though opposite in direction) to the force exerted by
the spring on your hand. This “reciprocity” of forces is a fundamental prop-
erty of the electric interaction between the electrons and protons in your
hand and the electrons and protons making up the spring. We will say more
about the reciprocity of electric and gravitational forces later in this chap-
ter.

 Ex. 2.1 You push on a spring whose stiffness is 11 N/m,
compressing it until it is 2.5 cm shorter than its relaxed length.
What is the magnitude of the force the spring now exerts on your
hand?

 Ex. 2.2 A spring is 0.17 m long when it is relaxed. When a force of
magnitude 250 N is applied, the spring becomes 0.24 m long. What
is the stiffness of this spring?

 Ex. 2.3 The spring in the previous exercise is now compressed so
that its length is 0.15 m. What magnitude of force is required to do
this?

2.1.2 Impulse

The amount of interaction affecting an object includes both a measure of
the strength of the interaction expressed as the net force  and of the du-
ration  of the interaction. Either a bigger force, or a longer application
of the force, will cause more change of momentum.

The product of a force and a time interval is called “impulse” (Figure
2.4): 

DEFINITION OF IMPULSE

 (for small enough ∆t)

Impulse has units of N·s (newton-seconds)

With this definition of impulse we can state the Momentum Principle in
words like this:

The change of momentum of an object
is equal to the net impulse applied to it. 

s L L0– 0.09 m 0.10 m–( ) 0.01 m–= = =

Fspring 500 N/m( ) 0.01–  m 5 N= =

Figure 2.4 Net impulse: net force times
duration of the interaction. Net impulse
changes momentum.

∆p Fnet∆t=

Fnet

∆t

Impulse F∆t≡
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? A constant net force  acts on an object for 10 s. What is
the net impulse applied to the object?

 Ex. 2.4 A constant net force of  acts on an
object for 2 minutes. What is the impulse applied to the object, in
SI units?

2.1.3 Predictions using the Momentum Principle

Experiments can easily be done to verify the Momentum Principle. Many in-
troductory physics laboratories have air tracks like the one illustrated in Fig-
ure 2.5. The long triangular base has many small holes in it, and air under
pressure is blown out through these holes. The air forms a cushion under
the glider, allowing it to coast smoothly with very little friction. Suppose we
place a block on a glider sitting on a long air track (Figure 2.5), and we at-
tach a spring to it whose stiffness is 500 N/m, like the one discussed earlier.
We will choose the x axis to point in the direction of the motion.

Suppose the block starts from rest, and you pull for 1 second with the
spring stretched 4 cm, so that you know that you are pulling with a force of
magnitude  (you will have to move forward in
order to keep the spring stretched). 

? The block starts from rest, so . What would
the Momentum Principle predict the new momentum of the block to
be after 1 second?

Since the friction force on the glider is negligibly small, the net force on the
glider is just the force with which you pull. The Momentum Principle (up-
date form) applied to the glider is:

Since the net force is in the x direction, we know that the y and z compo-
nents of the glider’s momentum will not change, and we can work with just
the x component of the momentum.

If you do the experiment, this is what you will observe.
You keep pulling for another second, but now with the spring stretched

half as much, 2 cm, so you know that you’re pulling with half the original
force:

? What would the Momentum Principle predict the new x
component of the momentum of the block to be now?

The Momentum Principle would predict the following, where we take the
final momentum from the first pull and consider that to be the initial mo-
mentum for the second pull:

This is what is observed experimentally. Note that the effects of the interac-
tions in the two 1-second intervals add; we add the two momentum changes.

3 5– 4, ,〈 〉  N

impulse Fnet∆t 3 5– 4, ,〈 〉  N 10 s( )⋅ 30 50– 40, ,〈 〉  N s⋅= = =

0.5– 0.2– 0.8, ,〈 〉  N

Figure 2.5 Apply a constant force to a block
on a low-friction air track.

F

x

500 N/m( ) 0.04 m( ) 20 N=

pi 0 0 0, ,〈 〉  kg·m/s=

pf 0 0 0, ,〈 〉  kg·m/s 20 0 0, ,〈 〉  N 1 s( )+=

pxf pxi Fnet x, ∆t+ 0 20 N( ) 1 s( )+ 20 kg·m/s= = =

500 N/m( ) 0.02 m( ) 10 N=

pxf pxi Fnet x, ∆t+ 20 kg·m/s( ) 10 N( ) 1 s( )+ 30 kg·m/s= = =
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Instead of varying the net force, we could try varying the duration of the in-
teraction (Figure 2.6). Start over with the block initially at rest and pull for
2 seconds with the spring stretched 4 cm, so the force is 20 N.

? The block starts from rest ( ). What would the Momentum
Principle predict the new x component of the momentum of the block
to be?

Here the final x component of momentum was 40 kg⋅m/s after applying a
force of 20 N for 2 s, whereas in the previous experiments we got 30 kg⋅m/s
after applying a force of 20 N for 1 s plus a force of 10 N for 1s. In our cal-
culations we can use big values of ∆t as long as the force isn’t changing
much. When the force changed from 20 N for a second to 10 N for a second
we had to treat the two time intervals separately.

Many different experiments have shown the validity of the Momentum
Principle. If we use two springs to move the block, we find that it is indeed
the vector sum of the two spring forces, the “net” force, that accounts for
the change in momentum.

2.2 The superposition principle

? Drag this book across the table at constant velocity (constant speed
and constant direction). You’re applying a force, yet the momentum
isn’t changing. Explain briefly.

The force you apply to the book isn’t the only force acting on the book. The
table also applies a force, in the opposite direction, called a frictional force.
This frictional force is due to collisions between atoms in the bottom layer
of the book and atoms in the top layer of the table (see Figure 2.7 for an
atomic picture of sliding friction). If the momentum isn’t changing, it must
be that the net force on the book is zero. This is why the Momentum Princi-
ple involves  rather than just the force you apply.

? What do you have to do to make the book go faster?

You have to apply a force that is bigger than the frictional force, so that the
vector sum is nonzero.

? The Momentum Principle predicts that if the net force is zero, the
momentum doesn’t change but stays the same. Yet if you push the
book across the table at high speed, then let go, the book doesn’t keep
moving but comes to a stop. Explain briefly.

After you let go, the net force on the book is just the frictional force of the
table, which acts opposite to the momentum and makes the momentum de-
crease.

? What if you were in outer space, far from tables and other objects,
and you pushed the book so that it was going fast, then let go. What
would the book do?

In the absence of any forces (zero net force), the book would continue for-
ever with the (vector) momentum you initially gave it. It would move in a
straight line at constant speed:  if .

Why it took so long to discover the Momentum Principle

In our everyday world friction between objects is common. As a result, for
many centuries people quite naturally believed that a force was necessary to
sustain motion, just as you saw when dragging the book across the table at

Figure 2.6 Duration of interaction: the
longer the net force acts, the greater the
change of momentum.

∆p Fnet∆t=

pxi 0=

pxf pxi Fnet x, ∆t+ 0 20 N( ) 2 s( )+ 40 kg·m/s= = =

diamond
tip

friction 
force

pulling force

diamond surface

Figure 2.7 A computer simulation of slid-
ing friction: a diamond tip is dragged
along a diamond surface. Image courtesy
of Judith A. Harrison, U.S. Naval Acad-
emy.

Fnet

pf pi Fnet∆t+ pi= = Fnet 0=
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constant speed. This made it hard to understand what made the planets
keep moving. Galileo and Newton finally realized that it is the net force that
matters, and that objects free of interactions just naturally keep moving,
with no forces needed to keep them moving (Newton’s first law of motion).
This represented a major revolution in how humans viewed the world.

2.2.1 Net force

How do we calculate the net force acting on an object? It turns out to be sur-
prisingly straightforward, as summarized by the superposition principle.

THE SUPERPOSITION PRINCIPLE

The net force on an object is the vector sum of the
individual forces exerted on it by all other objects. 

Each individual interaction is unaffected by
the presence of other interacting objects.

The superposition principle is completely general. It has been found exper-
imentally to apply to all kinds of interactions: gravitational, electromagnet-
ic, and nuclear interactions. The implications of this principle are not
always intuitively obvious. For example, this principle implies that the force
exerted by the Sun on the Earth at a particular distance will always be the
same, regardless of how many other planets there are that also interact with
the Sun and the Earth. The presence of other objects and interactions does
not block or change the interactions between each pair of objects. An inter-
action doesn’t get “used up,” and the interaction between one object and
another is unaffected by the presence of a third object. 

To take a silly example, hold a glass over a table and then let go (Figure
2.8). The glass falls, so evidently the table doesn’t block the gravitational in-
teraction with the Earth. In fact, the table adds a tiny additional gravitation-
al force on the glass to that of the Earth, without changing the Earth’s
attraction for the glass.

 Ex. 2.5 A balloon experiences a gravitational force of
 and a force due to the wind of .

What is the net force acting on the balloon?
 Ex. 2.6 A sailboat sails straight toward an island at constant speed.
What are all the forces acting on the boat? Is the net force zero or
nonzero?
 Ex. 2.7 You watch someone carry a heavy block left-to-right across
the room, walking at constant speed. According to the Momentum
Principle, should we conclude that the net force acting on the block
is upward, toward the right, or zero?

2.3 System and surroundings

In order to use the Momentum Principle to predict motion, we must choose
a “system” whose momentum change we will calculate. By the word “system”
we mean some pieces of the Universe of interest to us. The rest of the Uni-
verse we call the “surroundings” (Figure 2.9).

To predict the motion of a baseball through the air, it makes sense to
choose the baseball as the system whose momentum changes. The sur-
roundings include the Earth which exerts a gravitational force on our cho-
sen system (the baseball), and the air, which exerts a force of air resistance

Figure 2.8 The presence of the table does
not change the interaction of the glass
with the Earth.

0 0.05– 0, ,〈 〉  N 0.03– 0 0.02, ,〈 〉  N

SYSTEM

SURROUNDINGS

SURROUNDINGS SURROUNDINGS

SURROUNDINGS

Figure 2.9 System and surroundings. Inter-
actions in the form of impulses flow across
the system boundary and change the sys-
tem’s momentum.
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against the moving ball (Figure 2.10). It is true that there are changes in the
momentum of the Earth and the momentum of the air molecules due to in-
teractions with the baseball, but once we decide to choose the baseball as
the system of interest we don’t have to pay attention to what happens to the
momentum of objects in the surroundings. The role of the surroundings is
described entirely by the forces they exert on our chosen system.

Only external forces matter

It is an important rule that we do not include in the net force acting on the
baseball any forces that the baseball exerts on itself. The atoms of the base-
ball do exert forces on each other, but as we’ll discuss in more detail later,
interatomic forces and gravitational force come in equal and opposite pairs
(Figure 2.11). Therefore these “internal” force pairs, forces between pairs
of atoms internal to our chosen system, add up to zero and can safely be ig-
nored in calculating the net force that appears in the Momentum Principle,

. Only “external” forces matter, forces associated with inter-
actions between our chosen system and objects in the surroundings. 

Of course objects in the surroundings experience forces exerted by ob-
jects inside the system, but when we apply the Momentum Principle just to
the system, we only care about the change of momentum of the system. Al-
so, there are equal and opposite changes of momentum in the surround-
ings, but they typically don’t interest us.

Neglecting small effects

The surroundings of the system of the baseball includes the Sun, the Moon,
Mars, etc. Do we have to consider all of the forces these objects exert on the
baseball? In practice, no, because these forces are extremely small com-
pared to the forces exerted on the system by the Earth and the air during
the brief flight of the baseball. But if we were trying to plot an accurate
course for a spacecraft going to Mars we would need to include even small
forces exerted by other planets, because impulse is forces times time dura-
tion, , and in the long time required to go to Mars even small forces can
produce significant impulses, and significant changes in the momentum of
the spacecraft.

Systems consisting of several objects

A system can consist of more than one object. For example, we might
choose to consider a system consisting of the entire Solar System. The sur-
roundings of this large system would include the rest of the Universe, in-
cluding neighboring stars. The total momentum of the Solar System can
change due to the gravitational forces exerted by stars, especially nearby
stars. 

 Ex. 2.8 In Section 2.1.3 we applied the Momentum Principle to
predict the motion of a glider on an air track. What did we choose
as the system in this analysis? What objects were included in the
surroundings?

System is baseball

Earth is part of surroundings

Air is part of 
surroundings

Figure 2.10 Choose a baseball as the sys-
tem. The surroundings are the Earth and
the air, which interact across the system
boundary to change the momentum of the
system.

p

pf pi Fnet∆t+=

Internal forces cancel;
no effect on system momentum

External forces change
the system momentum

System

Object in
surroundings

Figure 2.11 Internal force pairs cancel, so
only external forces can change the
momentum of a system.

Fon 2 by 1

Fon 1 by 2

F∆t
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2.4 Applying the Momentum Principle to a system

To apply the Momentum Principle to analyze the motion of a real-world sys-
tem, several steps are required:

1. Choose a system, consisting of a portion of the Universe.
The rest of the Universe is called the surroundings.

2. List objects in the surroundings that exert 
significant forces on the chosen system, and 
make a labeled diagram showing the external forces
exerted by the objects in the surroundings.

3. Apply the Momentum Principle to the chosen system:

For each term in the Momentum Principle, 
substitute any values you know.

4. Apply the position update formula, if necessary:

5. Solve for any remaining unknown quantities of interest.

6. Check for reasonableness (units, etc.).

2.4.1 Example: Position and momentum of a ball

Inside a spaceship in outer space there is a small steel ball of mass 0.25 kg.
At a particular instant, the ball is located at position  and has mo-
mentum . At this instant the ball is being pulled by a
string, which exerts a net force  on the ball. What is the ball’s
approximate momentum and position 3 milliseconds later ?
What approximations or simplifying assumptions did you make in your anal-
ysis?

A labeled diagram (step 3) gives a physics
view of the situation, and it defines sym-
bols to use in writing an algebraic state-
ment of the Momentum Principle.

pf pi Fnet∆t+=

rf ri varg∆t+=

9 5 0, ,〈 〉  m
8– 3 0, ,〈 〉  kg·m/s

20 50 0, ,〈 〉  N
3 3–×10  s( )

ball

Fstring

1. Choose a system

System: the steel ball

2. List external objects that interact with the system, with diagram

the string
(a circle represents the system)

3. Apply the Momentum Principle

pf pi Fnet∆t+=

pf 8– 3 0, ,〈 〉  kg·m/s( ) 20 50 0, ,〈 〉  N( ) 3 3–×10  s( )+=

pf 8– 3 0, ,〈 〉  kg·m/s( ) 0.06 0.15 0, ,〈 〉  N·s( )+=

pf 7.94– 3.15 0, ,〈 〉  kg·m/s=

Assume that the force didn’t change much
during 3 ms. Or to put it another way, we
assumed that a time interval of 3 ms was
sufficiently short that we could update the
momentum fairly well assuming a constant
force during that short time interval.
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2.4.2 Example: A fan cart (1D, constant net force)

An easy way to arrange to apply a nearly constant force is to mount an elec-
tric fan on a cart (Figure 2.12). If the fan blows backwards, the interaction
with the air pushes the cart forward with a nearly constant force, making the
cart’s momentum continually increase. Swamp boats used in the very shal-
low Florida Everglades are built in a similar way, with large fans on top of
the boats propelling them through the swamp. 

When a fan cart or boat gets going very fast, air resistance becomes im-
portant and at high speeds is as big as the propelling force, so that the net
force becomes zero, at which point the momentum doesn’t increase any
more, and the cart or boat travels at constant speed. For simplicity we’ll con-
sider the motion at low speed, with negligible air resistance, so we can make
the approximation that the net force is due solely to the fan and is nearly
constant. 

(Note that the y component of the net force is zero, because the down-
ward gravitational force on the cart is exactly balanced by the upward force
exerted by the track on the cart. In a later chapter we will examine the in-
teraction between solid objects like the cart and the track in more detail.)

Predict new position and new momentum

Suppose you have a fan cart whose mass is 400 grams (0.4 kg), and with the
fan turned on, the net force acting on the cart, due to the air and friction
with the track, is  N and constant. You give the cart a shove, and
you release the cart at position  m with initial velocity 
m/s. What is the position of the cart 3 seconds later, and what is its momen-
tum at that time?

4. Apply the position update formula

, where  since v << c

5. There are no remaining unknowns

6. Check

Units check (momentum: kg·m/s and position: m)

rf ri varg∆t+= v p m⁄≈

rf 9 5 0, ,〈 〉  m( ) 7.94– 3.15 0, ,〈 〉  kg·m/s( )
0.25 kg( )

----------------------------------------------------------------- 3 3–×10  s( )+=

rf 9 5 0, ,〈 〉  m( ) 0.0953– 0.0378 0, ,〈 〉  m( )+=

rf 8.905 5.038 0, ,〈 〉  m=

We used the momentum at the end of the
interval to update the position. 

Note that at very high speeds,  isn’t
valid for updating position. See page 98.

v p m⁄≈

Figure 2.12 A fan cart on a track.

0.2 0 0, ,〈 〉
0.5 0 0, ,〈 〉 1.2 0 0, ,〈 〉

1. Choose a system

System: the cart (including the fan)

2. List external objects that interact with the system, with diagram

the Earth, the track, the air
(represent the system by a circle)

Fair

Ftrack

FEarth

cart
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Approximating the average velocity
In order to use the position update formula, we need the average velocity of
the cart. How do we find ? We know initial and final values for :

Can we use these values to find ? You may have guessed that the average
velocity is the “arithmetic” (pronounced “arithMETic”) average:

The arithmetic average.is often a good approximation, but it is not always
exactly equal to the average velocity . The arithmetic average
does lie between the two extremes. For example, the arithmetic average of
6 and 8 is (6+8)/2 = 14/2 = 7, halfway between 6 and 8. See Figure 2.13.

The arithmetic average does not give the true average velocity unless the
velocity is changing at a constant rate, which is the case only if the net force
is constant, as it happens to be for a fan cart. For example, if you drive 50
mi/hr for four hours, and then 20 mi/hr for an hour, you go 220 miles, and
your average speed is (220 mi)/(5 hr) = 44 mi/hr, whereas the arithmetic
average is (50+20)/2 = 35 mi/hr. In situations where the force is not con-
stant, we have to choose short enough time intervals that the velocity is near-
ly constant during the brief  (see Figure 2.14).

APPROXIMATE AVERAGE VELOCITY

 (if v << c)

exactly true only if  changes at a constant rate (  constant)

The proof (which is more complicated than one might expect) is given in
optional Section 2.11 at the end of this chapter. 

3. Apply the Momentum Principle

pf pi Fnet∆t+ pi Ftrack FEarth Fair+ +( ) ∆t( )+= =

pf 0.4kg( ) 1.2m s⁄( ) 0 0, ,〈 〉 0.2 Ftrack FEarth–( ) 0, ,〈 〉N 3 s( )+≈

pf 1.08 0 0, ,〈 〉  kg m s⁄⋅≈

Since , we can use the approximation
that .

Since the y component of the cart’s mo-
mentum does not change, we know that
the y component of the net force must be
zero, and .

We can use a large time interval ∆t be-
cause the force isn’t changing very much
in either magnitude or direction.

v c«
p mv≈

Ftrack FEarth=

vavg v

vi 1.2 0 0, ,〈 〉m s⁄=

vf
pf

m
----≈ 1.08 0 0, ,〈 〉  kg m s⁄⋅

0.4 kg
----------------------------------------------------- 2.7 0 0, ,〈 〉m s⁄= =

vavg

vavg
vi vf+( )

2
-------------------≈

ti tf
t

vfx

vix

vx

(vix + vfx)
2

Figure 2.13 vx is changing linearly with
time, so the arithmetic average is equal to

vavg ∆r ∆t⁄=

ti tf
t

vfx

vix

(vix + vfx)
2

Figure 2.14 vx is not changing linearly with
time. In this case the arithmetic average is
much higher than the average value of vx.

∆t

vavg
vi vf+( )

2
-------------------≈

v Fnet

4. Apply the position update formula

5. There are no remaining unknowns

6. Check

Position: m (correct units); , as it should be.

vavg
vi vf+( )

2
-------------------

1.2 2.7+( )
2

-------------------------- 0 0+( )
2

----------------- 0 0+( )
2

-----------------, ,〈 〉 m
s
-----= =

vavg 1.95 0 0, ,〈 〉m s⁄  =

rf ri varg∆t+ 0.5 0 0, ,〈 〉m 1.95 0 0, ,〈 〉 m
s

----- 3s( )+= =

rf 6.35 0 0, ,〈 〉m=

xf xi>

The net force on the cart is constant, so
this calculation of average velocity gives
the correct value.
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 Ex. 2.9 A hockey puck is sliding along the ice with nearly constant
momentum  when it is suddenly struck by a
hockey stick with a force  that lasts for only 3
milliseconds . What is the new momentum of the puck?

 Ex. 2.10 You were driving a car with velocity . You
quickly turned and braked, and your velocity became

. The mass of the car was 1000 kg. What was the
(vector) change in momentum  during this maneuver? Pay
attention to signs. What was the (vector) impulse applied to the car
by the ground?

 Ex. 2.11 In the previous exercise, if the maneuver took 3 seconds,
what was the average net (vector) force  that the ground
exerted on the car?

 Ex. 2.12 A truck driver slams on the brakes and the momentum
changes from  to  in
4 seconds due to a constant force of the road on the wheels of car.
As a vector, write the force exerted by the road.

 Ex. 2.13 At a certain instant, a particle is moving in the +x
direction with momentum +10 kg·m/s. During the next 0.1 s, a
constant force  acts on the particle. What is the
momentum of the particle at the end of this 0.1 s interval?

2.4.3 Example: A thrown ball (2D, constant net force)

A second example is the prediction of the motion of a ball thrown through
the air. The Earth pulls down on the ball with a gravitational force, and the
air pushes against the ball as the ball runs into air molecules. When a high-
density object is thrown at low speed, this “air resistance” force is rather
small compared to the gravitational force, so we may be able to neglect air
resistance. 

A low-density object such as a styrofoam ball experiences air resistance
that is comparable to the small gravitational force on the ball, so air resis-
tance is important unless the styrofoam ball is moving very slowly (air resis-
tance is small at low speeds and big at high speeds, as you may have
experienced if you put your hand out the window of a car). At low speeds a
baseball, which has a fairly high density, moves with negligible air resis-
tance. But at the speed that a professional pitcher can throw a baseball
(about 90 mi/hr or 40 m/s), a baseball goes only about half as far in air as
it would in a vacuum, because air resistance is large at this high speed (Fig-
ure 2.15).

We’ll analyze the flight of a ball with the assumption that we can neglect
air resistance, which means we are dealing with a high-density object at low
speed, or motion in a vacuum. Later we’ll develop techniques that make it
possible to predict the motion of a ball when air resistance is significant.

Near the Earth’s surface, every kilogram of matter is attracted toward the
center of the Earth by a force of approximately 9.8 N. The Earth’s gravita-
tional pull on a 2 kg block is , or 19.6 N. In general, the
Earth exerts a force on a mass m like this:

Near the Earth’s surface, , where g = +9.8 N/kg

We’ll have more to say about gravitational forces later in this chapter, but
this is sufficient for analyzing the motion of a thrown ball. 

10 0 5, ,〈 〉  kg m⋅ s⁄
0 0 2000, ,〈 〉  N

3 3–×10  s( )

25 0 15, ,〈 〉  m/s

10 0 18, ,〈 〉  m/s
∆p

Fnet

9 4×10 0 0, ,〈 〉  kg m⋅ s⁄ 5 4×10 0 0, ,〈 〉  kg m⋅ s⁄

6 3 0, ,–〈 〉  N

no air resistance

Figure 2.15 The trajectory of a baseball
thrown at high speed, ignoring air resis-
tance (top curve) and including the effect
of air resistance (bottom curve). The dots
indicate the ball’s position at equal time
intervals.

2 kg( ) 9.8 N/kg( )

Fgrav mg≈
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Predict new velocity and new position of a thrown ball

You throw the ball so that just after it leaves your hand at location 
it has velocity , with no component in the z direction. Now that
it has left your hand, and we’re neglecting air resistance, the net force at all
times is , since the Earth’s gravitational force acts downward, to-
ward the center of the Earth, and we normally choose our axes so y points
up. Predict the velocity and position of the ball after a time . .

? Under what circumstances can we use this result to predict the
trajectory of an object?

We assumed that air resistance was negligible, that the object was traveling
at a speed much less than the speed of light, and that the net force was con-
stant. If any of these three conditions are not met, then these results do not
apply, and using them will give a wrong answer.

xi yi 0, ,〈 〉
vxi vyi 0, ,〈 〉

0 mg– 0, ,〈 〉

∆t

ball

FEarth

Fair

1. Choose a system

System: the ball

2. List external objects that interact with the system, with diagram

the Earth, the air
(represent the system by a circle)

3. Apply the Momentum Principle

4. Apply the position update formula

Alternatively:

5. There are no remaining unknowns

6. Check

The units check for the final position. Note that g is N/kg, so that 
is N·s/kg, units of impulse/kg, which is kg·m/s/kg, or m/s.

pf pi Fnet∆t+=

m vxf vyf 0, ,〈 〉 m vxi vyi 0, ,〈 〉 0 mg– 0, ,〈 〉∆t+=

vxf vyf 0, ,〈 〉 vxi vyi 0, ,〈 〉 0 g– 0, ,〈 〉∆t+=

vxi 0∆t+( ) vyi g– ∆t+( ) 0 0 ∆t( )+( ), ,〈 〉=

vxi vyi g– ∆t+( ) 0, ,〈 〉=

varg
vxi vxi+

2
-------------------⎝ ⎠

⎛ ⎞ vyi vyi g– ∆t+( )+( )
2

---------------------------------------------- 0 0+( )
2

-----------------, ,〈 〉=

varg vxi vyi
1
2
---g∆t–( ) 0, ,〈 〉=

rf ri varg∆t+=

xf yf 0, ,〈 〉 xi yi 0, ,〈 〉 vxi vyi
1
2
---g∆t–( ) 0, ,〈 〉∆t+=

xf yf 0, ,〈 〉 xi vxi∆t+( ) yi vyi∆t 1
2
---g ∆t( )2–+( ) 0, ,〈 〉=

xf xi vxi∆t+=

yf yi vyi∆t 1
2
---g ∆t( )2–+=

zf 0=

g∆t

We make the approximation that air resis-
tance is negligible compared to the gravita-
tional force.

 so v c« p mv≈

Divide both sides of the equation by m

The x and z components of velocity are not
changing; this makes sense because the net
force has only a y component. The y com-
ponent of velocity is decreasing continu-
ously; this makes sense because the
gravitational force on the ball by the Earth
affects the y component of the ball’s veloc-
ity.
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Using this result

If a ball of mass 90 g is initially on the ground, at location , and
you kick it with initial velocity , where will the ball be half a sec-
ond later?

? Can we use these equations to find the location of the ball 10
seconds after you kick it?

No. Our result would be that the ball was far underground:

which is not physically reasonable! (The ball would have hit the ground and
stopped before 10 seconds had passed.) 

? What should you remember from the preceding example?

If you understand the basic method, you can reproduce the specific results
quickly and accurately. Just memorizing the results won’t help you much,
because you won’t really understand what they mean or when they can be
used.

For concreteness we analyzed the flight of a thrown ball, but this same
analysis would work for any situation where an object moves in two dimen-
sions under the influence of a constant net force. For example, just by
changing the constant y component of the net force to be something other
than , we could analyze the two-dimensional motion of a swamp boat
(if the direction of the thrust of the propeller doesn’t change, and we can
neglect friction with the water), or to the two-dimensional motion of an
electron between two large charged plates. However, in these cases, the re-
sulting equations would be slightly different, because the mass of the object
would appear in the result (the m cancels only in the case of a force that is
proportional to m, such as the gravitational force).

Graphs of the motion.

In Figure 2.16 we shows graphs of position and velocity components vs.
time, and the actual path (y vs. x) of the ball. The first graph,  vs. t, is sim-
ply a horizontal line, because  doesn’t change, since there is no x compo-
nent of force. The graph of x is a straight line (second graph), rising if 
is positive. Note that the slope of the x vs. t graph is equal to .

The graph of  is a falling straight line (third graph), because the y com-
ponent of the force is , which constantly makes the y component of mo-
mentum decrease. At some point the y component of momentum decreases
to zero, at the top of the motion, after which the ball heads downward, with
negative . The graph of y vs. time t is an inverted parabola (fourth graph),
since the equation for y is a quadratic function in the time. 

Note that the slope of the y vs. t graph (the fourth graph) at any time is
equal to  at that time. In particular, when the slope is zero (at the maxi-
mum y),  is momentarily equal to zero. Before that point the slope is pos-
itive, corresponding to  > 0, and after that point the slope is negative,
corresponding to  < 0.

The actual path of the ball, the graph of y vs. x, is also an inverted parab-
ola (the bottom graph). Since x increases linearly with t, whether we plot y
vs. t or y vs. x we’ll see a similar curve. The scale factor along the horizontal
axis is different, of course (meters instead of seconds).

0 0 0, ,〈 〉  m
3 7 0, ,〈 〉  m/s

xf 0 3m s⁄( ) 0.5 s( )+ 1.5 m= =

yf 0 7m s⁄( ) 0.5 s( ) 9.8N kg⁄( ) 0.5 s( )2–+ 1.05 m= =

yf 7m s⁄( ) 10 s( ) 9.8N kg⁄( ) 10 s( )2– 910 m–= =

mg–

t

vx

vx does not change

∆t

vxi

ti tf

t

vy

vy continually decreases

Stops rising,
heads downward

Rising, vy > 0

Falling, vy < 0

vyi

vyf

ti tf

t

x

x increases at constant ratexi

xf

ti tf

t

y

Rising

Stops rising,
heads downward

Falling

This is y vs. time t. It is not the path.

yi

yf

ti tf

x

y
Actual path: y vs. x

yi

yf

xi xf

 < xi, yi, 0 >

 < xf, yf, 0 >

Figure 2.16 Graphs for the thrown ball.

vx
vx

vx
vx

vy
mg–

vy
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Understanding the results

Let’s explore the results a bit to understand what they tell us about the mo-
tion. The x component of the motion is very simple; it is completely unaf-
fected by the downward-pointing gravitational force, so x simply increases at
a constant rate (  constant). Of course, once the ball hits the ground, x no
longer increases.

The y component of the motion is more interesting. The equation

says that if you throw the ball so that  is positive (heading up), at some
time  will decrease to zero, and then become negative. 

? At what time  will the ball reach its highest point?

Our result for y as a function of time:

does not help us answer this question, because we don’t yet know how high
the ball will go (we don’t know what to use for ). 

? Can we use the equation for  as a function of time to find the time
at which the ball reaches its highest point? Do we know the value

of  when the ball reaches its highest point?

Just before the ball reaches its maximum height,  is positive. Just after it
reaches its maximum height and begins to head downward,  is negative.
At the instant the ball reaches its maximum height, . Using this in-
formation, we can solve for the elapsed time at that instant:

If  then 

? How high is the ball when it turns around and heads downward?

Now that we have a value for , we can use that in our general result for
the final position:

 is the maximum height above your hand

Check the algebra yourself to verify this result. This result makes sense, in
that the bigger the initial y component of velocity, the higher the ball will
go. Notice that it doesn’t matter at all what x component of initial velocity
you give the ball; all that matters is . However, it takes more effort to give
the ball some  in addition to giving it some , so for maximum height
you want to throw the ball nearly straight up.

? Suppose you throw the ball so that it rises 2 m before falling back
down. If you double , how far will it rise above your hand?

Since , doubling  will make the ball go up 4 times as
high, to 8 m above your hand.

? Suppose you throw the ball so that it rises 2 m on Earth. If you give
the ball the same  on the Moon, where g is about one-sixth that on
Earth, how far will the ball rise above your hand?

vx

vyf vyi g∆t–=

vyi
vy

∆ttop

yf yi vyi∆t 1
2
---g ∆t( )2–+=

yf

vy
∆ttop

vy

vy
vy

vy 0=

vyf vyi g∆ttop– 0= = ∆ttop
vyi

g
------=

∆ttop

yf yi vyi∆ttop
1
2
---g ∆ttop( )2–+ yi vyi

vyi

g
------⎝ ⎠

⎛ ⎞ 1
2
---g

vyi

g
------⎝ ⎠

⎛ ⎞
2

–+= =

yf yi–
vyi

2

2g
------=

vyi
vxi vyi

vyi

yf yi– vyi
2 2g( )⁄= vyi

vyi
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Since , if g decreases by a factor of 6 but  stays the same,
the rise of the ball will increase by a factor of 6, so the ball will rise to 12 m
above your hand. Because there is no air on the Moon, our analysis works
well there.

? On Earth, what  must you give the ball so that it rises 10 m above
your hand?

We have , and solving this we find
. This is a high enough speed that air resistance might be sig-

nificant, and our result inaccurate.

? Suppose the ball is caught by a friend at the same height as you
launched the ball. What is the formula for how long the ball was in the
air?

In this case we have , so  gives us 

; compare with 

The ball takes twice as long to go up and down as to go up, so we conclude
that the time to come down is the same as the time to go up. (In the pres-
ence of air resistance, the speed at every height is slower on the way down,
so it takes longer to come down than to go up.) Again, notice that the time
to go up and down doesn’t depend at all on the x component of velocity.
The x and y motions are independent of each other.

? How far from you is your friend when the ball is caught? Note that
you know how long the ball was in the air, and you know the x
component of velocity.

, so the distance is 

This distance is called the “range” of the ball. It is the distance the ball goes
in the air if it returns to the same height. It depends on  because that de-
termines how much time it spends in the air. The result also depends on 
because that determines how far the ball will move in the x direction while
the ball is in the air.

Initial speed and angle

Sometimes you know the initial speed  and angle θ for the launch of a
ball. Figure 2.17 shows how to calculate the sine and cosine of the angle.
Use these results to solve for the velocity components:

, 

 Ex. 2.14 A ball is kicked from a location  (on the
ground) with initial velocity . 

(a) What is the velocity of the ball 0.6 seconds after being thrown?
(b) What is the location of the ball 0.6 seconds after being thrown?
(c) What is the maximum height reached by the ball?
(d) At what time does the ball reach its maximum height?
(e) At what time does the ball hit the ground?
(f) What is the location of the ball when it hits the ground?

 Ex. 2.15 Apply the general results obtained in the full analysis on
page 64 to answer the following questions. You hold a small metal
ball of mass m a height h above the floor. You let go, and the ball
falls to the floor. Choose the origin of the coordinate system to be
on the floor where the ball hits, with y up as usual. Just after release,

yf yi– vyi
2 2g( )⁄= vyi

vyi

10 m vyi
2 2 9.8 N/kg( )( )⁄=

vyi 14 m/s=

yf yi= yf yi vyi
1
2
---g∆t–( )∆t+=

∆tup and down 2
vyi

g
------= ∆ttop

vyi

g
------=

xf xi vxi∆tup and down+= xf xi– vxi 2
vyi

g
------⎝ ⎠

⎛ ⎞=

vy
vx

θ

vi

Figure 2.17 Converting speed and angle
to velocity components.

θcos adj
hyp
---------

vxi

v
------= =

θsin opp
hyp
----------

vyi

v
------= =

vxi vi θcos=

vyi vi θsin=

v

vxi v θcos= vyi v θsin=

9 0 5–, ,〈 〉  m
10– 13 5–, ,〈 〉  m/s
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what are  and ? Just before hitting the floor, what is ? How
much time  does it take for the ball to fall? What is  just before
hitting the floor? Express all results in terms of m, g, and h. How
would your results change if the ball had twice the mass?

 Ex. 2.16 A soccer ball is kicked at an angle of 60° to the horizontal
with an initial speed of 10 m/s. Assume that we can neglect air
resistance. For how much time is the ball in the air? How far does it
go (horizontal distance along the field)? How high does it go?

2.4.4 Graphical prediction of motion

It is instructive to apply the Momentum Principle qualitatively and graphi-
cally to the thrown ball, to see visually how the Momentum Principle deter-
mines the motion. The Momentum Principle predicts that in a short time
interval ∆t, the momentum of the ball will change by an amount

 which we can calculate, because we know the force acting on
the ball. In the following diagram we show the initial momentum , the
change in the momentum , and the new momentum

. Note that this vector addition corresponds to adding the ar-
rows  and  tip to tail. We approximate the average momentum in the
time interval  by the new momentum , and we advance the ball in the
direction of .  

During the short time interval ∆t, the ball will move an amount , in
the direction of its new velocity  (we assume that v << c). The ve-
locity is changing during this time interval, but if ∆t is quite small (as it could
be if we let a computer do the calculations), the change in the velocity is
quite small, and it doesn’t matter very much whether we use the velocity at
the start or end of the time interval, or some kind of average. In this partic-
ular case of constant net force the average velocity is the arithmetic average,
but if we included air resistance the net force wouldn’t be constant in mag-
nitude or direction, yet this method would still be accurate as long as we use
small .

At the next position we repeat the procedure, graphically adding the vec-
tors  and  to obtain the new momentum . We then ad-
vance the ball in the direction of . As we do this repeatedly, we trace out
graphically the trajectory of the ball. You can see that the trajectory looks
like what is observed in the real world, and you can even see the increasing
magnitude of the ball as it falls, corresponding to increasing speed. The im-
portant point to see in the diagram is that the net impulse  changes
the momentum.

yi vyi yf
∆t vyf

∆p Fnet∆t=
p1

∆p Fnet∆t=
p2 p1 ∆p+=

p1 ∆p
∆t p2

Graphical prediction of the motion of a
ball, for three successive time steps.

p2

p1

∆p Fnet∆t=

p4

p3

p2

Fnet

p2

p3

p4

p5

Fnet

Fnet

Fnet

∆p Fnet∆t=

∆p Fnet∆t=

∆p Fnet∆t=

v∆t
v2 p2 m⁄=

∆t

p2 ∆p Fnet∆t= p3
p3

Fnet∆t
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2.4.5 Example: Block on spring (1D, nonconstant net force)

Next we’ll study how to predict motion when there is more than one force,
and the net force isn’t constant. The situation we’ll analyze is the motion of
a block bouncing on a vertical spring. The spring has a relaxed length of 20
cm (0.2 m) and the spring stiffness is 8 N/m (Figure 2.18). You place a 60
gram block (0.06 kg) on top of the spring, compressing the spring, and the
block sits motionless on the spring (Figure 2.19).

? How much is the spring compressed? Prove this using the
Momentum Principle. Remember that , where s is the
stretch of the spring (a negative number if the spring is compressed).

Since the block sits motionless over a time interval , its momentum is not
changing, which implies that the net force acting on the block must be zero
(Figure 2.19):

The net force is the vector sum of all the individual forces acting on the
block: the force due to the spring and the force due to the Earth.

where ks is the spring stiffness and as defined on page 54, 
is the compression of the spring (the current length minus the relaxed
length, which is a negative number for a compression, so we’ve written ).
Considering just the y component, we have

 (or 7.35 cm)

We’ll choose the origin of our coordinate system to be at the bottom of the
spring, where it is attached to the floor. As usual, we take +y to be up. When
the block is sitting motionless on the spring, the bottom of the block (or top
of the spring) is at .

Next you push the mass down, compressing the spring an additional
amount. You release the block, and because the spring has been com-
pressed an extra amount, the upward force of the spring is greater than the
downward gravitational force exerted by the Earth, and the block will move
upward with increasing momentum due to the upward net force (Figure
2.20). After release, as the block passes a point 8 cm (0.08 m) above the
floor, the block has an upward speed of 0.3 m/s. 

Relaxed length
20 cm (0.2 m)

Figure 2.18 A relaxed vertical spring.

Fspring ks s=

Compressed
|s| = 7.35 cm

y = 12.65 cm

mg

ks|s|

Figure 2.19 A block sits motionless on the
spring. The net force must be zero.

∆t

∆p Fnet∆t=

0 0 0, ,〈 〉 0 0 0, ,〈 〉 ∆t( )=

Fnet Fspring FEarth+=

0 ks s 0, ,〈 〉 0 mg– 0, ,〈 〉+=

0 ks s mg– 0, ,〈 〉=

s ∆L L L0–= =

s

Fnet y, 0 8 N/m( ) s 0.06kg( ) 9.8 N/kg( )–= =

s 0.06kg( ) 9.8 N/kg( )
8 N/m( )

--------------------------------------------------- 0.0735 m= =

y 0.2 0.0735–( ) m 0.1265 m= =

mg

ks|s|

y = 8 cm

vy = 0.3 m/s

Figure 2.20 You compressed the spring,
then released; the block heads upward
with increasing speed, because the net
force is nonzero and upward.
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We will predict the velocity and position of the block after 0.02 s:

During the 0.02 s time interval the block is moving up and the length of the
spring is changing, so the stretch (compression) of the spring is changing.
That means that the spring force  is not constant during the 0.02 s.
Therefore when we use  to update the momentum, we’re
making an approximation that the force doesn’t change very much during
that time. 

We can estimate how serious this issue is by calculating the net force at the
new position, .

? What is the new net force? (You need to determine the new
compression.)

With the top of the spring now at , the compression of the
spring is , and the net force has be-
come this:

1. Choose a system

System: the block

2. List external objects that interact with the system, with diagram

the Earth, the spring, the air
(see force diagram on previous page)

3. Apply the Momentum Principle

 with v << c so that  and 

Initially the spring is compressed 

; the new 

; the new 

4. Apply the position update formula

, or 

Make the approximation that the net force was nearly constant 
during the 0.02 s:

; the new y

5. There are no remaining unknowns

6. Check

The units check for the yf; both vy and y have increased as expected.

pyf pyi Fnet y, ∆t+= py mvy≈ vy
py

m
----≈

0.2 0.08–( )m 0.12 m=

Fnet y, ks s mg– 8 N/kg( ) 0.12 m( ) 0.06 kg( ) 9.8 N/kg( )–= =

Fnet y, 0.372 N=

pyf 0.06 kg( ) 0.3 m/s( ) 0.372 N( ) 0.02 s( )+=

pyf 0.02544 kg·m/s= py

vyf
pyf

m
------≈ 0.02544 kg·m/s( )

0.06 kg( )
---------------------------------------------- 0.424 m/s= = vy

rf ri varg∆t+= yf yi vavg,y∆t+=

vavg,y
vyi vyf+( )

2
----------------------- 0.3 0.424+( ) m/s

2
--------------------------------------------- 0.362 m/s= = =

yf 0.08 m( ) 0.362 m/s( ) 0.02 s( )+ 0.08724 m= =

We make the approximation that air resis-
tance is negligible compared to the other
forces.

The net force is changing as the compres-
sion changes, so the momentum update is
approximate.

ks s
pyf pyi Fnet y, ∆t+=

yf 0.08724 m=

yf 0.08724 m=
s 0.2 0.08724–( ) m 0.11276 m= =

Fnet y, ks s mg– 8 N/kg( ) 0.11276 m( ) 0.06 kg( ) 9.8 N/kg( )–= =

Fnet y, 0.314 N=
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The net force at the start of the time interval was . So al-
though the net force did change during the 0.02 s, it didn’t change very
much, and our approximate analysis is therefore pretty good.

? How could our predictions be improved?

By taking shorter time steps. Instead of taking one step of 0.02 s, we could
take two steps of 0.01 s, or ten steps of 0.002 s. During each of these shorter
time intervals the compression would change less, so the force would be
more nearly constant. Unfortunately, to achieve increased accuracy we have
to do a lot more calculations.

Taking another step

To continue predicting the motion of the block into the future, we can take
another step. The final values of momentum and position after the original
0.02 s step become the initial values for the next 0.02 s step:

Look through this calculation and make sure you understand how the fi-
nal results for position and momentum from the first 0.02 s time step have
been used as the initial values for the second 0.02 s time step.

In principle we could continue, taking more and more steps to predict
farther and farther into the future. Here is a summary of this iterative
scheme:

Fnet y, 0.372 N=

3. Apply the Momentum Principle

 with v << c so that  and 

Spring is compressed 

; the new 

; the new 

4. Apply the position update formula

, or 

Make the approximation that the net force was nearly constant 
during the 0.02 s:

pyf pyi Fnet y, ∆t+= py mvy≈ vy
py

m
----≈

0.2 0.08724–( )m 0.11276 m=

Fnet y, ks s mg–
8 N/kg( ) 0.11276 m( ) 0.06 kg( ) 9.8 N/kg( )–

=
=

Fnet y, 0.314 N=

pyf 0.02544 kg·m/s( ) 0.314 N( ) 0.02 s( )+=

pyf 0.03172 kg·m/s= py

vyf
pyf

m
------≈ 0.03172 kg·m/s( )

0.06 kg( )
---------------------------------------------- 0.5287 m/s= = vy

rf ri varg∆t+= yf yi vavg,y∆t+=

vavg,y
vyi vyf+( )

2
----------------------- 0.424 0.5287+( ) m/s

2
------------------------------------------------------- 0.4764 m/s= = =

yf 0.08724 m( ) 0.4764 m/s( ) 0.02 s( )+ 0.09677 m= =

The initial momentum and position are
taken from the final momentum and posi-
tion in the previous step.

• Start with initial positions and momenta of the interacting objects.
• Calculate the (vector) forces acting on each object.
• Update the momentum of each object: .
• Update the positions: .
• Repeat.

pf pi Fnet∆t+=
rf ri varg∆t+=
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Every time you repeat, the “final” momentum and position become the “ini-
tial” momentum and position for the next step. You have to use an approx-
imate value for , either by using the velocity at the start or end of the
time interval, or by taking the arithmetic average of these two velocities as
we did above.

While this scheme is very general, doing it by hand is incredibly tedious.
It is possible to program a computer to do these calculations repetitively.
Computers are now fast enough that it is possible to get high accuracy sim-
ply by taking very short time steps, so that during each step the net force and
velocity aren’t changing much. We’ll talk more about computer prediction
of motion later in this chapter.

 Ex. 2.17 After a third time step of 0.02 seconds, what will be the
position and momentum of the block?

2.4.6 Example: Fast proton (1D, constant net force, relativistic)

A proton in a particle accelerator is moving with velocity , so
the speed is . A constant electric force is
applied to the proton to speed it up, . What is the
proton’s speed as a fraction of the speed of light after 20 nanoseconds
( )?

The speed didn’t increase very much, because the proton’s initial speed,
0.96c, was already close to the cosmic speed limit, c. Because the speed hard-
ly changed, the distance the proton moved during the 20 ns was approxi-
mately equal to .

varg

0.96c 0 0, ,〈 〉
0.96 3 8×10×  m/s 2.88 8×10  m/s=

Fnet 5 12–×10 0 0, ,〈 〉  N=

1 ns 1 9–×10  s=

proton

1. Choose a system

System: the proton

2. List external objects that interact with the system, with diagram

electric charges in the accelerator
(a circle represents the system)

3. Apply the Momentum Principle

 

Evaluate  (no units)

pf pi Fnet∆t+=

pxf 0 0, ,〈 〉 γimvxi 0 0, ,〈 〉  5 12–×10 0 0, ,〈 〉  N( ) 20 9–×10  s( )+=

pxf
1

1 0.96c
c

-------------⎝ ⎠
⎛ ⎞

2
–

---------------------------------- 1.7 27–×10  kg( ) 0.96 3 8×10×  m/s( ) 1 19–×10  N·s( )+=

pxf 1.75 18–×10  kg·m/s( ) 1 19–×10  N·s( )+ 1.85 18–×10  kg·m/s= =

vxf

c
------

pxf

mc
------

1
pxf

mc
------⎝ ⎠

⎛ ⎞
2

+

----------------------------=

pxf

mc
------ 1.85 18–×10   kg·m/s

1.7 27–×10  kg( ) 3 8×10  m/s( )
---------------------------------------------------------------------- 3.62= =

vxf

c
------ 3.62

1 3.622+
--------------------------- 0.964= =

5 12–×10 0 0, ,〈 〉  N

(See Section 2.15, page 98; obtaining v from p
when the speed is near the speed of light.)

0.96 3 8×10  m/s×( ) 20 9–×10  s( ) 5.8 m=
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2.5 Problems of greater complexity

So far all of the examples we have considered have involved finding a
change in momentum (and position), given a known force acting over a
known time interval. The following problems require you to find either the
duration of an interaction (time interval), or the force exerted during an
interaction. These large problems involve several steps in reasoning.

2.5.1 Example: Strike a hockey puck

In Figure 2.21 an 0.4 kg hockey puck is sliding along the ice with velocity
 As the puck slides past location  on the rink, a

player strikes the puck with a sudden force in the +z direction, and the hock-
ey stick breaks. Some time later, the puck’s position on the rink is

. When we pile weights on the side of a hockey stick we find
that the stick breaks under a force of about 1000 N (this is roughly 250
pounds; a force of one newton is equivalent to a force of about a quarter of
a pound, approximately the weight of a small apple).

(a) For approximately how much time  was the hockey stick in
contact with the puck? Evidently the contact time is quite short, since you
hear a short, sharp crack. Be sure to show clearly the steps in your analysis. 

(b) What approximations and/or simplifying assumptions did you make
in your analysis?

x
z

y

Figure 2.21 A hockey stick hits a puck as it
slides by.

piFstick

20 0 0, ,〈 〉  m/s 1 0 2, ,〈 〉  m

13 0 21, ,〈 〉  m

∆tcontact

1. Choose a system

System: the hockey puck

2. List external objects that interact with the system, with diagram

Earth, ice, hockey stick, air

3. Apply the Momentum Principle

Write the three component equations separately:

x component: 

y component:  which implies 

z component:  

Find new momentum:

and  (negligible forces along x direction)

 so no change in 

We’re looking down on the ice from above. The y
axis points out of the page, toward you.

The symbol  means out of the page (the tip of
an arrow pointing out at you); the symbol 
means into the page (tail feathers of an arrow
pointing away from you)

z

x

Fice

fair

Fstick

FEarth

fair

pxf 0 pzf, ,〈 〉 pxi 0 0, ,〈 〉 fice– fair– Fice mg–( ) Fstick, ,〈 〉∆tcontact+=

pxf pxi fice fair+( )∆tcontact–=

0 Fice mg–( )∆tcontact= Fice mg=

pzf Fstick∆tcontact=

fice 0≈ fair 0≈

pxf pxi 0( )∆tcontact pxi≈+≈ px

pzf Fstick∆tcontact=

List all interacting objects, even if you
think some interactions will cancel out.

We use the information that the puck
slides without bouncing on the ice, which
means that py is zero at all times.

The atoms in the top layer of the ice exert
upward forces on the atoms on the bottom
of the puck, counteracting the downward
gravitational pull of the Earth.

Since the puck slides long distances with
little change in velocity, friction and air re-
sistance must be negligible.

When possible, make a 2D diagram, which
is much easier than trying to draw in 3D.
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? Given these results from the Momentum Principle for  and ,
make a sketch of the path of the puck before and after it is hit.

The path of the puck must look something like that shown in Figure 2.22.
In the result  there are two unknowns,  and .

We need another equation in order to be able to solve for the unknown con-
tact time . We can get additional information from the position up-
date formula .

How good were our approximations?

We made the following approximations and simplifying assumptions:
• Ice exerts little force in the x or z directions; low sliding friction.
• Negligible air resistance.
• Force of stick is roughly constant during  and equal to 1000 N.
• The puck doesn’t move very far during the contact time.

The neglect of sliding friction and air resistance is probably pretty good,
since a hockey puck slides for long distances on ice. 

We know the hockey stick exerts a maximum force of Fstick = 1000 N, be-
cause we observe that the stick breaks. We approximate the force as nearly
constant during contact. Actually, this force grows quickly from zero at first
contact to 1000 N, then abruptly drops to zero when the stick breaks. 

The final approximation is somewhat questionable. Although 0.013 s is a
short time, the puck moves (20 m/s)(0.013 s) = 0.26 m (a bit less than one
foot) in the x direction during this time. Also during this time  increases
from 0 to 31.7 m/s, with an average value of about 15.8 m/s, so the z dis-
placement is about (15.8 m/s)(0.013 s) = 0.2 m during contact. On the oth-
er hand, these displacements aren’t very large compared to the
displacement from  to , so our result isn’t terribly

px pz

z

x
initial < 1, 0, 2 > m

final < 13, 0, 21 > m

Figure 2.22 The x component of the
momentum (and velocity) hardly changes,
but the z component of momentum (and
velocity) changes quickly from zero to
some final value when the puck is hit.

pzf Fstick∆tcontact= pzf Fstick

∆tcontact
rf ri vavg∆t+=

4. Apply the position update formula

In , let  be the amount of time it takes the puck to
slide from where it was struck to the known final position:

x component: , so 

y component:  so (not a surprise)

z component:  since , so 

5. Solve for the unknowns

 where  (since v << c)

6. Check

• Units check (contact time is in seconds)
• Is the result reasonable? The contact time is very short, as expected.

If for example it had come out to be 300 s (5 minutes!) we should
check our calculations.

rf ri varg∆t+= ∆tslide

13 0 21, ,〈 〉  m 1 0 2, ,〈 〉  m( ) 20 m/s 0 vz, ,〈 〉∆tslide+=

13 m( ) 1 m( ) 20 m/s( )∆tslide+=

∆tslide 12 m( ) 20 m/s( )⁄ 0.6 s= =

0 0 0∆tslide+= 0 0=

21 m( ) 2 m( ) vz 0.6 s( )+= ∆tslide 0.6 s=

vz 19 m( ) 0.6 s( )⁄ 31.7 m/s= =

pzf Fstick∆tcontact= pzf mvzf≈

0.4 kg( ) 31.7 m/s( ) 1000 N( )∆tcontact=

∆tcontact 0.4 kg( ) 31.7 m/s( ) 1000 N( )⁄ 0.013 s= =

Since the puck slides long distances with
little change in velocity, friction and air
resistance must be negligible. We assume
that after the puck is struck, the velocity
is nearly constant (with a new magnitude
and direction). Therefore the average ve-
locity is the same as the velocity just after
impact.

The contact time is very short, a small
fraction of a second. As a result, you hear
a short sharp crack when the stick hits the
puck.

∆tcontact

vz

1 0 2, ,〈 〉  m 13 0 21, ,〈 〉  m
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inaccurate due to this approximation. Nevertheless, a more accurate sketch
of the path of the puck should show a bend as in Figure 2.23.

We can even calculate the radius of curvature of this bend, the radius of
the “kissing circle” discussed in the previous chapter. We know that 

On the left,  since 

At first contact the velocity is in the x direction and has magnitude of 20
m/s. The kissing circle is tangent to the incoming velocity.

On the right, 

Equate the left and right quantities: 

Solve: 

This is a plausible result for the radius of the bend, since we saw that x
changes by about 0.26 m and z changes by about 0.2 m during contact.

It is important to see that even though our analysis of the stick contact
time (0.013 s) isn’t exact, it is adequate to get a reasonably good determina-
tion of this short time, something that we wouldn’t know without using the
Momentum Principle and the position update formula. The short duration
of the impact explains why we hear a sharp, short crack.

Choice of system

? We chose the hockey puck as the system to analyze. Why not choose
the system consisting of both the hockey puck and the hockey stick?

The problem with choosing both objects as the system is that the 1000 N
force is now an internal force and doesn’t show up in the Momentum Prin-
ciple, so we aren’t able to use this information. By the reciprocity of electric
forces, including the interatomic forces between stick and puck, the puck
exerts a 1000 N force on the stick. In the combined system the puck gains
momentum from the stick, and the stick loses momentum to the puck. The
total momentum of the system doesn’t change: .

Review

Let’s review what we did to analyze this situation, in the form of a general
scheme for attacking problems. We can summarize our work with a diagram
in the shape of a diamond, which emphasizes 

• starting from the Momentum Principle applied to a system, 
• then expanding for the particular situation, 
• then contracting down to solving for the quantity of interest, 
• followed by checking for reasonableness. 

z

x

Figure 2.23 A more accurate overhead view
of the path of the hockey puck, showing
the bend during impact.

dp
dt
------ Fnet=

dp
dt
------

v
R
----- p m v 2

R
------------≈ 0.4 kg( ) 20 m/s( )2

R
-----------------------------------------------= = p mv≈

Fnet 1000 N=

0.4 kg( ) 20 m/s( )2

R
----------------------------------------------- 1000 N=

R 0.4 kg( ) 20 m/s( )2

1000 N( )
----------------------------------------------- 0.16 m= =

psystem 0=
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Link the lines in this diamond to the hockey stick analysis:

An important point implied by this diamond is that it is usually not useful to
try to jump immediately to the step “Solve for the unknowns,” by hunting
for some formula that gives the unknown quantity directly. Very often such
a special-case formula may not exist. For example, in the hockey puck prob-
lem the contact time emerged from applying the Momentum Principle and
the position update formula. There wasn’t some ready-made “formula for
the contact time for hockey sticks and pucks” that you could use.

If you start by applying the Momentum Principle to a chosen system you
can attack novel problems that you’ve never before encountered. The Mo-
mentum Principle is always valid, whereas special-case formulas aren’t.

In previous studies you may have been taught a useful but restricted ap-
proach to solving problems, which is to start with a formula for the unknown
quantity. That is, if you’ve trying to find v, start with a formula for v. We will
help you learn a more powerful technique for solving problems, which is to
start from a fundamental physics principle (in this case the Momentum
Principle), expand it by substituting known values, then contract to solve for
the unknown quantities. In other words, you derive the formula you need
rather than hunt for it. This is the only technique that can give you the pow-
er to solve novel problems, ones that no one has previously encountered. 

In an increasingly complex world, engineers and scientists are continually
being asked to meet new challenges. A major goal of this course is to pre-
pare you to meet the novel challenges of the 21st century.

2.5.2 Example: Colliding students

Next we’ll work through in detail a messy real-world situation: Two students
who are late for tests are running to classes in opposite directions as fast as
they can (Figure 2.24). They turn a corner, run into each other head-on,
and crumple into a heap on the ground. Using physics principles, estimate
the force that one student exerts on the other during the collision. You will
need to estimate some quantities; give reasons for your choices and provide
checks showing that your estimates are physically reasonable.

This problem is rather ill-defined and doesn’t seem much like a “text-
book” problem. No numbers have been given, yet you’re asked to estimate
the force of the collision. This kind of problem is typical of the kinds of
problems engineers and scientists encounter in their professional work. For
example, suppose you are trying to design a crash helmet and you need to
estimate the force it must withstand without breaking. You don’t know ex-
actly what the ultimate wearer will be doing at the time of a crash, so you
have to make some reasonable estimates of typical human activities on
which to base your analysis. We’ll make the simplifying assumption that the
students have similar masses and similar speeds (Figure 2.24).

1. Choose a system.

2. List interacting objects, with diagram.

3. Apply the Momentum Principle:

Expand the Momentum Principle by substituting any values you know.

4. You may also need to expand .

5. Solve for the unknowns.

6. Check.

pf pi Fnet∆t+=

rf ri varg∆t+=

v v

m m

Figure 2.24 Colliding students. The speed
(magnitude of velocity) of each student is
assumed to be the same and is represented
by v. We also make the simplifying assump-
tion that the students have about the same
mass m.
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Remember the diamond scheme as a guide to how to proceed. We’ll car-
ry out the analysis symbolically and plug in estimated values of student mass
and speed at the end. That way we get a general solution that can be evalu-
ated for different values of these quantities.

We could estimate the typical mass of a student, and the likely speed of a
student running at full speed, but  is one equation in two un-
knowns, the unknown force F of the other student and the time duration

 of the impact. 

? Before trying to apply the position update formula ,
try to estimate  of the impact simply by making a guess.

It is common to guess what seems a rather short time, such as a second, or
half a second. However, it is easy to show that such estimates are way off. The
record for the 100 m dash is about 10 seconds. If we assume that these stu-
dents are very fast runners, they each could be running 10 m/s. An alterna-
tive way of making the estimate is to note that you can easily walk about 4
miles in an hour, which gives 

This moderate walking speed suggests that the students should be able to
run between 5 m/s and 10 m/s. Let’s estimate that they each have a speed

. During the collision the speed drops quickly from v to 0, so the
average speed during the collision is approximately , or 2.5 m/s. 

? If we guess that  is about half a second, during that half second,
how far does the student move?

1. Choose a system

System: the student on the left

2. List external objects that interact with the system, with diagram

Earth, ground, other student, air

(more complex diagram shows point
of application of each force)

3. Apply the Momentum Principle

Write the three component equations separately:

x component: 

y component: , so 

z component:  which is true but uninformative 

Find new momentum:

Assume and  are negligible compared to F

, so  since v << c

0 0 0, ,〈 〉 pxi 0 0, ,〈 〉 F– fground fair–– Fground mg–( ) 0, ,〈 〉∆t+=

0 pxi F fground fair+ +( )∆t–=

0 Fground mg–( )∆t= Fground mg=

0 0=

fground fair

0 pxi F∆t–= mv F∆t=

mg

F

fground

Fground

fair

List all interacting objects, even if you
think some interactions will cancel out.

Many of the momentum components are
zero. Do you see why pxf = 0?

In a vector equation, the x component on
the left must equal the x component on the
right; similarly for y and z.

The student’s heels are pushed to the left
along the ground due to the collision, and
the resisting ground pushes to the right.
We’ll assume that this force is much small-
er than the force exerted by the other stu-
dent, because the student’s shoes can slip.

mv F∆t=

∆t

rf ri varg∆t+=
∆t

v 4 mi
hr
--------⎝ ⎠

⎛ ⎞ 1.6 km
mi

---------⎝ ⎠
⎛ ⎞ 1000  m

km
--------⎝ ⎠

⎛ ⎞ 1 hr
3600 s
----------------⎝ ⎠

⎛ ⎞ 1.8 m/s≈≈

v 5 m/s≈
v 0+( ) 2⁄

∆t
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At an average speed of 2.5 m/s, in a half second the student would go 1.25
meters, well over a yard. This would imply that the two students pass right
through each other, coming out the other side! Evidently an estimate of a
half second is wildly too big and is inconsistent with the real world. 

The problem is that it is very difficult to guess short time intervals accu-
rately. On the other hand, we can estimate short distances rather well, and
this gives us an indirect way to estimate short time intervals. Each student
gets squeezed during the collision. Suppose each student’s body gets
pushed in a distance of about  (try pushing on your
stomach and see how much deflection you can make).

15000 N is a very large force. For example, the gravitational force on a 60
kg student (the “weight”) is only about . The
force of the impact is more than 25 times the weight of the student! It’s like
having a stack of 25 students sitting on you. If the students hit heads instead
of stomachs, the squeeze might be less than 1 cm, and the force would be
over 5 times as large! This is why heads can break in such a collision.

So yes, our result of 15000 N is plausible: collisions involve very large forc-
es acting for very short times, giving impulses of ordinary magnitude.

How good were our approximations?

We made the following approximations and simplifying assumptions:
• We estimated the running speed from known 100 m dash records.
• We estimated the masses of the students; we could plug in other masses

now that we have derived general results in terms of m and v.
• We assumed that the horizontal component of the force of the ground

on the bottom of the student’s shoe was small compared to the force
exerted by the other student. Now that we find that the impact force
is huge, this assumption seems quite good.

• We made the approximation that the impact force was nearly constant
during the impact, so what we’ve really determined is an average force.

• We assumed that the students had similar masses and similar running
speeds, to simplify the analysis. If this is not the case, the analysis is sig-
nificantly more complicated, but we would still find that the impact
force is huge.

∆x 5 cm≈ 0.05 m=

4. Apply the position update formula

Apply  or equivalently :

x component: , so 

5. Solve for the unknowns

6. Check

• Units check (force is in newtons, collision time is in seconds)
• Is the result reasonable? The contact time is very short, as expected.

Is the force reasonable or not? See discussion below.

rf ri vavg∆t+= vavg ∆r ∆t⁄=

v 2⁄ 0 0, ,〈 〉 ∆x 0 0, ,〈 〉 ∆t⁄=

v 2⁄ ∆x ∆t⁄= ∆t 2∆x v⁄=

mv F∆t F 2∆x v⁄( )= =

F mv2

2∆x
---------- 60 kg( ) 5 m/s( )2

2 0.05 m( )
------------------------------------------ 15000 N= = =

∆t 2∆x
v

---------- 2 0.05 m( )
5 m/s

-------------------------- 0.02 s= = =

Estimate that the student is brought to an
abrupt stop in just 5 cm (about 2 inches).

The collision time is 25 times smaller
than our original guess of 0.5 s. So the
key to making a realistic estimate of a
time interval is to estimate average speed
and distance, and then derive a time esti-
mate from that.

Force has units (kg)(m/s)/s, which has
the units of momentum (kg·m/s) divid-
ed by s, which is correct for a force
(change of momentum divided by time).

60 kg( ) 9.8 N/kg( ) 600 N≈
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You might object that with all these estimates and simplifying assumptions
the final result of 15000 N for the impact force is fatally flawed. It is certainly
the case that we don’t have a very accurate result. But nevertheless we
gained valuable information, that the impact force is very large. Before do-
ing this analysis based on the Momentum Principle, we had no idea of
whether the force was small compared to the student’s weight, comparable,
or much bigger. Now we have a quantitative result that the force is on the
order of 25 times the weight of a student, and we can appreciate why colli-
sions are so dangerous.

? What if we choose the system to include both students?

In this case there is almost no external impulse during the brief time of con-
tact. The big internal forces the students exert on each other are equal in
magnitude but opposite in direction (due to the reciprocity of interatomic
forces that come into play when the students make contact). Therefore
these forces don’t change the momentum of the combined system. Before
the collision the total momentum of the combined system is zero
( ), and after the collision the total momentum is also zero
(they’re not moving). So there’s no change in momentum, which is consis-
tent with there being negligible external forces. Simple analysis, but with
this choice of system we learn nothing about the force that one student ex-
erts on the other. That’s why we choose just one student as the system.

2.5.3 Physical models

Our model of the colliding student situation is good enough for many pur-
poses. However, we left out some aspects of the actual motion. For example,
we mostly ignored the flexible structure of the students, how much their
shoes slip on the ground during the collision, etc. We have also quite sensi-
bly neglected the gravitational force of Mars on the students, because it is
so tiny compared to the force of one student on the other.

Making and using models is an activity central to physics, and the criteria
for a “good” physical model will depend on how we intend to use the model.
In fact, one of the most important problems a scientist or engineer faces is
deciding what interactions must be included in a model of a real physical,
chemical, or biological system, and what interactions can reasonably be ig-
nored. 

Simplified (or “idealized”) models

If we neglect some (hopefully small) effects, we say that we are constructing
a simplified model of the situation. A useful model should omit extraneous
detail but retain the main features of the real-world situation. We hope that
the main results of our analysis of the simplified model will apply adequately
to the complex real-world situation. 

Of course if we do a poor job of modeling and make inappropriate ap-
proximations or neglect effects that are actually sizable, we may get a rather
inaccurate result (though perhaps adequate for some purposes). There is
therefore a certain art to making a good model. One goal of this course is
to help you develop skill in formulating simplified but meaningful physical
models of complex situations.

Another common way of describing a model is to say that it is an “ideali-
zation,” by which we mean a simple, clean, stripped-down representation,
free of messy complexities. “Ideally,” a ball will roll forever on a level floor,
but a real ball rolling on a real floor eventually comes to a stop. An “ideal”
gas is a fictitious gas in which the molecules don’t interact with each other,
as opposed to a real gas whose molecules do interact, but only when they
come close to each other.

mv mv– 0=
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The analysis of a simplified model gives an approximate result that differs
somewhat from what actually happens in the real world. Alternatively, you
can consider your result to be exact for a different real-world situation, one
where the neglected influences are not actually present. For example, the
calculations we made concerning the colliding students could apply almost
exactly to two rubber balls moving in outer space that compress by the
amount we estimated.

An important aspect of physical modeling that will engage us throughout
this course is making appropriate approximations to simplify the messy,
real-world situation enough to permit (approximate) analysis using New-
ton’s laws. Actually, using Newton’s laws is itself an example of modeling
and making approximations, because we are neglecting the effects of quan-
tum mechanics and of general relativity (Einstein’s treatment of gravita-
tion). Newton’s laws are only an approximation to the way the world works,
though frequently an extremely good one.

2.6 Fundamental forces

There are four different kinds of fundamental forces currently known to sci-
ence, associated with four different kinds of interactions: gravitational, elec-
tromagnetic, nuclear (also referred to as the “strong” interaction), and the
“weak” interaction. 

• The gravitational interaction is responsible for an attraction every ob-
ject exerts on every other object. For example, the Earth exerts a grav-
itational force on the Moon, and the Moon exerts a gravitational force
on the Earth. 

• The electromagnetic interaction includes electric forces responsible for
sparks, static cling, and the behavior of electronic circuits, and mag-
netic forces responsible for the operation of motors driven by electric
current. Protons repel each other electrically, as do electrons, whereas
protons and electrons attract each other (Figure 2.25). Electric forces
bind protons and electrons to each other in atoms, and are responsi-
ble for the chemical bonds between atoms in molecules. The force of
a stretched or compressed spring is due to electric forces between the
atoms that make up the spring.

• The nuclear or strong interaction holds protons and neutrons together
in the nucleus of an atom despite the large mutual electric repulsion
of the protons (Figure 2.26). (The neutrons are not electrically
charged and interact only through the strong force.)

• An example of the weak interaction is seen in the instability of a neu-
tron. If a neutron is removed from a nucleus, with an average lifetime
of about 15 minutes the neutron decays into a proton, an electron,
and a ghostly particle called the antineutrino. This change is brought
about by the weak interaction.

We will be mainly concerned with gravitational and electric interactions, but
we will occasionally encounter situations where the nuclear or strong inter-
action plays an important role. We will have little to say about the weak in-
teraction. Nor will we deal with magnetism, the other part of the
electromagnetic interaction. The second volume of this textbook deals ex-
tensively with both electric and magnetic interactions.

2.7 The gravitational force law

To predict the motion of stars, planets, spacecraft, comets, satellites, and
other massive objects traveling through space, we need to use a gravitational
force law together with the Momentum Principle. As a matter of general cul-

Figure 2.25 The electric force: protons
repel each other; electrons repel each
other; protons and electrons attract each
other.

Figure 2.26 The strong force: the protons
in the nucleus of an atom exert repulsive
electric forces on each other, but he
strong interaction holds the nucleus
together despite this electric repulsion.
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ture, it can be interesting to understand how the motion of objects in space
can be predicted by physics principles. If you are studying aerospace engi-
neering or astrophysics this may also be a professional interest. 

What if your interests are in nanotechnology or chemistry or civil engi-
neering? Studying how to predict the motion of stars and planets is one of
the most direct ways to understand in general how the Momentum Princi-
ple determines the behavior of objects in the real world. The motion of stars
and planets is in important ways simpler than other mechanical phenome-
na, because there is no friction to worry about, so this is a good place to start
your study. The basic ideas used to predict the motion of stars and planets
can be applied later to a wide range of everyday and atomic phenomena.

In the 1600’s Isaac Newton deduced that there must be an attractive force
associated with a gravitational interaction between any pair of objects. The
gravitational force acts along a line connecting the two objects (Figure
2.27), is proportional to the mass of one object and to the mass of the other
object, and is inversely proportional to the square of the distance between
the centers of the two objects (not the gap between their surfaces). Here is
the formula for the gravitational force exerted on object 2 by object 1:

THE GRAVITATIONAL FORCE LAW

 points from the center of object 1 to the center of object 2

G is a universal constant: 

This force law looks pretty complicated, but it could have been a lot more
complicated than it is. For example, the gravitational force law does not de-
pend on the momentum or velocity of the objects. It depends only on the
masses, and on the position of one object relative to the other object. 

Large spheres

An optional section at the end of this chapter (page 96) shows that uniform-
density spheres interact gravitationally as though all of their mass were con-
centrated at the center of the sphere, so the gravitational force law applies
to large uniform-density spheres as long as you use the center-to-center dis-
tance. For example, the force that the Earth exerts on you can be calculated
as though all the mass of the Earth were at its center,  away from
where you are sitting.

Measurement of G

Another optional section at the end of this chapter (page 97) tells how Cav-
endish in the late 1700’s measured G by observing the tiny gravitational
forces two lead balls exerted on each other.

2.7.1 Understanding the gravitational force law

We will spend some time understanding how to calculate forces between ob-
jects using Newton’s gravitational force law. Then we will use this force in
the Momentum Principle to predict the future motion of objects.

The gravitational force law involves a lot of different symbols and may
look pretty intimidating at first. Let’s take the law apart and look at the in-
dividual pieces to try to make sense of the formula.

The relative position vector  in the gravitational force law points from
the center of object 1 to the center of object 2, and so does the unit vector

 (“r-hat”) in Figure 2.28. Recall that in words  is the location of ob-

m1

m2

Fgrav on 1 by 2

Figure 2.27 The gravitational force exerted
on object 2 by object 1. (The force exerted
on object 1 by object 2 has the same magni-
tude but opposite direction.)
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Figure 2.28 The location of object 2 rela-
tive to object 1: “final minus initial.”
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ject 2 relative to object 1, “final minus initial.” The magnitude of  is the
distance between the centers of the two objects.

We say that the gravitational constant G is “universal” because it is the
same for any pair of interacting masses, no matter how big or small they are,
or where they are located. Because G is universal, it can be measured for any
pair of objects and then used with other pairs of objects. As we describe on
page 97, Cavendish was the first person to make such a measurement.

As highlighted in Figure 2.29, the gravitational force is proportional to
the product of the two masses, m2m1. If you double either of these masses,
keeping the other one the same, the force will be twice as big. If you double
both of the masses, the force will be four times as big. Since m2m1 = m1m2,
the magnitude of the force exerted on object 1 by object 2 is exactly the
same as the magnitude of the force exerted on object 2 by object 1 (but the
direction is opposite).

The gravitational force is an “inverse square” law. As highlighted in Figure
2.30, the square of the center-to-center distance appears in the denomina-
tor. This means that the gravitational force depends very strongly on the dis-
tance between the objects. For example, if you double the distance between
them, the only thing that changes is the denominator, which gets four times
bigger (2 squared is 4), so the force is only 1/4 as big as before. 

? If you move the masses 10 times farther apart than they were
originally, how does the gravitational force change?

The force goes down by a factor of 100. Evidently when two objects are very
far apart, the gravitational forces they exert on each other will be vanishing-
ly small: big denominator, small force.
The minus sign with the unit vector highlighted in Figure 2.31 gives the di-
rection of the force exerted on object 2 by object 1. The vector  points
toward object 2, as does the unit vector , and the force acting on object
2 points in the opposite direction.

A useful way to think about the gravitational force law is to factor it into
magnitude and direction, like this:

• A vector is a magnitude times a direction: 

• Magnitude: 

• Direction (unit vector): 

It is usually simplest to calculate the magnitude and direction separately,
then combine them to get the vector force. That way you can focus on one
thing at a time rather than getting confused (or intimidated!) by the full
complexity of the vector force law.

 Ex. 2.18 Masses M and m attract each other with a gravitational
force of magnitude F. Mass m is replaced with a mass 3m, and it is
moved four times farther away. Now what is the magnitude of the
force?

 Ex. 2.19 A 3 kg ball and a 5 kg ball are 2 m apart, center to center.
What is the magnitude of the gravitational force that the 3 kg ball
exerts on the 5 kg ball? What is the magnitude of the gravitational
force that the 5 kg ball exerts on the 3 kg ball? 

 Ex. 2.20 Measurements show that the Earth’s gravitational force
on a mass of 1 kg near the Earth’s surface is 9.8 N. The radius of the
Earth is 6400 km (6.4×106 m). From these data determine the mass
of the Earth.

r2-1

Figure 2.29 The gravitational force
depends on the product of the two masses.
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Figure 2.30 The gravitational force is an
“inverse square” law.
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Figure 2.31 The direction of the gravita-
tional force on object 2 is in the opposite
direction to the unit vector pointing toward
object 2.
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2.7.2 Calculating the gravitational force on a planet

We’ll go through a complete calculation to see in full gory detail how to
evaluate the gravitational force law in the most general situation. In Figure
2.32 is a star of mass  located at position

 and a planet of mass  located at po-
sition . These are typical values for stars
and planets. Notice that the mass of the star is much greater than that of the
planet. 

We will calculate the gravitational force exerted on the planet by the star.
In Figure 2.32 we show the x, y, and z components of the positions, to be
multiplied by  m. Make sure you understand how the numbers on
the diagram correspond to the positions given as vectors.

Here is a summary of the steps we will take to calculate the force acting
on the planet due to the star:

The relative position vector

An important quantity in the force law is the position of the center of the
planet relative to the center of the star, , so we start by calculating this
relative position vector. 

? Think about what you know about calculating relative position
vectors, and try to calculate  before reading ahead.

As usual, we just calculate “final minus initial”:

In Figure 2.33, the diagram shows that the signs of the components of 
make sense (positive x and y components, negative z component), which is
an important check that we haven’t made any sign errors.

The distance

In order to calculate the magnitude of the force, we’ll need the distance
 between the centers of the star and planet (and a bit later we’ll also

need  for calculating the unit vector). 

? Try to calculate the magnitude of  before reading ahead.

As usual, we calculate the distance, which is a scalar, by using the 3D version
of the Pythagorean theorem:

star

planet

2 1.5

3.5

1

3

-0.5

xz

y

Figure 2.32 A star and a planet interact
gravitationally. We will calculate the gravi-
tational forces. The x, y, and z components
are to be multiplied by 1×1011 m.
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• Calculate , the position of the planet relative to the star.

• Calculate , the (scalar) distance from star to planet.

• Calculate , the magnitude of the force.

• Calculate , the direction of the force.

• Multiply the magnitude times the direction to get the vector force.
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Figure 2.33 The position vector of the
planet relative to the star.
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The magnitude of the force

? Before reading ahead, try to calculate the magnitude of the force,
.

The magnitude of the force on the planet by the star is this:

This looks like a big force, but it’s acting on a very big mass, so it isn’t obvi-
ous whether this is really a “big” force in terms of what it will do.

The direction of the force

? Can you think how to calculate the vector direction of the
gravitational force, the unit vector ? Try it.

We’ve got the magnitude of the force. We also need to calculate the direc-
tion of the force, which involves the unit vector:

Direction of force: 

Notice that the unit vector giving the direction has no units, because the
meters in the numerator and the denominator cancel. Figure 2.34 shows
the unit vectors pointing from star toward planet, and from planet toward
star.

The vector gravitational force

? Try to construct the vector force. You know the magnitude, and you
know the direction.

Finally we can multiply the magnitude of the force times the unit vector di-
rection of the force to get the full vector force:

Checking our result

It is important to check long calculations such as this, because there are
many opportunities to make a mistake along the way. There are several
checks we can make.

• Diagram: An important check is to make a diagram like Figure 2.35 and
see whether the direction of the calculated force makes sense. Pay par-
ticular attention to signs. The diagram shows that the force acting on
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Figure 2.34 Unit vectors.
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Figure 2.35 The gravitational force exerted
on the planet by the star.
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the planet points in the , ,  direction, and this agrees with our
calculation, which has the same component signs.

• Order of magnitude: Make a rough “order of magnitude” check, drop-
ping all the detailed numbers. In terms of “order of magnitude” the
distance between star and planet is very roughly , the mass of
the star is very roughly , the mass of the planet is very roughly

, and the gravitational constant is very roughly
. Therefore we expect the magnitude of the force

to be very roughly this:

In this very rough order of magnitude calculation, ignoring numerical
details, we just need to add and subtract exponents, and one hardly
even needs a calculator. The fact that we get within an order of magni-
tude of the result  is evidence that we haven’t made any
huge mistakes. 

• Units: An important check is that the units came out correctly, in new-
tons.

• Unit vector: Check to see whether the calculated unit vector does in-
deed have magnitude 1:

The magnitude isn’t exactly 1 because we rounded off the intermediate
calculations to three significant figures.

Our result passes all these checks. This doesn’t prove we haven’t made a
mistake somewhere, but at least we’ve ruled out many possible errors.

The force on the star exerted by the planet

We’ve just calculated the force exerted on the planet by the star. To calcu-
late the force exerted on the star by the planet, we could redo all these
lengthy calculations in the same way, but that would be a lot of work.

? Look at the form of the gravitational force law and think carefully.
Do you see a way to write down immediately the gravitational force on
the star by the planet, without doing any additional calculations?

Note that the magnitude is exactly the same, because it involves exactly the
same quantities. The only change is the direction of the force, which is in
the opposite direction. Therefore we can immediately write the new result,
just by flipping the signs:

Note that the signs of the force components are consistent with Figure 2.36.
You might be puzzled that the planet pulls just as hard on the star as the star
pulls on the planet. We’ll discuss this in more detail later in this chapter.

How can you remember all these steps?

Calculating the vector gravitational force requires many steps, but each step
is pretty straight-forward. How can one remember what steps to take? Think
of the equation for the gravitational force as a guide and outline for what to
do.
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Figure 2.36 The gravitational force exerted
on the star by the planet.
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• When you look at the formula you see that you need , so you calcu-
late it (“final minus initial”). 

• You also see that you need , so you calculate that. 
• Now you see that you now have enough information to calculate the

magnitude of the force. 
• The formula tells you to calculate the negative of the unit vector, to get

the direction.
• The formula says to multiply magnitude times direction. That’s it!

With this scheme in mind, look over the previous few pages to review how
we carried out the evaluation of the gravitational force law. 

 Ex. 2.21 The mass of the Earth is , and the mass of the
Moon is . At a particular instant the Moon is at location

, in a coordinate system whose origin is at
the center of the Earth. 
(a) What is  the relative position vector from the Earth to the
Moon?
(b) What is ?
(c) What is the unit vector ?
(d) What is the gravitational force exerted by the Earth on the Moon?
Your answer should be a vector.

2.7.3 Using the gravitational force to predict motion

You now know that this star exerts this force on this planet at this instant,
but what’s the point in knowing this? By itself, this isn’t particularly interest-
ing. But if we use this calculated force in the Momentum Principle, we can
predict the future motion of the planet.

• We know the force at this instant, and if we know the initial momen-
tum  of the planet we can use the update form of the Momentum
Principle, , to predict the momentum of the planet a
short time  later. We need to choose  short enough that the force
doesn’t change much during this brief time interval, due to changes
in the positions of the interacting objects. 

• We can also use the velocity to update the position of the planet, using
the position update formula . Again, we need to
choose  short enough that the velocity doesn’t change much during
that brief time interval, so that we can use the initial or final velocity as
a good approximation to the average velocity.

After doing these momentum and position updates, we have successfully
predicted the new momentum and position a short time into the future.
Now we can repeat this process, calculating a new gravitational force based
on the new position, updating the momentum, and updating the position.
Step by step we can predict the motion of the planet into the future. 

Although the massive star won’t move very much, we could also update its
momentum and position repetitively. As we’ve seen, it’s easy to get the force
on the star just by flipping signs.

Here is a summary of this iterative scheme:
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• Start with initial positions and momenta of the interacting objects.
• Calculate the (vector) gravitational forces acting on each object.
• Update the momentum of each object: .
• Update the positions: , where .
• Repeat.
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In order to plan the trajectory for a spacecraft from Earth to a particular
landing site on Mars, NASA has to carry out a very large number of such up-
date calculations, taking small steps (small ) to achieve high accuracy.
This includes calculating the net force as the vector sum of all the gravita-
tional forces exerted on the spacecraft along the way by the Sun, Earth,
Moon, Mars, and other objects in the Solar System. Doing all these force
and update calculations by hand would be impossibly difficult, so people at
NASA write computer programs to do these repetitive calculations. Later we
will show you how to write such programs.

Updating the momentum and position of the planet

To see in detail how this iterative scheme works, we’ll carry out one com-
plete step—one update of the momentum and position. In order to start
the iteration we have to know the initial positions and momenta of the star
and planet. We already know their initial positions. Let’s suppose we also
know their initial velocities:

The star is initially at rest and, because it has a huge mass compared to the
planet, it won’t move very much. For simplicity we’ll make the approxima-
tion that the star is fixed in position and never moves.

Choosing a sufficiently small time interval

We need to decide how big a value of  we can get away with and yet pre-
serve adequate accuracy. The smaller the time step , the more accurate
the calculation, because the force and velocity won’t change much during
the brief time interval. However, taking smaller steps means doing more cal-
culations to predict some time into the future. 

Here is a way to choose a time interval. The initial speed is about
. Choose a  so that the distance the planet goes in this time

interval, , is small compared to the distance d between star and planet,
which is about . As the planet changes position the gravitational
force will change in magnitude and direction, as you can see in Figure 2.37.
In the Momentum Principle  we need for  to be small
enough that  is nearly constant during this time interval. 

Let’s choose as a tentative criterion that the distance the planet moves
ought to be about 0.001 times the distance from the star to the planet:

This is about 3 hours. If instead we choose a large time interval of ,
say, in the first update the planet would move a long distance, about

, which is about as large as the distance
to the star, and during that step the actual gravitational force would change
a great deal in magnitude and direction. This would make our predictions
very inaccurate.

Whenever you choose a time interval to use for updating momentum,
make sure it is sufficiently small that the net force doesn’t change very much
in magnitude or direction during your chosen time interval. 

∆t

vi ,star 0 0 0, ,〈 〉  m/s=

vi,planet 1 4×10 2 4×10 1.5 4×10, ,〈 〉  m/s=

∆t
∆t

v 3 4×10  m/s≈ ∆t
v∆t

3 11×10  m

pf pi Fnet∆t+= ∆t
Fnet

d

v∆t

Figure 2.37 If ∆t is too big, the gravitational
force will change a lot in magnitude and
direction during the time interval.
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On the other hand, if the force happens to be constant in magnitude and
direction, you can use as large a  as you like without making an error in
the momentum update.

Update the momentum of the planet

? We know the force acting on the planet, and we’ve chosen a time
interval to make one step in predicting the future of the planet. Try to
predict the momentum the planet will have after .

The planet is moving at a high speed, about , but this is small
compared to the speed of light, which is , so the initial momen-
tum is .

Use the Momentum Principle in its update form:

Notice that the momentum didn’t change very much, because we deliber-
ately chose a small time interval to ensure accuracy in the momentum up-
date, by making sure that the force remained nearly constant during the
brief time interval.

Update the position of the planet

? Think about how you would update the position of the planet.

We must use the position update formula, , but what is the
average velocity ? The velocity (and momentum) changed during the

 time step. Should we use the initial velocity? The final velocity? The
arithmetic average of these two velocities? 

A key point is that the momentum changed very little, so the velocity
changed very little. Therefore it hardly matters which velocity we use. To be
concrete about this, and for simplicity in computer calculations, we’ll nor-
mally use the final velocity (obtained from the just-calculated final momen-
tum) to represent the average velocity. This works well as long as the time
step is small. Since , , and the position update is this:

∆t
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---------------------------------------------------------------------------------------------------------------------------------- 1 4×10  s( )
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What have we done?

Whew! After all that computational drudgery, what have we accomplished?
We’ve predicted the future of the planet! 

Knowing the planet’s initial position and momentum, we predict that af-
ter  the planet will be in a new position that we’ve calculated, with a
new momentum that we’ve calculated. So what? Well, we could do this
again. The second time step would involve exactly the same calculations we
just did, but the “initial” position and momentum would be the “final” ones
we just calculated. We could keep going, doing this over and over and over,
and predict as far ahead into the future as we are willing to do the tedious
calculations.

You say you’d rather not do all those calculations? Right! The thing to do
is to instruct a computer to do this for you. What you need to do is learn how
to write out one set of instructions for the computer to do repetitively, over
and over. Next we will show you how to do this, but it was important to guide
you once through the gory details of the calculation, so that you could un-
derstand exactly what it is you have to tell the computer to do.

2.7.4 Telling a computer what to do

Here we summarize how to organize a computer program in order to tell a
computer how to apply the Momentum Principle repetitively to predict the
future. 

The details of the actual program statements depend on what program-
ming language or system you use, and your instructor will provide you with
the details of the particular tool you will use. 

A computer calculation

In the preceding sections you took one step in such a calculation, by hand.
Figure 2.38 shows the orbit of the planet as predicted by a computer pro-
gram written using VPython (http://vpython.org) that continually updated
the momentum and position of the planet, repeatedly using the gravitation-
al force law, the Momentum Principle, and the position update formula.
The star and planet are shown much larger than they really are, for visibility
in the largely empty space. 

Using the gravitational force law, Newton was able to explain the motion
of planets and moons in the Solar System. Later scientists have found that
it is possible to explain even the motions of other stars in our own and other
galaxies with the same formula, so it appears that this is truly a universal law
of gravitation, applying to all pairs of masses everywhere in the universe.

Vary the step size

After you get a program running, it is very important that you decrease the
value of the step size  and make sure that the motion doesn’t change. Of
course the motion will take longer, because you’re doing more calculations,

1 4×10  s

• Define the values of constants such as G to use in the program.
• Specify the masses, initial positions, and initial momenta of the inter-

acting objects.
• Specify an appropriate value for , small enough that the objects

don’t move very far during one update.
• Create a “loop” structure for repetitive calculations:

• Calculate the (vector) forces acting on each object.
• Update the momentum of each object: .
• Update the positions: , where .
• Repeat.

∆t

pf pi Fnet∆t+=
rf ri varg∆t+= varg pf m⁄≈

x

z

y

Start

star

planet

Figure 2.38 The motion of the planet
around the star. The star and planet are
shown much larger than they really are.

∆t
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but the issue is that the shape of the trajectory shouldn’t change. If it does
change significantly, that means that  was originally too big, leading to
the net force and average velocity changing too much during the time .

Keep decreasing  until you find that the shape of the trajectory hardly
changes. Now you have an adequately small step size .

Define and use constants

It is important to gather together at the start of the program the definitions
of any constants such as G, and use these defined symbols everywhere else
in the program (that is, use G rather than 6.7E–11 in later calculations). You
should avoid entering actual numbers such as 6.7E–11 more than once in a
program, since if there is a mistake in a constant you have to correct it in
many places. Also, it is easier to read a program that uses G everywhere rath-
er than the number 6.7E–11.

Why not just use calculus?

You might wonder why we don’t simply use calculus to predict the motion
of planets and stars. One answer is that we do use calculus. Step by step, we
add up a large number of tiny increments of the momentum of a body to
calculate a large change in its momentum over a long time, and this corre-
sponds to an approximate evaluation of an integral (which is an infinite sum
of infinitesimal amounts).

A more interesting answer is that the motion of most physical systems can-
not be predicted using calculus in any way other than by this step-by-step ap-
proach. In a few cases calculus does give a general result without going
through this procedure. For example, an object subjected to a constant
force has a constant rate of change of momentum and velocity, and calculus
can be used to obtain a prediction for the position as a function of time, as
we saw in the example of a ball thrown through a vacuum. The elliptical or-
bits of two stars around each other can be predicted mathematically, al-
though the math is quite challenging. But the general motion of three stars
around each other has never been successfully analyzed in this way. The ba-
sic problem is that it is usually relatively easy to take the derivative of a
known function, but it is often impossible to determine in algebraic form
the integral of a known function, which is what would be involved in long-
term prediction.

It isn’t a question of taking more math courses in order to be able to solve
the “three-body” problem: there is no general mathematical solution. How-
ever, a step-by-step procedure of the kind we carried out for the planet can
easily be extended to three or more bodies. Just calculate all the forces act-
ing between pairs of bodies, update the momenta, and update the positions.
This is why we study the step-by-step prediction method in detail, because it
is a powerful technique of increasing importance in modern science and en-
gineering, thanks to the availability of powerful computers to do the repet-
itive work for us.

 Ex. 2.22 The Earth goes around the Sun in 365 days, in a nearly
circular orbit. In a computer calculation of the orbit (which is
actually an ellipse), approximately how big can  be and still get
good accuracy in the prediction of the motion?

 Ex. 2.23 A pendulum swings with a “period” (time for one round
trip) of 2 s. In a computer calculation of the motion, approximately
how big can  be and still get good accuracy in the prediction of
the motion?

∆t
∆t

∆t
∆t

∆t

∆t
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2.7.5 Approximate gravitational force near the Earth’s surface

Earlier we used the expression  to represent the magnitude of the grav-
itational force on an object near the Earth’s surface. This is an approxima-
tion to the actual force, but it is a good one. The magnitude of the
gravitational force that the Earth exerts on an object of mass m near the
Earth’s surface (Figure 2.39) is

where y is the distance of the object above the surface of the Earth, RE is the
radius of the Earth, and ME is the mass of the Earth. 

A spherical object of uniform density can be treated as if all its mass were
concentrated at its center. As a result, we can treat the effect of the Earth on
the object as though the Earth were a tiny, very dense ball a distance 
away. 

The gravitational force exerted by the Earth on an atom at the top of the
object is slightly different from the force on an atom at the bottom of the
object, because each atom is a slightly different distance from the center of
the Earth. How much can this difference really matter in an analysis? Sup-
pose the height of the object is a meter, and the bottom of the object is one
meter above the surface. The radius of the Earth is about  m. Then

 whereas 

For most purposes this difference is not significant. In fact, for all interac-
tions of objects near the surface of the Earth, it makes sense to use the same
approximate value, RE, for the distance from the object to the center of the
Earth. This simplifies calculation of gravitational forces by allowing us to
combine all the constants into a single lumped constant, g:

, so that 

The constant g, called “the magnitude of the gravitational field,” has the val-
ue g = +9.8 newtons/kilogram near the Earth’s surface. The “gravitational
field”  at a location in space is defined to be the (vector) gravitational
force that would be exerted on a 1 kg mass placed at that location. A 2 kg
mass would experience a force twice as large. In general, a mass m will ex-
perience a force  of magnitude mg.

Note that g is a positive number, the magnitude of the gravitational field.
We can use this approximate formula for gravitational force in our analysis
of any interactions occurring near the surface of the Earth.

 Ex. 2.24 Show that  equals 9.8 N/kg. The mass of the
Earth is .

 Ex. 2.25 At what height above the surface of the Earth is there a
1% difference between the approximate magnitude of the
gravitational field (9.8 N/kg) and the actual magnitude of the
gravitational field at that location? That is, at what height y above
the Earth’s surface is ?

mg

Earth
(Not to scale!)

y

RE

m

ME

Figure 2.39 Determining the gravitational
force of the Earth on an object a height y
above the surface.
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2.8 The electric force law: Coulomb’s law

There are electric interactions between “charged” particles such as the pro-
tons and electrons found in atoms. It is observed that two protons repel each
other, as do two electrons, while a proton and an electron attract each other
(Figure 2.40; where protons are said to have “positive electric charge” and
electrons have “negative electric charge”). 

The force corresponding to this electric interaction is similar to the grav-
itational force law, and it is known as “Coulomb’s law” to honor the French
scientist who established this law in the late 1700’s, during the same period
when Cavendish measured the gravitational constant G. See Figure 2.41.

THE ELECTRIC FORCE LAW (COULOMB’S LAW)

where  is a universal constant: 

Both the gravitational and electric forces are proportional to the inverse
square of the center-to-center distance (“inverse square” laws). The univer-
sal electric constant (read as “one over four pi epsilon-zero”) is very much
larger than the gravitational constant, reflecting the fact that electric inter-
actions are intrinsically much stronger than gravitational interactions. For
example, consider a heavy weight that hangs from a thin metal wire. The
small number of atoms interacting electrically in the wire have as big an ef-
fect on the hanging weight as a very much larger number of atoms in the
huge Earth, interacting gravitationally.

The charges q1 and q2 must be measured in SI units called “coulombs.”
The proton has a charge of  C and the electron has a charge of

.

? Study the three cases in Figure 2.40. Why is no minus sign needed
in the force law, unlike the case with the gravitational force law?

The difference is that two positively charged particles such as two protons
repel each other, whereas masses are always positive but the gravitational
force is attractive. Two negatively charged particles such as electrons also at-
tract each other and minus times minus gives plus. Only if the two particles
have opposite charges will they attract each other, and then the factor q2q1
contributes the necessary minus sign, just as in the gravitational force law.

2.8.1 Interatomic forces

When two objects touch each other they exert forces on each other. At the
microscopic level, these contact forces are due to electric interactions be-
tween the protons and electrons in one object and the protons and elec-
trons in the other object. In Chapter 3 we will examine interatomic forces
in more detail.

 Ex. 2.26 A proton and an electron are separated by , the
radius of a typical atom. Calculate the magnitude of the electric
force that the proton exerts on the electron, and the magnitude of
the electric force that the electron exerts on the proton.

Figure 2.40 Protons repel each other; elec-
trons repel each other; protons and elec-
trons attract each other.

Figure 2.41 The electric force exerted on
object 2 by object 1. (The force exerted on
object 2 by object 1 has the same magni-
tude but opposite direction.)
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2.9 Reciprocity

An important aspect of the gravitational and electric interactions (includ-
ing the electric forces of atoms in contact with each other) is that the force
that object 1 exerts on object 2 is equal and opposite to the force that object
2 exerts on object 1 (Figure 2.42). That the magnitudes must be equal is
clear from the algebraic form of the laws, because m1m2 = m2m1 and
q1q2 = q2q1. The directions of the forces are along the line connecting the
centers, and in opposite directions. 

This property is called “reciprocity” or “Newton’s third law of motion”:

RECIPROCITY

 (gravitational and electric forces)

The force that the Earth exerts on the massive Sun is just as big as the force
that the Sun exerts on the Earth, so in the same time interval the momen-
tum changes are equal in magnitude and opposite in direction (“equal and
opposite” for short):

However, the velocity change  of the Sun is extremely small
compared to the velocity change of the Earth, because the mass of the Sun
is enormous in comparison with the mass of the Earth. The mass of our Sun,
which is a rather ordinary star, is  kg. This is enormous compared to
the mass of the Earth (  kg) or even to the mass of the largest planet
in our Solar System, Jupiter (  kg). Nevertheless, very accurate mea-
surements of small velocity changes of distant stars have been used to infer
the presence of unseen planets orbiting those stars.

Magnetic forces do not have the property of reciprocity. Two electrically
charged particles that are both moving can interact magnetically as well as
electrically, and the magnetic forces that these two particles exert on each
other need not be equal in magnitude nor opposite in direction. Reciproc-
ity applies to gravitational and electric forces, but not in general to magnet-
ic forces (except in some special cases).

Why reciprocity?

The algebraic forms of the gravitational and electric force laws indicate that
reciprocity should hold. A diagram may be helpful in explaining why the
forces behave this way. 

Consider two small objects, a 3 gram object made up of three 1 gram
balls, and a 2 gram object made up of two 1 gram balls (Figure 2.43). The
distance between centers of the two objects is large compared to the size of
either object, so the distances between pairs of 1 gram balls are about the
same for all pairs.

You can see that in the 3 gram object each ball has two gravitational forces
exerted on it by the distant balls in the 2 gram object.

? How many forces act on the 3 gram object?

There is a net force of  times the force associated with one pair of
balls.

? Similarly, consider the forces acting on the 2 gram object. How
many forces act on the 2 gram object?

There is again a net force of  times the force associated with one
pair of balls.

The effect is that the force exerted by the 3 gram object on the 2 gram
object has the same magnitude as the force exerted by the 2 gram object on
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Figure 2.42 The Sun and the Earth exert
equal and opposite forces on each other.
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the 3 gram object. The same reciprocity holds, for the same reasons, for the
electric forces between a lithium nucleus containing 3 protons and a helium
nucleus containing 2 protons.

2.10 The Newtonian synthesis

Newton devised a particular explanatory scheme in which the analysis of
motion is divided into two distinct parts: 

1) Quantify the interaction in terms of a concept called “force.” Specific
examples are Newton’s law of gravitation and Coulomb’s law.

2) Quantify the change of motion in terms of the change in a quantity
called “momentum.” The change in the momentum is equal to the
force times ∆t.

This scheme, called the “Newtonian synthesis,” has turned out to be extraor-
dinarily successful in explaining a huge variety of diverse physical phenom-
ena, from the fall of an apple to the orbiting of the Moon. Yet we have no
way of asking whether the Universe “really” works this way. It seems unlikely
that the Universe actually uses the human concepts of “force” and “momen-
tum” in the unfolding motion of an apple or the Moon. 

We refer to the “Newtonian synthesis” both to identify and honor the par-
ticular, highly successful analysis scheme introduced by Newton, but also to
remind ourselves that this is not the only possible way to view and analyze
the universe.

Einstein’s alternative view

Newton stated his gravitational force law but could give no explanation for
it. He was content with showing that it correctly predicted the motion of the
planets, and this was a huge advance, the real beginning of modern science. 

Einstein made another huge advance by giving a deeper explanation for
gravity, as a part of his general theory of relativity. He realized that the mas-
sive Sun bends space and time (!) in such a way as to make the planets move
the way they do. The equations in Einstein’s general theory of relativity
make it possible to calculate the curvature of space and time due to massive
objects, and to predict how other objects will move in this altered space and
time.

Moreover, Einstein’s theory of general relativity accurately predicts some
tiny effects that Newton’s gravitational law does not, such as the slight bend-
ing of light as it passes near the Sun. General relativity also explains some
bizarre large-scale phenomena such as black holes and the observed expan-
sion of the space between the galaxies. 

Einstein’s earlier special theory of relativity established that nothing, not
even information, can travel faster than light. Because Newton’s gravitation-
al force formula depends only on the distance between objects, not on the
time, something’s wrong with the formula, since this implies that if an object
were suddenly yanked away, its force on another object would vanish instan-
taneously, thus giving (in principle) a way to send information from one
place to another instantaneously. Einstein’s theory of general relativity
doesn’t have this problem.

Since the equations of general relativity are very difficult to work with,
and Newton’s gravitational law works very well for most purposes, in this
course we will use Newton’s approach to gravity. But you should be aware
that for the most precise calculations one must use the theory of general rel-
ativity. For example, the highly accurate atomic clocks in the satellites that
make up the Global Positioning System (GPS) have to be continually cor-
rected using Einstein’s theory of general relativity. Otherwise GPS positions
would be wrong by several kilometers after just one day of operation!
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2.11 *Derivation of special average velocity result

Here we offer two proofs, one geometric and one algebraic (using calcu-
lus), for the following special-case result concerning average velocity:

AVERAGE VELOCITY (SPECIAL CASE)

 only if  changes at a constant rate

(  is constant, v << c); similar results for  and 

If  is constant,  implies that  changes at a con-
stant rate. At speeds small compared to the speed of light, , so a
graph of  vs. time is a straight line, as in Figure 2.44. In Figure 2.44 we
form narrow vertical slices, each of height  and narrow width . 

Within each narrow slice  changes very little, so the change in position
during the brief time  is approximately . Therefore the
change in x is approximately equal to the area of the slice of height  and
width  (Figure 2.45). 

If we add up the areas of all these slices, we get approximately the area
under the line in Figure 2.44, and this is also equal to the total displacement

. If we go to the limit of an infinite number of
slices, each with infinitesimal width, the sum of slices really is the area, and
this area we have shown to be equal to the change in position. This kind of
sum of an infinite number of infinitesimal pieces is called an “integral” in
calculus.

The area under the line is a trapezoid, and from geometry we know that
the area of a trapezoid is the average of the two bases times the altitude.
Turn Figure 2.44 on its side, as in Figure 2.46, and you see that the top and
bottom have lengths  and , while the altitude of the trapezoid is the
total time . Therefore we have the following result:

Trapezoid area = 

Dividing by , we have this:

But by definition the x component of average velocity is the change in x di-
vided by the total time, so we have proved that

 only if  changes linearly with time (  is constant)

The proof depended critically on the straight-line (“linear”) change in ve-
locity, which occurs only if  is constant (and v << c). Otherwise we
wouldn’t have a trapezoidal area. That’s why the result isn’t true in general;
it’s only true in this important but special case.

Algebraic proof using calculus

An algebraic proof using calculus can also be given. We will use the x com-
ponent of the derivative version of the Momentum Principle (more about
this in the next chapter):
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In the limit we have  and 

If  is a constant, the time derivative of  is a constant, so we have

 since  when 

You can check this by taking the derivative with respect to time t, which gives
the original equation . At speeds small compared to the
speed of light, , so we can write

 since  when 

But the x component of velocity is the rate at which x is changing:

Now the question is, can you think of a function of x that has this time de-
rivative? Since the time derivative of  is , the following formula for x has
the appropriate derivative:

 since  when 

You can check this by taking the derivative with respect to t, which gives the
equation for , since  and .

The average velocity which we seek is the change in position divided by
the total time:

where we have used the equation we previously derived for the velocity:

Simplifying the expression for  we have the proof:

 only if  changes at a constant rate (  is constant)

2.12 *Points and spheres

The gravitational force law applies to objects that are “point-like” (very small
compared to the center-to-center distance between the objects). In the sec-
ond volume of this textbook we will be able to show that any hollow spheri-
cal shell with uniform density acts gravitationally on external objects as
though all the mass of the shell were concentrated at its center. The density
of the Earth is not uniform, because the central iron core has higher density
than the outer layers. But by considering the Earth as layers of hollow spher-
ical shells, like an onion, with each shell of nearly uniform density, we get
the result that the Earth can be modeled for most purposes as a point mass
located at the center of the Earth (for very accurate calculations one must
take into account small irregularities in the Earth’s density from place to
place). Similar statements can be made about other planets and stars. In Fig-
ure 2.47, the gravitational force is correctly calculated using the center-to-
center distance . 
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This is not an obvious result. After all, in Figure 2.47 some of the atoms
are closer and some farther apart than the center-to-center distance ,
but the net effect after adding up all the interactions of the individual atoms
is as though the two objects had collapsed down to points at their centers.
This is a very special property of  forces, both gravitational and electric,
and is not true for forces that have a different dependence on distance.

2.13 *Measuring the universal gravitational constant G

In order to make quantitative predictions and analyses of physical phenom-
ena involving gravitational interactions, it is necessary to know the universal
gravitational constant G. In 1797-1798 Henry Cavendish performed the first
experiment to determine a precise value for G (Figure 2.48). In this kind of
experiment, a bar with metal spheres at each end is suspended from a thin
quartz fiber which constitutes a “torsional” spring. From other measure-
ments, it is known how large a tangential force measured in newtons is re-
quired to twist the fiber through a given angle. Large balls are brought near
the suspended spheres, and one measures how much the fiber twists due to
the gravitational interactions between the large balls and the small spheres. 

If the masses are measured in kilograms, the distance in meters, and the
force in newtons, the gravitational constant G has been measured in such
experiments to be

This extremely small number reflects the fact that gravitational interactions
are inherently very weak compared with electromagnetic interactions. The
only reason that gravitational interactions are significant in our daily lives is
that objects interact with the entire Earth, which has a huge mass. It takes
sensitive measurements such as the Cavendish experiment to observe grav-
itational interactions between two ordinary-sized objects.

2.14 *The Momentum Principle is valid only in inertial frames

Newton’s first law is valid only in an “inertial frame” of reference, one in uni-
form motion (or at rest) with respect to the pervasive “cosmic microwave
background” (see optional discussion at the end of Chapter 1). Since the
Momentum Principle is a quantitative version of Newton’s first law, we ex-
pect the Momentum Principle to be valid in an inertial reference frame, but
not in a reference frame that is not in uniform motion. Let’s check that this
is true.

If you view some objects from a space ship that is moving uniformly with
velocity  with respect to the cosmic microwave background, all of the ve-
locities of those objects have the constant  subtracted from them, as far as
you are concerned. For example, a rock moving at the same velocity as your
spacecraft would have  in your reference frame: it
would appear to be stationary as it coasted along beside your spacecraft.

With a constant spaceship velocity, we have , and the change of
momentum of the moving object reduces to the following (for speeds small
compared to c):

 since 

Therefore, 

r2-1

1 r2⁄

Figure 2.48 The Cavendish experiment.
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If the velocity  of the space ship doesn’t change (it represents an inertial
frame of reference), the form (and validity) of the Momentum Principle is
unaffected by the motion of the space ship.

However, if your space ship increases its speed, or changes direction,
, an object’s motion relative to you changes without any force acting

on it. In that case the Momentum Principle is not valid for the object, be-
cause you are not in an inertial frame. Although the Earth is not an inertial
frame because it rotates, and goes around the Sun, it is close enough to be-
ing an inertial frame for many everyday purposes.

2.15 *Updating position at high speed

If v << c,  and . But at high speed it is more complicated to
determine the velocity from the (relativistic) momentum. Here is a way to
solve for  in terms of :

Divide by m and square: 

Multiply by : 

Collect terms: 

But since  and  are in the same direction, we can write this:

THE RELATIVISTIC POSITION UPDATE FORMULA

 (for small )

Note that at low speeds , and the denominator is ,
so the formula becomes the familiar .

2.16 *Definitions, measurements, and units

Using the Momentum Principle requires a consistent way to measure
length, time, mass, and force, and a consistent set of units. We state the def-
initions of the standard Système Internationale (SI) units, and we briefly dis-
cuss some subtle issues underlying this choice of units.

Units: meters, seconds, kilograms, and newtons

Originally the meter was defined as the distance between two scratches on a
platinum bar in a vault in Paris, and a second was 1/86,400th of a “mean so-

vs

∆vs 0≠

p mv≈ v p m⁄≈

v p

p 1

1 v c⁄( )2–
--------------------------------m v=

p 2

m2
-------- v 2

1 v c⁄( )2–
----------------------------=

1 v c⁄( )2–( ) p 2

m2
--------

p 2

m2c2
-----------⎝ ⎠

⎛ ⎞ v 2– v 2=

1 p 2

m2c2
-----------+⎝ ⎠

⎛ ⎞ v 2 p 2

m2
--------=

v p m⁄

1
p

mc
------⎝ ⎠

⎛ ⎞
2

+

----------------------------=

p v

v p m⁄

1
p

mc
------⎝ ⎠

⎛ ⎞
2

+

----------------------------=

rf ri
1

1
p

mc
------⎝ ⎠

⎛ ⎞
2

+

---------------------------- p
m
----⎝ ⎠

⎛ ⎞ ∆t+= ∆t

p m v≈ 1 v
c

-----⎝ ⎠
⎛ ⎞

2
+ 1≈

rf ri p m⁄( )∆t+=



2.16: *Definitions, measurements, and units 99

lar day.” Now however the second is defined in terms of the frequency of
light emitted by a cesium atom, and the meter is defined as the distance
light travels in 1/299,792,458th of a second, or about  seconds (3.3
nanoseconds). The speed of light is defined to be exactly 299,792,458 m/s
(very close to  m/s). As a result of these modern redefinitions, it is re-
ally speed (of light) and time that are the internationally agreed-upon basic
units, not length and time.

By international agreement, one kilogram is the mass of a platinum block
kept in that same vault in Paris. As a practical matter, other masses are com-
pared to this standard kilogram by using a balance-beam or spring weighing
scale (more about this in a moment). The newton, the unit of force, is de-
fined as that force which acting for 1 second imparts to 1 kilogram a velocity
change of 1 m/s. We could make a scale for force by calibrating the amount
of stretch of a spring in terms of newtons.

Some subtle issues

What we have just said about SI units is sufficient for practical purposes to
predict the motion of objects, but here are some questions that might both-
er you. Is it legitimate to measure the mass that appears in the Momentum
Principle by seeing how that mass is affected by gravity on a balance-beam
scale? Is it legitimate to use the Momentum Principle to define the units of
force, when the concept of force is itself associated with the same law? Is this
all circular reasoning, and the Momentum Principle merely a definition
with little content? Here is a chain of reasoning that addresses these issues.

Measuring inertial mass

When we use balance-beam or spring weighing scales to measure mass, what
we’re really measuring is the “gravitational mass,” that is, the mass that ap-
pears in the law of gravitation and is a measure of how much this object is
affected by the gravity of the Earth. In principle, it could be that this “grav-
itational mass” would be different from the so-called “inertial mass”—the
mass that appears in the definition of momentum. It is possible to compare
the inertial masses of two objects, and we find experimentally that inertial
and gravitational mass seem to be entirely equivalent.

Here is a way to compare two inertial masses directly, without involving
gravity. Starting from rest, pull on the first object with a spring stretched by
some amount s for an amount of time ∆t, and measure the increase of speed

. Then, starting from rest, pull on the second object with the same
spring stretched by the same amount s for the same amount of time ∆t, and
measure the increase of speed . We define the ratio of the inertial mass-
es as . Since one of these masses could be the standard
kilogram kept in Paris, we now have a way of measuring inertial mass in ki-
lograms. Having defined inertial mass this way, we find experimentally that
the Momentum Principle is obeyed by both of these objects in all situations,
not just in the one special experiment we used to compare the two masses.

Moreover, we find to extremely high precision that the inertial mass in ki-
lograms measured by this comparison experiment is exactly the same as the
gravitational mass in kilograms obtained by comparing with a standard kilo-
gram on a balance-beam scale (or using a calibrated spring scale), and that
it doesn’t matter what the objects are made of (wood, copper, glass, etc.).
This justifies the convenient use of ordinary weighing scales to determine
inertial mass.

Is this circular reasoning?

The definitions of force and mass may sound like circular reasoning, and
the Momentum Principle may sound like just a kind of definition, with no

3.3 9–×10

3 8×10

∆v1

∆v2
m1 m2⁄ ∆v2 ∆v1⁄=
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real content, but there is real power in the Momentum Principle. Forget for
a moment the definition of force in newtons and mass in kilograms. The ex-
perimental fact remains that any object if subjected to a single force by a
spring with constant stretch experiences a change of momentum (and ve-
locity) proportional to the duration of the interaction. Note that it is not a
change of position proportional to the time (that would be a constant
speed), but a change of velocity. That’s real content. Moreover, we find that
the change of velocity is proportional to the amount of stretch of the spring.
That too is real content.

Then we find that a different object undergoes a different rate of change
of velocity with the same spring stretch, but after we’ve made one single
comparison experiment to determine the mass relative to the standard kilo-
gram, the Momentum Principle works in all situations. That’s real content.

Finally come the details of setting standards for measuring force in new-
tons and mass in kilograms, and we use the Momentum Principle in helping
set these standards. But logically this comes after having established the law
itself.
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2.17 Summary

Fundamental Physical Principles

THE MOMENTUM PRINCIPLE

 (for a short enough time interval ∆t) 

Update form:  

THE SUPERPOSITION PRINCIPLE

The net force on an object is the vector sum of the individual forces exerted
on it by all other objects. Each individual interaction is unaffected by the
presence of other interacting objects.

Major new concepts

To apply the Momentum Principle to analyze the motion of a real-world sys-
tem, several steps are required:

1. Choose a system, consisting of a portion of the Universe.
The rest of the Universe is called the surroundings.

2. List objects in the surroundings that exert 
significant forces on the chosen system, and 
make a labeled diagram showing the external forces
exerted by the objects in the surroundings.

3. Apply the Momentum Principle to the chosen system:

For each term in the Momentum Principle, 
substitute any values you know.

4. Apply the position update formula, if necessary:

5. Solve for any remaining unknown quantities of interest.

6. Check for reasonableness (units, etc.).

System is a portion of the Universe acted on by the surroundings.

Force is a quantitative measure of interactions; units are newtons.

Impulse is the product of force times time ; momentum change equals
net impulse (the impulse due to the net force).

Four fundamental types of interaction have been identified:
• gravitational interactions (all objects attract each other gravitational-

ly)
• electromagnetic interactions (electric and magnetic interactions,

closely related to each other); interatomic forces are electric in nature
• “strong” interactions (inside the nucleus of an atom)
• “weak” interactions (neutron decay, for example)

Physical models are tractable approximations/idealizations of the real world.

∆p Fnet∆t=

pf pi Fnet∆t+=

A labeled diagram (step 3) gives a physics
view of the situation, and it defines sym-
bols to use in writing an algebraic state-
ment of the Momentum Principle.

pf pi Fnet∆t+=

rf ri varg∆t+=

F∆t
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Computer prediction of motion:

Force laws

THE GRAVITATIONAL FORCE LAW

 points from the center of object 1 to the center of object 2

G is a universal constant: 

Near the Earth’s surface, , where g = +9.8 N/kg

THE ELECTRIC FORCE LAW (COULOMB’S LAW)

where  is a universal constant: 

THE SPRING FORCE LAW (MAGNITUDE)

s is the stretch:  (relaxed length - new length)

 is called the “spring stiffness” 

RECIPROCITY

 (gravitational and electric forces)

This is also called “Newton’s third law of motion.”

Additional new concepts and results

Uniform-density spheres act as though all the mass were at the center.

AVERAGE VELOCITY (SPECIAL CASE)

exactly true only if v << c and  changes at a constant rate (  constant)

• Define the values of constants such as G to use in the program.
• Specify the masses, initial positions, and initial momenta of the inter-

acting objects.
• Specify an appropriate value for , small enough that the objects

don’t move very far during one update.
• Create a “loop” structure for repetitive calculations:

• Calculate the (vector) forces acting on each object.
• Update the momentum of each object: .
• Update the positions: , where .
• Repeat.

∆t

pf pi Fnet∆t+=
rf ri varg∆t+= varg pf m⁄≈
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Fgrav  on 1 by 2

Figure 2.49 The gravitational force exerted
on object 2 by object 1. (The force exerted
on object 1 by object 2 has the same magni-
tude but opposite direction.)
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Figure 2.50 The electric force exerted on
object 2 by object 1. (The force exerted on
object 2 by object 1 has the same magni-
tude but opposite direction.)
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2.18 Review questions

The Momentum Principle

RQ 2.1 At a certain instant, a particle is moving in the +x direction with mo-
mentum +10 kg·m/s. During the next 0.1 s, a constant force acts on the par-
ticle: Fx = –6 N, and Fy = +3 N. What is the magnitude of the momentum of
the particle at the end of this 0.1 s interval?

RQ 2.2 At t = 12.0 seconds an object with mass 2 kg was observed to have a
velocity of <10, 35, –8> m/s. At t = 12.3 seconds its velocity was <20, 30, 4>
m/s. What was the average (vector) net force acting on the object?

RQ 2.3 A proton has mass . What is the magnitude of the im-
pulse required to increase its speed from 0.990c to 0.994c?

The gravitational force law

RQ 2.4 Calculate the approximate gravitational force exerted by the Earth
on a human standing on the Earth’s surface. Compare with the approxi-
mate gravitational force of a human on another human at a distance of 3
meters. What approximations or simplifying assumptions must you make?
(See data on the inside back cover.)

Reciprocity

RQ 2.5 The windshield of a speeding car hits a hovering insect. Compare
the magnitude of the force that the car exerts on the bug to the force that
the bug exerts on the car. Which is bigger? Compare the magnitude of the
change of momentum of the bug to that of the car. Which is bigger? Com-
pare the magnitude of the change of velocity of the bug to that of the car.
Which is bigger? Explain briefly. (Note: the interatomic forces between bug
and windshield are electric forces.)

The superposition principle

RQ 2.6 In order to pull a sled across a level field at constant velocity you
have to exert a constant force. Doesn’t this violate Newton’s first and second
laws of motion, which imply that no force is required to maintain a constant
velocity? Explain this seeming contradiction.

1.7 27–×10  kg
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2.19 Problems

Problem 2.1 In the space shuttle
A space shuttle is in a circular orbit near the Earth. An astronaut floats in
the middle of the shuttle, not touching the walls. On a diagram, draw and
label 

(a) the momentum  of the astronaut at this instant; 
(b) all of the forces (if any) acting on the astronaut at this instant; 
(c) the momentum  of the astronaut a short time ∆t later; 
(d) the momentum change (if any)  in this time interval. 
(e) Why does the astronaut seem to “float” in the shuttle?

It is ironic that we say the astronaut is “weightless” despite the fact that the
only force acting on the astronaut is the astronaut’s weight (that is, the grav-
itational force of the Earth on the astronaut).

Problem 2.2 Two books attract each other
Two copies of this textbook are standing right next to each other on a book-
shelf. Make a rough estimate of the magnitude of the gravitational force that
the books exert on each other. Explicitly list all quantities that you had to
estimate, and all simplifications and approximations you had to make to do
this calculation. Compare your result to the gravitational force on the book
by the Earth.

Problem 2.3 Compare gravitational and electric forces
Use data from the inside back cover to calculate the gravitational and elec-
tric forces two protons exert on each other when they are  apart
(about one atomic radius). Which interaction between two protons is stron-
ger, the gravitational attraction or the electric repulsion? If the two protons
are at rest, will they begin to move toward each other or away from each oth-
er? Note that since both the gravitational and electric force laws depend on
the inverse square distance, this comparison holds true at all distances, not
just at a distance of .

Problem 2.4 Crash test
In a crash test, a truck with mass 2200 kg traveling at 25 m/s (about 55 miles
per hour) smashes head-on into a concrete wall without rebounding. The
front end crumples so much that the truck is 0.8 m shorter than before.
What is the approximate magnitude of the force exerted on the truck by the
wall? Explain your analysis carefully, and justify your estimates on physical
grounds. 

Problem 2.5 Ping-pong ball
A ping-pong ball is acted upon by the Earth, air resistance, and a strong
wind. Here are the positions of the ball at several times. 

Early time interval:
At t = 12.35 s, the position was < 3.17, 2.54, –9.38 > m
At t = 12.37 s, the position was < 3.25, 2.50, –9.40 > m

Late time interval:
At t = 14.35 s, the position was < 11.25, –1.50, –11.40 > m
At t = 14.37 s, the position was < 11.27, –1.86, –11.42 > m

(a) In the early time interval, from t = 12.35 s to t = 12.37 s, what was the
average momentum of the ball? The mass of the ping-pong ball is 2.7 grams
(  kg). Express your result as a vector.

(b) In the late time interval, from t = 14.35 s to t = 14.37 s, what was the
average momentum of the ball? Express your result as a vector.

(c) In the time interval from t = 12.35 s (the start of the early time inter-
val) to t = 14.35 s (the start of the late time interval), what was the average
net force acting on the ball? Express your result as a vector.

p1

p2
∆p

1 10–×10  m

1 10–×10  m

2.7 3–×10
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Problem 2.6 Kick a basketball
A 0.6 kg basketball is rolling by you at 3.5 m/s. As it goes by, you give it a
kick perpendicular to its path (Figure 2.51). Your foot is in contact with the
ball for 0.002 s. The ball eventually rolls at a 20º angle from its original di-
rection. The overhead view is approximately to scale. The arrow represents
the force your toe applies briefly to the basketball.

(a) In the diagram, which letter corresponds to the correct overhead view
of the ball’s path?

(b) Determine the magnitude of the average force you applied to the
ball.

Problem 2.7 Spacecraft and asteroid
At t = 532.0 s after midnight a spacecraft of mass 1400 kg is located at posi-
tion , and an asteroid of mass  is locat-
ed at position . There are no other objects
nearby.

(a) Calculate the (vector) force acting on the spacecraft.
(b) At  the spacecraft’s momentum was , and at the later

time  its momentum was , Calculate the (vector) change of
momentum .

Problem 2.8 Proton and HCl molecule
A proton interacts electrically with a neutral HCl molecule located at the or-
igin. At a certain time t, the proton’s position is  and the
proton’s velocity is . The force exerted on the proton by
the HCl molecule is . At a time , what is
the approximate velocity of the proton?

Problem 2.9 A free throw in basketball
Determine two different possible ways for a player to make a free throw in
basketball. In both cases give the initial speed, initial angle, and initial
height of the basketball. The rim of the basket is 10 feet (3.0 m) above the
floor. It is 14 feet (4.3 m) along the floor from the free-throw line to a point
directly below the center of the basket.

Problem 2.10 A basketball pass
You have probably seen a basketball player throw the ball to a teammate at
the other end of the court, 30 m away. Estimate a reasonable initial angle
for such a throw, and then determine the corresponding initial speed. For
your chosen angle, how long does it take for the basketball to go the length
of the court? What is the highest point along the trajectory, relative to the
thrower’s hand?

Problem 2.11 The case of the falling flower pot
You are a detective investigating why someone was hit on the head by a fall-
ing flowerpot. One piece of evidence is a home video taken in a 4th-floor
apartment, which happens to show the flowerpot falling past a tall window.
Inspection of individual frames of the video shows that in a span of 6 frames
the flowerpot falls a distance that corresponds to 0.85 of the window height
seen in the video (note: standard video runs at a rate of 30 frames per sec-
ond). You visit the apartment and measure the window to be 2.2 m high.
What can you conclude? Under what assumptions? Give as much detail as
you can.

Problem 2.12 Tennis ball hits wall
A tennis ball has a mass of 0.057 kg. A professional tennis player hits the ball
hard enough to give it a speed of 50 m/s (about 120 miles per hour). The
ball hits a wall and bounces back with almost the same speed (50 m/s). As
indicated in Figure 2.52, high-speed photography shows that the ball is

20˚

20˚

20˚

A

C

B

Figure 2.51 Kick a basketball (Problem
2.6).

3 5×10 7 5×10 4 5×10–, ,〈 〉  m 7 15×10  kg
9 5×10 3– 5×10 12 5×10–, ,〈 〉  m

t 532.0 s= pi
t 538.0 s= pf

pf pi–

1.6 9–×10 0 0, ,〈 〉  m
3200 800 0, ,〈 〉  m/s

1.12– 11–×10 0 0, ,〈 〉  N t 2 14–×10  s( )+

2 cm

Figure 2.52 A high-speed tennis ball
deforms when it hits a wall (Problem 2.12).
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crushed 2 cm (0.02 m) at the instant when its speed is momentarily zero, be-
fore rebounding. 

Making the very rough approximation that the large force that the wall
exerts on the ball is approximately constant during contact, determine the
approximate magnitude of this force. Hint: Think about the approximate
amount of time it takes for the ball to come momentarily to rest. (For com-
parison note that the gravitational force on the ball is quite small, only about

. A force of 5 N force is approximately the same
as a force of one pound.)

Problem 2.13 Mars probe
A small space probe, of mass 240 kg, is launched from a spacecraft near
Mars. It travels toward the surface of Mars, where it will land. At a time 20.7
seconds after it is launched, the probe is at the location

, and at this same time its momentum is
. At this instant, the net force on the

probe due to the gravitational pull of Mars plus the air resistance acting on
the probe is . 

(a) Assuming that the net force on the probe is approximately constant
over this time interval, what is the momentum of the probe 20.9 seconds af-
ter it is launched?

(b,) What is the location of the probe 20.9 seconds after launch?

Problem 2.14 Spacecraft navigation
Suppose you are navigating a spacecraft far from other objects. The mass of
the spacecraft is  (about 150 tons). The rocket engines are shut
off, and you’re coasting along with a constant velocity of . As
you pass the location  you briefly fire side thruster rockets, so
that your spacecraft experiences a net force of  for 3.4 s. The
ejected gases have a mass that is small compared to the mass of the space-
craft. You then continue coasting with the rocket engines turned off. Where
are you an hour later? Also, what approximations or simplifying assump-
tions did you have to make in your analysis? Think about the choice of sys-
tem: what are the surroundings that exert external forces on your system?

Problem 2.15 Electron motion in a CRT
In a cathode ray tube (CRT) used in oscilloscopes and televi-
sion sets, a beam of electrons is steered to different places on a
phosphor screen, which glows at locations hit by electrons (Fig-
ure 2.53). The CRT is evacuated, so there are few gas molecules
present for the electrons to run into. Electric forces are used to
accelerate electrons of mass m to a speed v0 << c, after which
they pass between positively and negatively charged metal
plates which deflect the electron in the vertical direction (up-
ward in Figure 2.53, or downward if the sign of the charges on
the plates is reversed). 
While an electron is between the plates, it experiences a uni-
form vertical force F, but when the electron is outside the plates
there is negligible force on it. The gravitational force on the
electron is negligibly small compared to the electric force in
this situation. The length of the metal plates is d, and the phos-
phor screen is a distance L from the metal plates. Where does
the electron hit the screen? (That is, what is yf?)

0.057 kg( ) 9.8 N/kg( ) 0.6 N≈

4.30 3×10 8.70 2×10 0, ,〈 〉  m
4.40 4×10 7.60– 3×10 0, ,〈 〉  kg m⋅ s⁄

7– 3×10 9.2– 2×10 0, ,〈 〉  N

1.5 5×10  kg
0 20 0, ,〈 〉  km/s

12 15 0, ,〈 〉  km
6 4×10 0 0, ,〈 〉  N

+ + + + + + + + + 

– – – – – – – – – 

d L

yf = ?

v0

e–

Figure 2.53 A cathode ray tube (Problem
2.15).
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Problem 2.16 Star and planet
A star of mass  is located at . A planet of
mass  is located at  and is moving with a ve-
locity of .

(a) At a time  seconds later, what is the new velocity of the planet? 
(b) Where is the planet at this later time?
(c) Explain briefly why the procedures you followed in parts (a) and (b)

were able to produce usable results but wouldn’t work if the later time had
been  seconds instead of  seconds after the initial time. Explain
briefly how could you use a computer to get around this difficulty.

Problem 2.17 Two stars
At t = 0 a star of mass  has velocity 
and is located at  relative to the cen-
ter of a cluster of stars. There is only one nearby star that exerts a significant
force on the first star. The mass of the second star is , its velocity
is , and this second star is located at

 relative to the center of the cluster of
stars.

(a) At , what is the approximate momentum of the first star?
(b) Discuss briefly some ways in which your result for (a) is approximate,

not exact.
(c) At , what is the approximate position of the first star?
(d) Discuss briefly some ways in which your result for (b) is approximate,

not exact.

Problem 2.18 The SLAC two-mile accelerator
SLAC, the Stanford Linear Accelerator Center, located at Stanford Univer-
sity in Palo Alto, California, accelerates electrons through a vacuum tube
two miles long (it can be seen from an overpass of the Junipero Serra free-
way that goes right over the accelerator). Electrons which are initially at rest
are subjected to a continuous force of  newton along the entire
length of two miles (one mile is 1.6 kilometers) and reach speeds very near
the speed of light. 

(a) Determine how much time is required to increase the electrons’
speed from 0.93c to 0.99c. (That is, the quantity  increases from 0.93 to
0.99.) 

(b) Approximately how far does the electron go in this time? What is ap-
proximate about your result?

Problem 2.19 Determining the mass of an asteroid
In June 1997 the NEAR spacecraft (“Near Earth Asteroid Rendezvous”; see
http://near.jhuapl.edu/), on its way to photograph the asteroid Eros,
passed within 1200 km of asteroid Mathilde at a speed of 10 km/s relative
to the asteroid (Figure 2.54). From photos transmitted by the 805 kg space-
craft, Mathilde’s size was known to be about 70 km by 50 km by 50 km. It is
presumably made of rock. Rocks on Earth have a density of about 3000
kg/m3 (3 grams/cm3).

(a) Make a rough diagram to show qualitatively the effect on the space-
craft of this encounter with Mathilde. Explain your reasoning.

(b) Make a very rough estimate of the change in momentum of the space-
craft that would result from encountering Mathilde. Explain how you made
your estimate.

(c) Using your result from part (b), make a rough estimate of how far off
course the spacecraft would be, one day after the encounter.

(d) From actual observations of the location of the spacecraft one day af-
ter encountering Mathilde, scientists concluded that Mathilde is a loose ar-
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Figure 2.54 The NEAR spacecraft passes
the asteroid Mathilde (Problem 2.19).
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rangement of rocks, with lots of empty space inside. What was it about the
observations that must have led them to this conclusion?

Experimental background: The position was tracked by very accurate
measurements of the time that it takes for a radio signal to go from Earth to
the spacecraft followed immediately by a radio response from the spacecraft
being sent back to Earth. Radio signals, like light, travel at a speed of 
m/s, so the time measurements had to be accurate to a few nanoseconds
( ).

The following problems are intended to introduce you to using a computer
to model matter, interactions, and motion. Some parts of these problems
can be done with almost any tool (spreadsheet, math package, etc.). Other
parts are most easily done with a programming language, for which we rec-
ommend the free 3D programming language VPython (http://vpy-
thon.org). Your instructor will introduce you to an available computational
tool and assign problems, or parts of problems, that can be addressed using
the chosen tool.

Problem 2.20 Planetary orbits
In this problem you will study the motion of a planet around a star. To start
with a somewhat familiar situation, you will begin by modeling the motion
of our Earth around our Sun. Write answers to questions either as com-
ments in your program or on paper, as specified by your instructor.

Planning
(a) The Earth goes around the Sun in a nearly circular orbit, taking one

year to go around. Using data on the inside back cover, what initial speed
should you give the Earth in a computer model, so that a circular orbit
should result? (If your computer model does produce a circular orbit, you
have a strong indication that your program is working properly.)

(b) Estimate an appropriate value for ∆t to use in your computer model.
Remember that t is in seconds, and consider your answer to part (a) in mak-
ing this estimate. If your ∆t is too small, your calculation will require many
tedious steps. Explain briefly how you decided on an appropriate step size.

Circular orbit
(c) Starting with speed calculated in (a), and with the initial velocity per-

pendicular to a line connecting the Sun and the Earth, calculate and display
the trajectory of the Earth. Display the whole trail, so you can see whether
you have a closed orbit (that is, whether the Earth returns to its starting
point each time around). Include the Sun’s position  in your
computations, even if you set its coordinates to zero. This will make it easier
to modify the computation to let the Sun move (Problem 2.2 Binary stars).

Computational accuracy
(d) As a check on your computation, is the orbit a circle as expected? Run

the calculation until the accumulated time t is the length of a year: does this
take the Earth around the orbit once, as expected? What is the largest step
size you can use that still gives a circular orbit and the correct length of a
year? What happens if you use a much larger step size?

Noncircular trajectories
(e) Set the initial speed to 1.2 times the Earth’s actual speed. Make sure

the step size is small enough that the orbit is nearly unaffected if you cut the
step size. What kind of orbit do you get? What step size do you need to use
to get results you can trust? What happens if you use a much larger step size?
Produce at least one other qualitatively different noncircular trajectory for
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the Earth. What difficulties would humans have in surviving on the Earth if
it had a highly noncircular orbit?

Force and momentum
(f) Choose initial conditions that give a noncircular orbit. Continuously

display a vector showing the momentum of the Earth (with its tail at the
Earth’s position), and a different colored vector showing the force on the
Earth by the Sun (with its tail at the Earth’s position). You must scale the
vectors appropriately to fit into the scene. A way to figure out what scale fac-
tor to use is to print the numerical values of momentum and force, and
compare with the scale of the scene. For example, if the width of the scene
is W meters, and the force vector has a typical magnitude F (in newtons),
you might scale the force vector by a factor 0.1W/F, which would make the
length of the vector be one-tenth the width of the scene. Is the force in the
same direction as the momentum? How does the momentum depend on
the distance from the star?

Problem 2.21 Binary stars
About a half of the visible “stars” are actually systems consisting of two stars
orbiting each other, called “binary stars.” In your computer model of the
Earth and Sun (Problem 2.20 Planetary orbits ), replace the Earth with a
star whose mass is half the mass of our Sun, and take into account the grav-
itational effects that the second star has on the Sun. 

(a) Give the second star the speed of the actual Earth, and give the Sun
zero initial momentum. What happens? Try a variety of other initial condi-
tions. What kinds of orbits do you find? 

(b) One of the things to try is to give the Sun the same magnitude of mo-
mentum as the second star, but in the opposite direction. If the initial mo-
mentum of the second star is in the +y direction, give the Sun the same
magnitude of momentum but in the –y direction, so that the total momen-
tum of the binary star system is initially zero, but the stars are not headed
toward each other. What is special about the motion you observe in this
case?

Problem 2.22 Other force laws
Modify your orbit computation to use a different force law, such as a force
that is proportional to  or , or a constant force, or a force propor-
tional to  (this represents the force of a spring whose relaxed length is
nearly zero). How do orbits with these force laws differ from the circles and
ellipses that result from a  law? If you want to keep the magnitude of
the force roughly the same as before, you will need to adjust the force con-
stant G.

Problem 2.23 The effect of the Moon and Venus on the Earth
In Problem 2.20 you analyzed a simple model of the Earth orbiting the Sun,
in which there were no other planets or moons. Venus and the Earth have
similar size and mass. At its closest approach to the Earth, Venus is about 40
million kilometers away (  m). The Moon’s mass is about  kg,
and the distance from Earth to Moon is about  m (400,000 km, center
to center).

(a) Calculate the ratio of the gravitational forces on the Earth exerted by
Venus and the Sun. Is it a good approximation to ignore the effect of Venus
when modeling the motion of the Earth around the Sun?

(b) Calculate the ratio of the gravitational forces on the Earth exerted by
the Moon and the Sun. Is it a good approximation to ignore the effect of
the Moon when modeling the motion of the Earth around the Sun?

1 r⁄ 1 r⁄ 3

r2

1 r⁄ 2
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Problem 2.24 The three-body problem
Carry out a numerical integration of the motion of a three-body gravitation-
al system and plot the trajectory, leaving trails behind the objects. Calculate
all of the forces before using these forces to update the momenta and posi-
tions of the objects. Otherwise the calculations of gravitational forces would
mix positions corresponding to different times.

Try different initial positions and initial momenta. Find at least one set of
initial conditions that produces a long-lasting orbit, one set of initial condi-
tions that results in a collision with a massive object, and one set of initial
conditions that allows one of the objects to wander off without returning.
Report the masses and initial conditions that you used.

Problem 2.25 The Ranger 7 mission to the Moon
The first U.S. spacecraft to photograph
the Moon close up was the unmanned
“Ranger 7” photographic mission in
1964. The spacecraft, shown in the illus-
tration at the right (NASA photograph),
contained television cameras that trans-
mitted close-up pictures of the Moon
back to Earth as the spacecraft ap-
proached the Moon. The spacecraft did
not have retro-rockets to slow itself down,
and it eventually simply crashed onto the
Moon’s surface, transmitting its last pho-
tos immediately before impact.

Figure 2.55 is the first image of the Moon taken by a U.S. spacecraft, Rang-
er 7, on July 31, 1964, about 17 minutes before impacting the lunar surface.
The large crater at center right is Alphonsus (108 km diameter); above it
(and to the right) is Ptolemaeus and below it is Arzachel. The Ranger 7 im-
pact site is off the frame, to the left of the upper left corner. 

You can find out more about the actual Ranger lunar missions at
http://nssdc.gsfc.nasa.gov/planetary/lunar/ranger.html

To send a spacecraft to the Moon, we put it on top of a large rocket contain-
ing lots of rocket fuel and fire it upward. At first the huge ship moves quite
slowly, but the speed increases rapidly. When the “first-stage” portion of the
rocket has exhausted its fuel and is empty, it is discarded and falls back to
Earth. By discarding an empty rocket stage we decrease the amount of mass
that must be accelerated to even higher speeds. There may be several stages
that operate for a while and then are discarded before the spacecraft has ris-
en above most of Earth’s atmosphere (about 50 km, say, above the Earth),
and has acquired a high speed. At that point all the fuel available for this
mission has been used up, and the spacecraft simply coasts toward the Moon
through the vacuum of space.

We will model the Ranger 7 mission. Starting 50 km above the Earth’s sur-
face (  m), a spacecraft coasts toward the Moon with an initial speed of
about 104 m/s. Here are data we will need:

mass of spacecraft = 173 kg mass of Earth ≈  kg

mass of Moon ≈  kg radius of Moon =  m
distance from Earth to Moon ≈  m (400,000 km, center to center)

We’re going to ignore the Sun in a simplified model even though it exerts
a sizable gravitational force. We’re expecting the Moon mission to take only
a few days, during which time the Earth (and Moon) move in a nearly
straight line with respect to the Sun, because it takes 365 days to go all the
way around the Sun. We take a reference frame fixed to the Earth as repre-

Figure 2.55 The first Ranger 7 photo of
the Moon (NASA photograph).
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senting (approximately) an inertial frame of reference with respect to
which we can use the Momentum Principle.

For a simple model, make the Earth and Moon be fixed in space during
the mission. Factors that would certainly influence the path of the space-
craft include the motion of the Moon around the Earth, and the motion of
the Earth around the Sun. In addition, the Sun and other planets exert
gravitational forces on the spacecraft. As a separate project you might like
to include some of these additional factors.

(a) Compute the path of the spacecraft, and display it either with a graph
or with an animated image. Here, and in remaining parts of the problem,
report the step size ∆t that gives accurate results (that is, cutting this step
size has little effect on the results).

(b) By trying various initial speeds, determine the approximate minimum
launch speed needed to reach the Moon, to two significant figures (this is
the speed that the spacecraft obtains from the multistage rocket, at the time
of release above the Earth’s atmosphere). What happens if the launch
speed is less than this minimum value? (Be sure to check the step size issue.)

(c) Use a launch speed 10% larger than the approximate minimum value
found in part (b). How long does it take to go to the Moon, in hours or days?
(Be sure to check the step size issue.) 

(e) What is the “impact speed” of the spacecraft (its speed just before it
hits the Moon’s surface)? Make sure that your spacecraft crashes on the sur-
face of the Moon, not at the Moon’s center! (Be sure to check the step size
issue.)

You may have noticed that you don’t actually need to know the mass m of
the spacecraft in order to carry out the computation. The gravitational
force is proportional to m, and the momentum is also proportional to m, so
m cancels. However, nongravitational forces such as electric forces are not
proportional to the mass, and there is no cancellation in that case. We kept
the mass m in the analysis in order to illustrate a general technique for pre-
dicting motion, no matter what kind of force, gravitational or not.

Problem 2.26 The effect of Venus on the Moon voyage
In the Moon voyage analysis, you used a simplified model in which you ne-
glected among other things the effect of Venus. An important aspect of
physical modeling is making estimates of how large the neglected effects
might be. If we take Venus into account, make a rough estimate of whether
the spacecraft will miss the Moon entirely. How large a sideways deflection
of the crash site will there be? Explain your reasoning and approximations.

Venus and the Earth have similar size and mass. At its closest approach to
the Earth, Venus is about 40 million kilometers away (  m). In the
real world, Venus would attract the Earth and the Moon as well as the space-
craft, but to get an idea of the size of the effects, pretend that the Earth, the
Moon, and Venus are all fixed in position (Figure 2.56) and just investigate
Venus’s effect on the spacecraft.

Earth

Moon

Venus

Figure 2.56 The relative positions of Venus,
Earth, and Moon in Problem 2.26.
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2.20 Answers to exercises

2.1 (page 55) 0.275 N

2.2 (page 55) 3571 N/m

2.3 (page 55) 71.4 N

2.4 (page 56)

2.5 (page 58)

2.6 (page 58) Earth, water, and air exert forces; net force is zero

2.7 (page 58) zero

2.8 (page 59) glider; track, spring, Earth, air

2.9 (page 63)

2.10 (page 63)  = impulse by

ground

2.11 (page 63)

2.12 (page 63)

2.13 (page 63)

2.14 (page 67) (a) 

(b) 

(c) 8.6 m

(d) 1.33 s

(e) 2.66 s

(f) 

2.15 (page 67) , , , , 

Same results if mass is changed.

2.16 (page 68) time in air is 1.77 s; horizontal distance 8.8 m; 3.8 m high

2.17 (page 72) , 

2.18 (page 82) 3/16 times as large

2.19 (page 82) , 

2.20 (page 82)

2.21 (page 86) (a) 

(b) 

(c)  (no units; dimensionless

(d) 

2.22 (page 90) about a day or less; a small portion of the circle

2.23 (page 90) about 0.02 s; a small fraction of the round-trip time

2.25 (page 91) ; note that Mt. Everest is about  tall

2.26 (page 92)

60– 24– 96, ,〈 〉  N·s

0.03– 005– 0.02, ,〈 〉  N

pf 10 0 11, ,〈 〉  kg·m/s=

∆p pf pi– 15000– 0 3000, ,〈 〉  kg·m/s= =

Fnet 5000– 0 1000, ,〈 〉  N=

Fnet 1 4×10– 0 0, ,〈 〉  N=

pf 9.4 0.3 0, ,〈 〉  kg·m/s=

10– 7.12 5–, ,〈 〉  m/s

3 6.036 8–, ,〈 〉  m

17.5– 0 18.3–, ,〈 〉  m

yi h= vyi 0= yf 0= ∆t 2h g⁄= vyf 2gh=

y 0.108 m= py 0.0365 kg·m/s=

2.5 10–×10  N 2.5 10–×10  N

6 24×10  kg

2.8 8×10 0 2.8– 8×10, ,〈 〉  m

3.96 8×10  m

0.707 0 0.707–, ,〈 〉

1.27 20×10– 0 1.27 20×10, ,〈 〉  N

3.2 4×10  m 8 3×10  m

2.3 8–×10  N
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