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Figure 1.1 Atoms of hydrogen, carbon,
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the location of the nucleus. On this scale,
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Chapter 1

Interactions and Motion

This course deals with the nature of matter and its interactions. The variety
of phenomena that we will be able to explain and understand is very wide,
including the orbit of stars around a black hole, nuclear fusion, and the
speed of sound in a solid.

The main goal of this course is to have you engage in a process cen-
tral to science: the attempt to explain in detail a broad range of phe-
nomena using a small set of powerful fundamental principles.

The specific focus is on learning how to model the nature of matter
and its interactions in terms of a small set of physical laws that gov-
ern all mechanical interactions, and in terms of the atomic struc-
ture of matter.

This first chapter introduces the notion of interactions and the changes
they produce. The major topics are:

¢ The kinds of matter we will deal with

¢ How to detect interactions

® Precise description of position and motion in 3D space

¢ Momentum

1.1 Kinds of matter

In this course we will deal with material objects of many sizes, from subatom-
ic particles to galaxies. All of these objects have certain things in common.

Atoms and nuclei

Ordinary matter is made up of tiny atoms. An atom isn’t the smallest type of
matter, for it is composed of even smaller objects (electrons, protons, and
neutrons), but many of the ordinary everyday properties of ordinary matter
can be understood in terms of atomic properties and interactions. As you
probably know from studying chemistry, atoms have a very small, very dense
core, called the nucleus, around which is found a cloud of electrons. The
nucleus contains protons and neutrons, collectively called nucleons. Elec-
trons are kept close to the nucleus by electric attraction to the protons (the
neutrons don’t interact with the electrons).

? Recall your previous studies of chemistry. How many protons and
electrons are there in a hydrogen atom? In helium or carbon atoms?

Throughout this text you will encounter questions like the preceding one,
which ask you to stop and think before reading further. An important part
of reading and understanding a scientific text is to ask yourself questions
and to try to answer them. You will learn more from reading this text if you
try to answer these questions before looking at the discussion in the sub-
sequent paragraph.

If you don’t remember the properties of these atoms, see the periodic table
on the inside front cover of this textbook. Hydrogen is the simplest atom,
with just one proton and one electron. A helium atom has two protons and
two electrons. A carbon atom has six protons and six electrons. Near the
other end of the chemical periodic table, a uranium atom has 92 protons
and 92 electrons. Figure 1.1 shows the approximate cloud of electrons for
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several elements but cannot show the nucleus to the same scale; the tiny dot
marking the nucleus in the figure is much larger than the actual nucleus.

The radius of the electron cloud for a typical atom is about 1x107"
meter. The reason for this size can be understood using the principles of
quantum mechanics, a major development in physics in the early 20th cen-
tury. The radius of a proton is about 1x10" "~ meter, very much smaller than
the radius of the electron cloud.

Nuclei contain neutrons as well as protons (Figure 1.2). The most com-
mon form or “isotope” of hydrogen has no neutrons in the nucleus. How-
ever, there exist isotopes of hydrogen with one or two neutrons in the
nucleus (in addition to the proton). Hydrogen atoms containing one or two
neutrons are called deuterium or tritium. The most common isotope of he-
lium has two neutrons (and two protons) in its nucleus, but a rare isotope
has only one neutron; this is called helium-3.

The most common isotope of carbon has six neutrons together with the
six protons in the nucleus (carbon-12), while carbon-14 with eight neutrons
is an isotope that plays an important role in dating archeological objects.

Near the other end of the periodic table, uranium-235, which can under-
go a fission chain reaction, has 92 protons and 143 neutrons, while urani-
um-238, which does not undergo a fission chain reaction, has 92 protons
and 146 neutrons.

Molecules and solids

When atoms come in contact with each other, they may stick to each other
(“pond” to each other). Several atoms bonded together can form a mole-
cule—a substance whose physical and chemical properties differ from those
of the constituent atoms. For example, water molecules (HoO) have prop-
erties quite different from the properties of hydrogen atoms or oxygen at-
oms.

An ordinary-sized rigid object made of bound-together atoms and big
enough to see and handle is called a solid, such as a bar of aluminum. A new
kind of microscope, the scanning tunneling microscope (STM), is able to
map the locations of atoms on the surface of a solid, which has provided
new techniques for investigating matter at the atomic level. Two such imag-
es appear in Figure 1.3. You can see that atoms in a crystalline solid are ar-
ranged in a regular three-dimensional array. The arrangement of atoms on
the surface depends on the direction along which the crystal is cut. The ir-
regularities in the bottom image reflect “defects,” such as missing atoms, in
the crystal structure.

Liquids and gases

When a solid is heated to a higher temperature, the atoms in the solid vi-
brate more vigorously about their normal positions. If the temperature is
raised high enough, this thermal agitation may destroy the rigid structure
of the solid. The atoms may become able to slide over each other, in which
case the substance is a liquid.

At even higher temperatures the thermal motion of the atoms or mole-
cules may be so large as to break the interatomic or intermolecular bonds
completely, and the liquid turns into a gas. In a gas the atoms or molecules
are quite free to move around, only occasionally colliding with each other
or the walls of their container.

In this course we will learn how to analyze many aspects of the behavior
of solids and gases. We won’t have much to say about liquids, because their
properties are much harder to analyze. Solids are simpler to analyze than
liquids because the atoms stay in one place (though with thermal vibration
about their usual positions). Gases are simpler to analyze than liquids be-
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Figure 1.3 Two different surfaces of a crys-
tal of pure silicon. The images were made
with a scanning tunneling microscope.
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cause between collisions the gas molecules are approximately unaffected by
the other molecules. Liquids are the awkward intermediate state, where the
atoms move around rather freely, but always in contact with other atoms.
This makes the analysis of liquids very complex.

Planets, stars, solar systems, and galaxies

In our brief survey of the kinds of matter that we will study, we make a giant
leap in scale from atoms all the way up to planets and stars, such as our Earth
and Sun. In this course we will see that many of the same principles that ap-
ply to atoms apply to planets and stars. By making this leap we bypass an im-
portant physical science, geology, whose domain of interest includes the
formation of mountains and continents. We will study objects that are much
bigger than mountains, and we will study objects that are much smaller than
mountains, but we don’t have time in one course to apply the principles of
physics to every important kind of matter.

Our Sun and its accompanying planets constitute our Solar System (Fig-
ure 1.4). It is located in the Milky Way galaxy, a giant rotating disk-shaped
system of stars. On a clear dark night you can see a band of light (the Milky
Way) coming from the huge number of stars lying in this disk, which you are
looking at from a position in the disk, about two-thirds of the way out from
the center of the disk. Our galaxy is a member of a cluster of galaxies that
move around each other much as the planets of our Solar System move
around the Sun. The Universe contains many such clusters of galaxies.

1.2 Detecting interactions

Objects made of different kinds of matter interact with each other in various
ways: gravitationally, electrically, magnetically, and through the strong and
weak interactions. How can we detect that an interaction has occurred? In
this section we consider various kinds of observations that indicate the pres-
ence of interactions.

? Before you read further, take a moment to think about your own
ideas of interactions. How can you tell that two objects are interacting
with each other?

1.2.1 Change of direction

Suppose you observe a proton moving through a region of outer space, far
from almost all other objects. The proton moves along a path like the one
shown in Figure 1.5. The arrow indicates the initial direction of the proton’s

motion, and the “x’s” in the diagram indicate the position of the proton at
equal time intervals.

? Do you see evidence that the proton is interacting with another
object?

Evidently a change in direction is a vivid indicator of interactions. If you ob-
serve a change in direction of the motion of a proton, you will find another
object somewhere that has interacted with this proton.

? Suppose that the only other object nearby was another proton.
What was the approximate initial location of this second proton?

Since two protons repel each other electrically, the second proton must
have been located to the right of the bend in the first proton’s path.
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1.2.2 Change of speed

Suppose that you observe an electron traveling in a straight line through
outer space far from almost all other objects (Figure 1.6). The path of the
clectron is shown as though a camera had taken multiple exposures at equal
time intervals.

? Where is the electron’s speed largest? Where is the electron’s
speed smallest?

The speed is largest at the top, where the dots are farther apart. It is smallest
at the bottom, where the dots are closer together.

? Suppose that the only other object nearby was another electron.
What was the approximate initial location of this other electron?

The other electron must have been located directly below the starting point
of the path, since electrons repel each other electrically.

Evidently a change in speed is an indicator of interactions. If you observe
a change in speed of an electron, you will find another object somewhere
that has interacted with the electron.

1.2.3 Change of velocity: change of speed or direction

In physics, the word “velocity” has a special technical meaning which is dif-
ferent from its meaning in everyday speech. In physics, the quantity called
“velocity” indicates a combination of speed and direction. (In contrast, in
everyday speech, “speed” and “velocity” are often used as synonyms. In phys-
ics, however, all words have precise meanings and there are no synonyms.)

For example, consider an airplane that is flying with a speed of 1000 kilo-
meters/hour in a direction that is due east. We say the velocity is 1000
km/hr, east, where we specify both speed and direction. An airplane flying
west with a speed of 1000 km/hr would have the same speed, but a different
velocity.

We have seen that a change in an object’s speed, or a change in the direc-
tion of its motion, indicates that the object has interacted with at least one
other object. The two indicators of interaction, change of speed and change
of direction, can be combined into one compact statement:

A change of velocity (speed or direction or both) indicates the ex-
istence of an interaction.

Diagrams showing changes in velocity

In physics diagrams, the velocity of an object is represented by an arrow: a
line with an arrowhead. The tail of the arrow is placed at the location of the
object, and the arrow points in the direction of the motion of the object.
The length of the arrow is proportional to the speed of the object. Figure
1.7 shows two successive positions of a particle at two different times, with
velocity arrows indicating a change in speed of the particle (it’s slowing
down). Figure 1.8 shows three successive positions of a different particle at
three different times, with velocity arrows indicating a change in direction
but no change in speed.

We will see a little later in the chapter that velocity is only one example of
a physical quantity that has a “magnitude” (an amount or a size) and a di-
rection. Other examples of such quantities are position relative to an origin
in 3D space, force, and magnetic field. Quantities having magnitude and di-
rection can be usefully described as “vectors”. Vectors are mathematical
quantities which have their own special rules of algebra, similar (but not
identical) to the rules of ordinary algebra. Arrows are commonly used in di-
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Figure 1.6 An electron moves through
space, far from almost all other objects.
The initial direction of the electron’s
motion is upward, as indicated by the
arrow. The x’s represent the position of
the electron at equal time intervals.
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Figure 1.7 Two successive positions of a
particle (indicated by a dot), with arrows
indicating the velocity of the particle at
each location. The shorter arrow indicates
that the speed of the particle at location 2
is less than its speed at location 1.
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Figure 1.8 Three successive positions of a
particle (indicated by a dot), with arrows
indicating the velocity of the particle at
each location. The arrows are the same
length, indicating the same speed, but
they point in different directions, indicat-
ing a change in direction and therefore a
change in velocity.
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agrams to denote vector quantities. We will use vectors extensively in this
course.

1.2.4 Uniform motion

Suppose you observe a rock moving along in outer space far from all other
objects. We don’t know what made it start moving in the first place; presum-
ably a long time ago an interaction gave it some velocity and it has been
coasting through the vacuum of space ever since.

It is an observational fact that such an isolated object moves at constant,
unchanging speed, in a straight line. Its velocity does not change (neither
its direction nor its speed changes). We call such motion with unchanging
velocity “uniform motion” (Figure 1.9).

An object at rest

A special case of uniform motion is the case in which an object’s speed is
zero and remains zero—the object remains at rest. In this case the object’s
speed is constant (zero) and the direction of motion, while undefined, is
not changing.

Uniform motion implies no net interaction

When we observe an object in uniform motion, we conclude that since its
velocity is not changing, either it is not interacting significantly with any oth-
er object, or else it is undergoing multiple interactions that cancel each oth-
er out. In either case, we can say that there is no “net” (total) interaction.

1.3 Newton’s first law of motion

The basic relationship between change of velocity and interaction is summa-
rized qualitatively by Newton’s “first law of motion™:

NEWTON’S FIRST LAW OF MOTION

An object moves in a straight line and at constant speed
except to the extent that it interacts with other objects.

The words “to the extent” imply that the stronger the interaction, the more
change there will be in direction and/or speed. The weaker the interaction,
the less change. If there is no net interaction at all, the direction doesn’t
change and the speed doesn’t change (uniform motion). This case can also
be called “uniform velocity” or “constant velocity,” since velocity refers to
both speed and direction. It is important to remember that if an object is
not moving at all, its velocity is not changing, so it too may be considered to
be in uniform motion.

Newton’s first law of motion is only qualitative, because it doesn’t give us
away to calculate quantitatively how much change in speed or direction will
be produced by a certain amount of interaction, a subject we will take up in
the next chapter. Nevertheless, Newton’s first law of motion is important in
providing a conceptual framework for thinking about the relationship be-
tween interaction and motion.

The English physicist Isaac Newton was the first person to state this law
clearly. Newton’s first law of motion represented a major break with ancient
tradition, which assumed that constant pushing was required to keep some-
thing moving. This law says something radically different: no interactions at
all are needed to keep something moving!
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Does Newton'’s first law apply in everyday life?

Superficially, Newton’s first law of motion may at first seem not to apply to
many everyday situations. To push a chair across the floor at constant speed,
you have to keep pushing all the time.

? Doesn’t Newton’s first law of motion say that the chair should keep
moving at constant speed without anyone pushing it? In fact, shouldn’t
the speed or direction of motion of the chair change due to the
interaction with your hands? Does this everyday situation violate
Newton’s first law of motion? Try to answer these questions before
reading farther.

The complicating factor here is that your hands aren’t the only objects that
are interacting with the chair. The floor also interacts with the chair, in a
way that we call friction. If you push just hard enough to compensate exactly
for the floor friction, the sum of all the interactions is zero, and the chair
moves at constant speed as predicted by Newton’s first law. (If you push
harder than the floor does, the chair’s speed does increase.)

Motion without friction

It is difficult to observe motion without friction in everyday life, because ob-
jects almost always interact with many other objects, including air, flat sur-
faces, etc. This explains why it took people such a long time (Newton lived
in the 1600’s) to understand clearly the relationship between interaction
and change.

You may be able to think of situations in which you have seen an object
keep moving at constant (or nearly constant) velocity, without being
pushed or pulled. One example of a nearly friction-free situation is a hockey
puck sliding on ice. The puck slides a long way at nearly constant speed in
a straight line (constant velocity) because there is little friction with the ice.
An even better example is the uniform motion of an object in outer space,
far from all other objects.

Exercises

At the end of a section you will usually find exercises such as those that
follow. It is important to work through exercises as you come to them, to
make sure that you can apply what you have just read. Simply reading about
concepts in physics is not enough—you must be able to use the concepts in
answering questions and solving problems.

Make a serious attempt to do an exercise before checking the answer at
the end of the chapter. This will help you assess your own understanding.

Ex. 1.1 Which of the following objects are moving with constant
velocity?
(a) A ship sailing northeast at a speed of 5 meters per second
(b) The moon orbiting the Earth
(c) A tennis ball traveling across the court after having been hit by a ten-
nis racket
(d) A can of soda sitting on a table
(e) A person riding on a Ferris wheel which is turning at a constant rate

Ex. 1.2 Apply Newton’s first law to each of the following situations.
In which situations can you conclude that the object must have
undergone a net interaction with one or more other objects?

(a) A book slides across the table and comes to a stop

(b) A proton in a particle accelerator moves faster and faster
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(c) A car travels at constant speed around a circular race track
(d) A spacecraft travels at a constant speed toward a distant star
(e) A hydrogen atom remains at rest in outer space

Ex. 1.3 A spaceship far from all other objects uses its thrusters to
attain a speed of 10% m/s. The crew then shuts off the power.
According to Newton’s first law, what will happen to the motion of
the spaceship from then on?

1.4 Other indicators of interaction
Change of identity

Change of velocity (change of speed and/or direction) is not the only indi-
cator of interactions. Another is change of identity, such as the formation of
water (HoO) from the burning of hydrogen in oxygen. A water molecule be-
haves very differently from the hydrogen and oxygen atoms of which it is
made.

Change of shape or configuration

Another indicator of interaction is change of shape or configuration (ar-
rangement of the parts). For example, slowly bend a pen or pencil, then
hold it in the bent position. The speed hasn’t changed, nor is there a
change in the direction of motion (it’s not moving!). The pencil has not
changed identity. Evidently a change of shape can be evidence for interac-
tions, in this case with your hand.

Other changes in configuration include “phase changes” such as the
freezing or boiling of a liquid, brought about by interactions with the sur-
roundings. In different phases (solid, liquid, gas), atoms or molecules are
arranged differently. Changes in configuration at the atomic level are an-
other indication of interactions.

Change of temperature

Another indication of interaction is change of temperature. Place a pot of
cold water on a hot stove. As time goes by, a thermometer will indicate a
change in the water due to interaction with the hot stove.

Other indications of interactions

Is a change of position an indicator of an interaction? That depends. If the
change of position occurs simply because a particle is moving at constant
speed and direction, then a mere change of position is not an indicator of
an interaction, since uniform motion is an indicator of no net interaction.

? If however you observe an object at rest in one location, and later
you observe it again at rest but in a different location, did an
interaction take place?

Yes. You can infer that there must have been an interaction to give the ob-
ject some velocity to move the object toward the new position, and another
interaction to slow the object to a stop in its new position.

In later chapters we will consider interactions involving change of identi-
ty, change of shape, and change of temperature, but for now we’ll concen-
trate on interactions that cause a change of velocity (speed and/or
direction).
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1.4.1 Indirect evidence for an interaction

Sometimes there is indirect evidence for an interaction. When something
doesn’t change although you would normally expect a change due to a
known interaction, this indicates that another interaction is present. Con-
sider a balloon that hovers motionless in the air despite the downward grav-
itational pull of the Earth. Evidently there is some other kind of interaction
that opposes the gravitational interaction. In this case, interactions with air
molecules have the net effect of pushing up on the balloon (“buoyancy”).
The lack of change implies that the effect of the air molecules exactly com-
pensates for the gravitational interaction with the Earth.

When you push a chair across the floor and it moves with constant velocity
despite your pushing on it (which ought to change its speed), that means
that something else must also be interacting with it (the floor).

The stability of the nucleus of an atom is another example of indirect ev-
idence for an interaction. The nucleus contains positively charged protons
that repel each other electrically, yet the nucleus remains intact. We con-
clude that there must be some other kind of interaction present, a nonelec-
tric attractive interaction that overcomes the electric repulsion. This is
evidence for the “strong interaction” that acts between protons and neu-
trons in the nucleus.

1.4.2 Summary: changes as indicators of interactions

Here then are the most common indicators of interactions:
® change of velocity (change of direction and/or change of speed)
change of identity
change of shape
change of temperature
lack of change when change is expected (indirect evidence)
The important point is this: Interactions cause change.

In the absence of interactions, there is no change, which is usually uninter-
esting. The exception is the surprise when nothing changes despite our ex-
pectations that something should change. This is indirect evidence for
some interaction that we hadn’t recognized was present, that more than
one interaction is present and the interactions cancel each others’ effects.

For the next few chapters we’ll concentrate on change of velocity as evi-
dence for an interaction (or lack of change of velocity, which can give indi-
rect evidence for additional interactions).

1.5 Describing the 3D world: Vectors

Physical phenomena take place in the 3D world around us. In order to be
able to make quantitative predictions and give detailed, quantitative expla-
nations, we need tools for describing precisely the positions and velocities
of objects in 3D, and the changes in position and velocity due to interac-
tions. These tools are mathematical entities called 3D “vectors.”

1.5.1 3D coordinates

We will use a 3D coordinate system to specify positions in space and other
vector quantities. Usually we will orient the axes of the coordinate system as
shown in Figure 1.10: +x axis to the right, +yaxis upward, and +z axis coming
out of the page, toward you. This is a “right-handed” coordinate system: if
you hold the thumb, first, and second fingers of your right hand perpendic-
ular to each other, and align your thumb with the x axis and your first finger
with the y axis, your second finger points along the z axis. (In some math
and physics textbook discussions of 3D coordinate systems, the y axis points

y

Figure 1.10 Right-handed 3D coordinate
system.
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Figure 1.11 A position vector and its x, y,

and z components.
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out and the z axis points up, but we will also use a 2D coordinate system with
yup, so it makes sense always to have the y axis point up.)

1.5.2 Basic properties of vectors: magnitude and direction

Avector is a quantity that has a magnitude and a direction. For example, the
velocity of a baseball is a vector quantity. The magnitude of the baseball’s
velocity is the speed of the baseball, for example 20 meters/second. The di-
rection of the baseball’s velocity is the direction of its motion at a particular
instant, for example “up” or “to the right” or “west” or “in the +y direction.”
A symbol denoting a vector is written with an arrow over it:

A .
V 1S a vector.

A position in space can also be considered to be a vector, called a position
vector, pointing from an origin to that location. Figure 1.11 shows a position
vector that might represent your final position if you started at the origin
and walked 4 meters along the x axis, then 2 meters parallel to the z axis,
then climbed a ladder so you were 3 meters above the ground. Your new po-
sition relative to the origin is a vector that can be written like this:

r=(432m

x component r, =4 m
y component 7, =3 m

zcomponent 1, =2 m

In three dimensions a vector is a triple of numbers (x, y, z ) . Quantities like
the position of an object and the velocity of an object can be represented as
vectors:

I = (x, 2 (aposition vector)
I, = (3.2,-9.2,66.3) m (a position vector)

v = (v, v,, v,y (avelocity vector)

v; = (-22.3,0.4,-19.5) m /s (avelocity vector)

Components of a vector

Each of the numbers in the triple is referred to as a “component” of the vec-
tor. The x component of the vector v is the number v,. The z component
of the vector v; aboveis —19.5 m /s. A component such as v, is not a vector,
since it is only one number.

It is important to note that the x component of a vector specifies the dif-
ference between the x coordinate of the tail of the vector and the x coordi-
nate of the tip of the vector. It does not give any information about the
location of the tail of the vector (compare Figure 1.11 and Figure 1.12).

1.5.3 Equality of vectors

A vector is equal to another vector if and only if all the components of the
vectors are equal. If ¥ = (4,3,2) m,

t means that

N
w

X

w =7

Y
r, and w, y and w, = r,,soW = (4,3,2) m

If two vectors are equal, their magnitudes and directions are the same.
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1.5.4 Drawing vectors

In Figure 1.11 we represented your position vector relative to the origin
graphically by an arrow whose tail is at the origin and whose arrowhead is at
your position. The length of the arrow represents the distance from the or-
igin, and the direction of the arrow represents the direction of the vector,
which is the direction of a direct path from the initial position to the final
position (the “displacement”; by walking and climbing you “displaced”
yourself from the origin to your final position).

Since it is difficult to draw a 3D diagram on paper, when working on pa-
per you will usually be asked to draw vectors which all lie in a single plane.
Figure 1.13 shows an arrow in the xy plane representing the vector

<_3: _1: O> .
1.5.5 Vectors and scalars

A quantity which is represented by a single number is called a scalar. A scalar
quantity does not have a direction. Examples include the mass of an object,
such as 5 kg, or the temperature, such as —20 C. Vectors and scalars are very
different entities; a vector can never be equal to a scalar, and a scalar cannot
be added to a vector. Scalars can be positive or negative:

m = 5 kg
T =-20 C

Ex. 1.4 How many numbers are needed to specify a 3D position
vector?

Ex. 1.5 How many numbers are needed to specify a scalar?
Ex. 1.6 Does the symbol 4 represent a vector or a scalar?

Ex. 1.7 Which of the following are vectors?
a) 5m/s,b) (-11,5.4,-33) m,c) t,d) v,

Ex. 1.8 4 = (-3,7,0.5) . If b = 4, what is the y component of b ?

1.5.6 Magnitude of a vector

Consider again the vector in Figure 1.14, showing your displacement from
the origin. Using a 3D extension of the Pythagorean theorem for right tri-
angles (Figure 1.15), the net distance you have moved from the starting
point is

J(4m)2+(3m)?2+(2m)2 = /29 m = 539 m
We say that the magnitude |¥| of the position vector T is
} = 5.39 m

The magnitude of a vector is written either with absolute-value bars around
the vector as |T| , or simply by writing the symbol for the vector without the
little arrow above it, 7.

In general, the magnitude of a vector can be calculated by taking the
square root of the sum of the squares of its components (see Figure 1.15).

MAGNITUDE OF A VECTOR

If the vector T = (r,, Ty r) then [f| = Jr2+ r)? + 12 (ascalar).
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Figure 1.13 The position vector
(-3,-1,0) , drawn at the origin, in the xy
plane. The components of the vector
specify the displacement from the tail to
the tip. The z axis, which is not shown,
comes out of the page, toward you.

Figure 1.14 A vector representing a dis-
placement from the origin.

Figure 1.15 The magnitude of a vector is
the square root of the sum of the squares
of its components (3D version of the
Pythagorean theorem).
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Figure 1.16 Two vectors (Exercise 1.10).
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Note that the magnitude of a vector is always a positive number. Since the
magnitude of a vector is a single number, and not a triple of numbers, it is
a scalar, not a vector.

Can a vector be positive or negative?

? Consider the vector v = (8><106, 0, —2><107) m/s. Is this vector
positive? Negative? Zero?

None of these descriptions is appropriate. The x component of this vector
is positive, the y component is zero, and the z component is negative. Vec-
tors aren’t positive, or negative, or zero. Their components can be positive
or negative or zero, but these words just don’t mean anything when used
with the vector as a whole.

On the other hand, the magnitude of a vector such as [v| is always positive.

Ex. 1.9 Does the symbol N represent a vector or a scalar?

Ex. 1.10 Consider the vectors T; and Ty represented by arrows in
Figure 1.16. Are these two vectors equal?

Ex. 1.11 If ¥ = (-3,-4,1) m, find |1].
Ex. 1.12 Can the magnitude of a vector be a negative number?

Ex. 1.13 What is the magnitude of the vector v, where
¥ = (8x10°%0,-2x10") m/s?

1.5.7 Mathematical operations involving vectors

Although the algebra of vectors is similar to the scalar algebra with which
you are very familiar, it is not identical. There are some algebraic operations
that cannot be performed on vectors.
Algebraic operations that arelegal for vectors include the following oper-
ations, which we will discuss in this chapter:
¢ adding one vector to another vector: a +W
¢ subtracting one vector from another vector: b —d
¢ finding the magnitude of a vector: [f|
¢ finding a unit vector (a vector of magnitude 1): 1
¢ multiplying (or dividing) a vector by a scalar: 3V
. Ar dr
¢ finding the rate of change of a vector: T
In later chapters we will also see that there are two more ways of combining
two vectors:
the vector dot product, whose result is a scalar
the vector cross product, whose result is a vector

N

Operations that are not legal for vectors

Although vector algebra is similar to the ordinary scalar algebra you have
used up to now, there are certain operations that are not legal (and not
meaningful) for vectors:

A vector cannot be set equal to a scalar.

A vector cannot be added to or subtracted from a scalar.

A vector cannot occur in the denominator of an expression. (Although
you can’t divide by a vector, note that you can legally divide by the magnitude
of a vector, which is a scalar.)
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1.5.8 Multiplying a vector by a scalar

A vector can be multiplied (or divided) by a scalar. If a vector is multiplied
by a scalar, each of the components of the vector is multiplied by the scalar:

Iff‘ = <x’ y, Z.> then dI;‘ = (ax, ay; aZ>

)

Uy

Za

Y,

. Vo (LU
Ifv = (vx,vy,vz) thenb—( T

(%) (6,-20,9) = (3,-10, 4.5)

Multiplication by a scalar “scales” a vector, keeping its direction the same
but making its magnitude larger or smaller (Figure 1.17). Multiplying by a
negative scalar reverses the direction of a vector.

Magnitude of a scalar

You may wonder how to find the magnitude of a quantity like —31, which
involves the product of a scalar and a vector. This expression can be fac-
tored:

-8t = |-3] - il

The magnitude of a scalar is its absolute value, so:

|-3%] = |-3|- || = 3 [r3+ 0% + 02

Ex. 1.14 If v = (2,-3,5) m/s, what is 3v?
Ex. 1.I5 If ¥ = (2,-3,5) m, what is g?

Ex. 1.16 What is the result of multiplying the vector a by the scalar
f, where 3 = (0.02,-1.7,30.0) and f = 2.0°?

Ex. 1.17 How does the direction of the vector —a compare to the
direction of the vector a?

Ex. 1.18 Is 3 + (2,-3, 5) a meaningful expression? If so, what is its

value?
Ex. 1.19 Is ﬁ a meaningful expression? If so, what is its
value? >

1.5.9 Direction of a vector: Unit vectors

One way to describe the direction of a vector is by specifying a unit vector. A
unit vector is a vector of magnitude 1, pointing in some direction. A unit
vector is written with a “hat” (caret) over it instead of an arrow. The unit vec-
tor a is called “a-hat”.

? Isthe vector (1,1, 1) aunitvector?

The magnitude of (1,1, 1) is 4/12+ 12+ 12 = 1.73 . so this is not a unit vec-
tor.
The vector (1 /ﬁ, 1 U/é, 1 /ﬁ) is a unit vector, since its magnitude is 1:

[ -

Note that every component of a unit vector must be less than or equal to 1.
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Figure 1.17 Multiplying a vector by a sca-
lar changes the magnitude of the vector.
Multiplying by a negative scalar reverses
the direction of the vector.
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Figure 1.18 The unitvectors 1, J, k.

v = (1.5,1.5,0) m/s

Figure 1.19 The unit vector v has the
same direction as the vector V , but its mag-
nitude is 1, and it has no physical units.

Chapter 1: Interactions

In our 3D Cartesian coordinate system, there are three special unit vec-
tors, oriented along the three axes. They are called i-hat, j-hat, and k-hat,
and they point along the x, y, and z axes, respectively (Figure 1.18):

i=(1,0,0)
j=40,1,0)
k = (0,0, 1)

One way to express a vector is in terms of these special unit vectors:
(0.02,-1.7,30.0) = 0.021 + (~1.7)j + 30.0k

We will usually use the (x, y, 2 form rather than the ijk form in this book,
because (x, v, z) is the familiar notation used in many calculus textbooks.

Not all unit vectors point along an axis, as shown in Figure 1.19. For ex-
ample, the vectors

& = (0.5774,0.5774,0.5774) and F = (0.424, 0.566, 0.707)

are both unit vectors, since the magnitude of each is equal to 1. Note that
every component of a unit vector is less than or equal to 1.

Calculating unit vectors

Any vector may be factored into the product of a unit vector in the direction
of the vector, multiplied by a scalar equal to the magnitude of the vector.

w=[ww

For example, a vector of magnitude 5, aligned with the y axis, could be writ-
ten as:

(0,5,0) = 5(0,1,0)

Therefore, to find a unit vector in the direction of a particular vector, we just
divide the vector by its magnitude:

X y z )
N2 +32+22) J(2+ 92+ 22) J(x2+92+ 22)
For example, if v = (-22.3, 0.4,-19.5)m /s, then

P =

P A (223,04, -19.5) m s = (=0.753,0.0135, —0.658)

U C223)2+ (0.4)2+ (-19.5)2 m/s

Remember that to divide a vector by a scalar, you divide each component of
the vector by the scalar. The result is a new vector. Note also that a unit vec-
tor has no physical units (such as meters per second), because the units in
the numerator and denominator cancel.

Ex. 1.20 What is the unit vector in the direction of (0, 6, 0) ?
Ex. 1.21 What is the unit vector in the direction of {(-300, 0, 0) ?

Ex. 1.22 What is the unit vector in the direction of (2, 2, 2) ? What
is the unit vector in the direction of (3, 3, 3) ?

Ex. 1.23 What is the unit vector i in the direction of i, where
a = (400, 200, -100) m/s2?

Ex. 1.24 Write the vector a = (400, 200,-100) m/s? as the
product lal - 4.
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1.5.10 Vector addition

The sum of two vectors is another vector, obtained by adding the compo- y
nents of the vectors:

jo=l)

A= (A,A,4)

B = (B, B, B) /
N A

A+B = ((A,+B), (A +B),(A,+B))

For example, &
Toadd A+B graphically,
(1,2,3) +(-4,5,6) = (-3,7,9)

Don’t add magnitudes!

The magnitude of a vector is not in general equal to the sum of the magni-
tudes of the two original vectors! For example, the magnitude of the vector
(3,0, 0) is 3, and the magnitude of the vector (-2, 0, 0) is 2, but the mag-
nitude of the vector ({3, 0, 0) + (-2, 0, 0)) is 1, not 5!

=)

>l

Adding vectors graphically: Tip to tail

The sum of two vectors has a geometric interpretation. In Figure 1.20 you X

first walk alon_g displacement vector A, followed by walkillg ali)ngAdisplace— move B so the tailef B
ment vector B. What is your net displacement vector C = A+ B? The «x isatthe tip of A,
component C, of your net displacement is the sum of A, and B,. Similarly,

the y component C, of your net displacement is the sum of Ay and B,. y

To add two vectors A and B graphically (Figure 1.20):

e Draw the first vector A R

* Move the second vector B (without rotating it) so its tail is located at
the tip of the first vector

e Draw a new vector from the tail of vector A to the tip of vector B

1.5.11 Vector subtraction then draw a new arrow starting
at the tail of A and ending at the
The difference of two vectors will be very important in this and subsequent tip of B.

chapters. To subtract one vector from another, we subtract the components

of the second from the components of the first: Figure 1.20 The procedure for adding two

vectors graphically: draw vectors tip to tail.

A-B = ((4,- B)).(A,- B),(A,- B)

(1,2,3) - (-4,5,6) = (5,-3,-3)
Subtracting vectors graphically: Tail to tail

N 0
To subtract one vector B from another vector A graphically:

e Draw the first vector A R

* Move the second vector B (without rotating it) so its tail is located at
the tail of the first vector R R

¢ Draw a new vector from the tip of vector B to the tip of vector A

-l

Note that you can check thlS algebralcally and graphlcally As shown in Flg— 1<
ure 1.21, since the tail of A— B is located at the tip of B then the vector A B
should be the sum of B and A — B as indeed it is:
Figure 1.21 The procedure for subtracting
ﬁ + (K — ﬁ) = K vectors graphically: draw vectors tail to
tail; draw new vector from tip of second
vector to tip of first vector.
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Figure 1.22 Relative position vector.
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1.5.12 The zero vector

It is convenient to have a compact notation for a vector whose components
are all zero. We will use the symbol 0 to denote a zero vector, in order to
distinguish it from a scalar quantity that has the value 0.

0 = (0,0,0)
For example, the sum of two vectors B+ (—E) = 0.
1.5.13 Change in a quantity: The Greek letter A

Frequently we will want to calculate the change in a quantity. For example,
we may want to know the change in an moving object’s position or the
change in its velocity during some time interval. The Greek letter A (capital
delta) is used to denote the change in a quantity (either a scalar or a vector).

We typically use the subscript ¢ to denote an initialvalue of a quantity, and
the subscript fto denote the final value of a quantity. If a vector T; denotes
the initial position of an object relative to the origin (its position at the be-
ginning of the time interval), and t r denotes the final position of the object,
then

N

All" = rf— lk"i
AT means “change of I or ?f— r; (displacement)
At means “change of ¢” or L= 1; (time interval)

The symbol A (delta) always mean “final minus initial”, not “initial minus fi-
nal”. For example, when a child’s height changes from 1.1 m to 1.2 m, the
change is Ay = +0.1 m, a positive number. If your bank account dropped
from $150 to $130, what was the change in your balance? A(bank account)
= —-20 dollars.

Ex. 1.25 If F{ = (300,0,-200) and Fs = (150,-300,0) , what is
the sum F| + Fo?

Ex. 1.26 What is tl_ge magnitude of F 1 (see Exergise 1425)? What is
the magnitude of Fo? What is the magnitude of Fi + Fo?

Ex. 1.27 What is the magnitude of F (see Exercise 1.25) plus the
magnitude of Fo? Is [F) + Fo| = [Fi] + |Fyf 2

Ex. 1.28 What is the difference Fl - fg ? What is ?2 - fl ?

Ex. 1.29 A snail is initially at location t; = (3,0,-7) m. At a later

time the snail has crawled to location to = (2,0,-8) m. What is
At , the change in the snail’s position?

1.5.14 Relative position vectors

Vector subtraction is used to calculate relative position vectors, vectors
which represent the position of an object relative to another object. In Fig-
ure 1.22 object 1 is at location T, and object 2 is at location Ty . We want the
components of a vector that points from object 1 to object 2. This is the vec-
tor obtained by subtraction: T9 eaive 101 = Io— Iy - Note that the form is al-
ways “final” minus “initial” in these calculations.

Ex. 1.30 In Figure 1.22, t; = (3,-2,0) m and T = (5,2,0) m.
Calculate the position of object 2 relative to object 1, as a relative
position vector. Before checking the answer at the back of this
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chapter, see whether your answer is consistent with the appearance
S a a . .
of the vector T repaive 01 = e —I1 shown in Figure 1.22.

Ex. 1.31 What is the position of object 1 relative to object 2, as a
vector?

1.6 Sl units

In this book we use the SI (Systéme Internationale) unit system. The SI unit
of mass is the kilogram (kg), the unit of distance is the meter (m), and the
unit of time is the second (s). In later chapters we will encounter other SI
units, such as the newton (N), which is a unit of force. It is essential to use
ST units in physics equations; this may require that you convert from some
other unit system to SI units. If mass is known in grams, you need to divide
by 1000 and use the mass in kilograms. If a distance is given in centimeters,
you need to divide by 100 and convert the distance to meters. If the time is
measured in minutes, you need to multiply by 60 to use a time in seconds.
A convenient way to do such conversions is to multiply by factors which are
equal to 1, such as (1 min) /(60 s) or (100 cm) /(1 m). As an example, con-
sider converting 60 miles per hour to SI units, meters per second. Start with
the 60 mi/hr and multiply by factors of 1:

o 30 ) () (B 5 (213 )

Observe how most of the units cancel, leaving final units of m/s.

Ex. 1.32 A snail moved 80 cm (80 centimeters) in 5 minutes. What
was its average speed in SI units? Write out the factors as was done
above.

1.7 Velocity

We use vectors not only to describe the position of an object but also to de-
scribe velocity (speed and direction). If we know a object’s present speed in
meters per second and the object’s direction of motion, we can predict
where it will be a short time into the future. As we have seen, change of ve-
locity is an indication of interaction. We need to be able to work with veloc-
ities of objects in 3D, so we need to learn how to use 3D vectors to represent
velocities. After learning how to describe velocity in 3D, we will also learn
how to describe change of velocity, which is related to interactions.

1.7.1 Average speed

The concept of speed is a familiar one. Speed is a single number, so itis a
scalar quantity (speed is the magnitude of velocity). A world class sprinter
can run 100 meters in 10 seconds. We say the sprinter’s average speed is
(100 m) /(10 s) = 10 m/s. In SI units speed is measured in meters per sec-
ond, abbreviated “m/s”.

A car that travels 100 miles straight east in 2 hours has an average speed
of (100 miles) /(2 hours) = 50 miles per hour, (or about 22 m/s). In sym-
bols:

17
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where Vavg is “average speed,” Ax is the distance the car has traveled, and
At is the elapsed time.

There are other useful versions of the basic relationship among average
speed, distance, and time. For example,

Ax = vm,gAt

expresses the fact that if you run 5 m/s for 7 seconds you go 35 meters. Or
you can use

At:ﬂ

Vavg

to calculate that to go 3000 miles in an airplane that flies at 600 miles per
hour will take 5 hours.

Units

While it is easy to make a mistake in one of the formulas relating speed, time
interval, and change in position, it is also easy to catch such a mistake by
looking at the units. If you had written A¢ = Ung /Ax, you would discover
that the right hand side has units of (m/s)/m, or 1/s, not s. Always check
units!

Instantaneous speed compared to average speed

If a car went 70 miles per hour for the first hour and 30 miles an hour for
the second hour, it would still go 100 miles in 2 hours, with an average speed
of 50 miles per hour. Note that during this two hour interval, the car was al-
most never actually traveling at its average speed of 50 miles per hour.

To find the “instantaneous” speed—the speed of the car at a particular in-
stant—we should observe the short distance the car goes in a very short time,
such as a hundredth of a second: If the car moves 0.3 meters in 0.01 s, its
instantaneous speed is 30 meters per second.

1.7.2 Vector velocity

Earlier we calculated vector differences between two different objects. The
vector difference to —I'; represented a relative position vector—the position
of object 2 relative to object 1 at a particular time. Now we will be concerned
with the change of position of one object during a time interval, and ?f— t;
will represent the “displacement” of this single object during the time inter-
val, where T; is the initial 3D position and ?f is the final 3D position (note
that as with relative position vectors, we always calculate “final minus ini-
tial”). Dividing the (vector) displacement by the (scalar) time interval =1
(final time minus initial time) gives the average (vector) velocity of the ob-
ject:

DEFINITION: AVERAGE VELOCITY

I
> Y
Vavg = i
t—1,
Another way of writing this expression, using the “A” symbol (Greek capital
delta) to represent a change in a quantity, is:
N At

Vavg - A_t
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remembering that this is a compact notation for:

N Ar <Ax Ay Az>

Vavg = 37 AP AP At

, is called the average speed.

The magnitude of the average velocity, |v

1.7.3 Determining average velocity from change in position

Consider a bee in flight (Figure 1.23). At time ¢, = 15 s after 9:00 AM, the
bee’s position vector was T; = (2 4,0) m. Attime ¢, = 15.1 s after 9:00 AM,
the bee’s position vector was rf = (3,3.5,0) m. On the diagram, we draw
and label the vectors T; and r/

Next, on the diagram, we draw and label the vector ?f— T;, with the tail of
the vector at the bee’s initial position. One useful way to think about this
graphically is to ask yourself what vector needs to be added to the initial vec-
tor rl to make the final vector rf, since r can be written in the form
rf =T+ (r/— r;).

The vector we just drew, the change in position rf— ;» 1s called the “dis-
placement” of the bee during this time interval. This displacement vector
points from the initial position to the final position, and we always calculate
displacement as “final minus initial”.

Note that the displacement ?f— t; refers to the positions of one object
(the bee) at two different times, not the position of one object relative to a
second object at one particular time (“relative position vector”). However,
the vector subtraction is the same kind of operation for either kind of situ-
ation.

We calculate the bee’s displacement vector numerically by taking the dif-
ference of the two vectors, final minus initial:

F-t = (3,35,0) m-(2,4,0) m = (1,-0.5,0) m

This numerical result should be consistent with our graphical construction.
Look at the components of ?f— t; in Figure 1.23. Do you see that this vector
hasan xcomponent of +1 and a y component of —0.5 m? Note that the (vec-
tor) displacement ?f— t; is in the direction of the bee’s motion.

The average velocity of the bee, a vector quantity, is the (vector) displace-
ment ?f— t; divided by the (scalar) time interval, t;—t;. Calculate the bee’s
average velocity:

N _;/'_;i (1,-0.5,0) m _ (1,-0.5,0) m

y = = 2 ) = 2 St = 10,—5,0
T T (151-15) s 0.1s ¢ ym/s

Since we divided ?f— t; by a scalar (tf— t;), the average velocity \)/avg points
in the direction of the bee’s motion, if the bee flew in a straight line.
What is the speed of the bee?

speed of bee = |\7avg’ = /\/102 + (—5)2 +0° m/s = 11.18 m/s
What is the direction of the bee’s motion, expressed as a unit vector?

_ Vayg _ (10,-5,0) m/s
8 |\7avg| 11.18 m/s

= (0.894,-0.447, 0)

direction of bee: v_,

Note that the “m/s” units cancel; the result is dimensionless. We can check
that this really is a unit vector:

J0.894% + (~0.447)% + 0> = 0.9995
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5m

0 1 2 3 4 5m

Figure 1.23 The displacement vector
points from initial position to final posi-
tion.
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0 1 2 3 4 5m

Figure 1.24 Average velocity vector: dis-
placement divided by time interval.
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This is not quite 1.0 due to rounding the velocity coordinates and speed to
three significant figures.

Put the pieces back together and see what we get. The original vector fac-
tors into the product of the magnitude times the unit vector:

MY = (11.18 m/s)(0.894, —0.447, 0Y = (10,-5,0) m/s

This is the same as the original vector v.

Ex. 1.33 At a time 0.2 seconds after it has been hit by a tennis
racket, a tennis ball is located at (5, 7, 2) m, relative to an origin in
one corner of a tennis court. At a time 0.7 seconds after being hit,
the ball is located at (9, 2, 8) m.

(a) What is the average velocity of the tennis ball?

(b) What is the average speed of the tennis ball?

(c) What is the unit vector in the direction of the ball’s velocity?

Ex. 1.34 A spacecraft is observed to be at a location
(200, 300, —-400) m relative to an origin located on a nearby
asteroid, and 5 seconds later is observed at location
(325, 25, -550) m.

(a) What is the average velocity of the spacecraft?

(b) What is the average speed of the spacecraft?

(c) What is the unit vector in the direction of the spacecraft’s veloc-
ity?

1.7.4 Scaling a vector to fit on a graph

We can plot the average velocity vector on the same graph that we use for
showing the vector positions of the bee (Figure 1.24). However, note that
velocity has units of m/s while positions have units of m, so in a way we’re
mixing apples and oranges.

Moreover, the magnitude of the vector, 11.18 m/s, doesn’t fit on a graph
that is only 5 units wide (in meters). Itis standard practice in such situations
to scale the arrow representing the vector down to fit on the graph, preserv-
ing the correct direction. In Figure 1.24 we’ve scaled the velocity vector
down by about a factor of 3 to make the arrow fit on the graph. Of course if
there is more than one velocity vector we use the same scale factor for all the
velocity vectors. The same kind of scaling is used with other physical quan-
tities that are vectors, such as force and momentum, which we will encoun-
ter later.

1.7.5 Predicting a new position

We can rewrite the velocity relationship in the form
S N A
(rf_ r;) = Vavg( b= t;)

That s, the (vector) displacement of an object is its average (vector) velocity
times the time interval. This is just the vector version of the simple notion
that if you run at a speed of 7 m/s for 5 s you move a distance of (7 m/s) (5
s) = 35 m, or that a car going 50 miles per hour for 2 hours goes (50
mi/hr) (2 hr) = 100 miles.

. Is (?f— ) = \)iavg(tf— t;) avalid vector relation? Yes, multiplying a vector
Vavg times a scalar L=t yields a vector. We make a further rearrangement
to obtain a relation for updating the position when we know the velocity:
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THE POSITION UPDATE FORMULA
%f = f‘i + eaV'g(tf_ tl)

This equation says that if we know the starting position, the average velocity,
and the time interval, we can predict the final position. This equation will
be important throughout this course.

Using the position update formula

The position update formula t = I+ \;/avg( 1,~ 1;) is avector equation, so we
can write out its full component form:

<xﬁ yﬁ Z’f> = <xi’ Yo Z1> + <vavg,x° vavg,y’ vavg,)(tf_ ti)

Because the x component on the left of the equation must equal the x com-
ponent on the right (and similarly for the y and z components), this com-
pact vector equation represents three separate component equations:

xf =X+ vavg,x(tf_ ti)
yj = + vavg,y( tf_ ti)

Zf =zt vavg,z( tf_ ti)
Example

At time ¢ = 12.18s after 1:30 PM a ball’s position vector is
t; = (20,8,-12) m. The ball’s velocity at that moment is
v = (9,-4,6) m/s.Attime i = 12.21 s after 1:30 PM, where is the ball, as-
suming that its velocity hardly changes during this short time interval?

tr= 4 v(— 1) = (20,8,-12)m + ((9, -4, 6)m/s)(12.21 - 12.18)s
;= (20,8,-12) m + (0.27,-0.12,0.18) m

b= (20.27,7.88,-11.82) m

Ex. 135 A proton traveling with a velocity of
(3x105, 2x105, —4x105) m/s passes the origin at a time 9.0 seconds
after a proton detector is turned on. Assuming the velocity of the
proton does not change, what will its position be at time 9.7
seconds?

Ex. 1.36 How long does it take a baseball with velocity
(80,20, 25) m/s to travel from location t; = (3,7,-9) m to
location to = (18,17,3.5) m?

Ex. 1.37 A “slow” neutron produced in a nuclear reactor travels
from location (0.2,-0.05,0.1) m to location
(-0.202, 0.054, 0.098) m in 2 microseconds (1lus = 1x10° s ).

(a) What is the average velocity of the neutron?

(b) What is the average speed of the neutron?
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Note that if the velocity changes signifi-
cantly during the time interval, in either
magnitude or direction, our prediction
for the new position may not be very accu-
rate.
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loc. | t(s) position (m)
A |00 (0,0, 0)

B |10 | (223,26.1,0)
c |20 (40.1, 38.1, 0)
D |30 | (555,392 0)
E |40 | (69.1,31.0,0)
F 5.0 (80.8, 14.8, 0)

Figure 1.26 Table showing elapsed time
and position of the ball at each location

marked by a dot in Figure 1.25.
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1.7.6 Instantaneous velocity

The curved gray line in Figure 1.25 shows the path of a ball through the air.
The gray dots mark the ball’s position at time intervals of one second. While
the ball is in the air, its velocity is constantly changing, due to interactions
with the Earth (gravity) and with the air (air resistance).

Suppose we ask: What is the velocity of the ball at the precise instant that
it reaches location B? This quantity would be called the “instantaneous ve-
locity” of the ball. We can start by approximating the instantaneous velocity
of the ball by finding its average velocity over some larger time interval.

Figure 1.25 The trajectory
of a ball through air. The
axes represent x and y dis-
tance from the ball’s initial
location; each square on the
grid corresponds to 10
meters. Three different dis-
placements, corresponding
to three different time inter-
vals, are indicated by arrows
on the diagram.

The table in Figure 1.26 shows the time and the position of the ball for each
location marked by a gray dot in Figure 1.25. We can use these data to cal-
culate the average velocity of the ball over three different intervals, by find-
ing the ball’s displacement during each interval, and dividing by the

appropriate At for that interval:

VEB

VDB

A
Ve

N N N
ArEB Ir'p—Tp

((69.1, 31.0, 0) — (22.3, 26.1, 0))m

At tp—1p

(15.6, 1.6, o>?

(4.0-1.0)s

Atpp _ Tp—Tp _ ((55.5,39.2,0) - (22.3, 26.1,0))m

At th—ty

(16.6, 6.55, o>%1

(3.0-1.0)s

Atgp _ Te—Tp _ ({40.1,38.1,0) - (22.3,26.1, 0))m

At to—tg

(17.8,12.0, o>%l

(2.0 - 1.0)s

Notsurprisingly, the average velocities we calculate over these different time
intervals are not the same, because both the direction of the ball’s motion
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and the speed of the ball were changing continuously during its flight. The
three average velocity vectors that we calculated are shown in Figure 1.27.

Figure 1.27 The three dif-
ferent average velocity vec-
tors calculated above are
shown by three arrows,
each with its tail at location
B. Note that since the units
of velocity are m/s, these
arrows use a different scale
from the distance scale
used for the path of the
ball. The three arrows rep-
resenting average velocities
are drawn with their tails at
the location of interest.

The dashed arrow repre-
sents the actual instanta-
neous velocity of the ball at
location B.

? Which of the three average velocity vectors depicted in Figure 1.27
best approximates the instantaneous velocity of the ball at location B?

Simply by looking at the diagram, we can tell that v is closest to the actual
instantaneous velocity of the ball at location B, because its direction is clos-
est to the direction in which the ball is actually traveling. Because the direc-
tion of the instantaneous velocity is the direction the ball is moving at a
particular instant, the instantaneous velocity is tangent to the ball’s path. Of
the three average velocity vectors we calculated, V5 best approximates a
tangent to the path of the ball. Evidently v, the velocity calculated with
the shortest time interval, ¢,— {5, is the best approximation to the instanta-
neous velocity at location B. If we used even smaller values of At in our cal-
culation of average velocity, such as 0.1 second, or 0.01 second, or 0.001
second, we would presumably have better and better estimates of the actual
instantaneous velocity of the object at the instant when it passes location B.

Two important ideas have emerged from this discussion:
® The direction of the instantaneous velocity of an object is tangent to
the path of the object’s motion.
® Smaller time intervals yield more accurate estimates of instantaneous
velocity.

1.7.7 Connection to calculus

You may already have learned about derivatives in calculus. The instanta-
neous velocity is a derivative, the limit of AT /At as the time interval At used
in the calculation gets closer and closer to zero:

v = lim Ar , which is written as v = dr
At—>0A¢ dt
In Figure 1.27, the process of taking the limit is illustrated graphically. As
smaller values of At are used in the calculation, the average velocity vectors
approach the limiting value: the actual instantaneous velocity.

V.
Istantaneous
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A useful way to see the meaning of the derivative of a vector is to consider
the components:

dr__<,’> <dx__ydz>

V=dt dt’ dt’ dt

(Vs Uy v,)
The derivative of the position vector T gives components that are the com-
ponents of the velocity, as we should expect.

Informally, you can think of dr asa very small (“infinitesimal”) displace-
ment, and dt as a very small (“infinitesimal”) time interval. It is as though
we had continued the process illustrated in Figure 1.25 to smaller and small-
er time intervals, down to an extremely tiny time interval d¢ with a corre-
spondingly tiny displacement dr . The ratio of these tiny quantities is the
instantaneous velocity.

The ratio of these two tiny quantities need not be small. For exglmple sup-
pose an object moves in the x direction a tiny distance of 1x10"" m, the ra-
dius of a proton, in a very short time interval of 1 x107

(1x10,0,0) m

T (1x10%,0,0) m/s,
1x10

N
vV =

which is one-third the speed of light (3x10° m/s)!

Change of magnitude and/or change in direction

Note that the time rate of change of a vector t = |f|T has two parts:

dlr]

dt

rate of change of the magnitude of the vector

A

. . dr
rate of change of the direction of the vector —

dt
We will discuss this further in later sections.
1.7.8 Summary of velocity
DEFINITION OF AVERAGE VELOCITY ?/a‘,g = i—; = _tLtI
S
POSITION UPDATE FORMULA ?f =T+ \7angt
DEFINITION OF INSTANTANEOUS VELOCITY v = lim A_r = dar
At—>0AL dt

The symbol A (delta) means “change of”: At = =1, AT = ?f— I;
The instantaneous velocity of an object is tangent to the path of the

object.

To approximate the instantaneous velocity of an object, calculate its
average velocity over a very short time interval.

1.8 Momentum
Newton’s first law of motion:

An object moves in a straight line and at constant speed
except to the extent that it interacts with other objects.
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gives us a conceptual connection between interactions and their effects on
the motion of objects. However, this law does not allow us to make quanti-
tative (numerical) predictions or explanations—we could not have used
this law to predict the exact trajectory of the ball shown in Figure 1.25, and
we could not use this law alone to figure out how to send a rocket to the
Moon. In order to make quantitative predictions or explanations of physical
phenomena, we need a quantitative measure of interactions and a quantita-
tive measure of effects of those interactions.

Newton’s first law of motion does contain the important idea that if there
is no interaction, a moving object will continue to move in a straight line,
with no change of direction or speed, and an object that is not moving will
remain at rest. A quantitative version of this law would provide a means of
predicting the motion of an object, or of deducing how it must have moved
in the past, if we could list all of its interactions with other objects.

1.8.1 Changes in velocity
? What factors make it difficult or easy to change an object’s velocity?

You have probably noticed that if two objects have the same velocity but one
is much more massive than the other, it is more difficult to change the heavy
object’s speed or direction. It is easier to stop a baseball traveling at a hun-
dred miles per hour than to stop a car traveling at a hundred miles per
hour! It is easier to change the direction of a canoe than to change the di-
rection of a large, massive ship such as the Titanic (which couldn’t change
course quickly enough after the iceberg was spotted).

Momentum involves both mass and velocity

To take into account both an object’s mass and its velocity, we can define a
vector quantity called “momentum” that involves the product of mass (a sca-
lar) and velocity (a vector). Instead of saying “the stronger the interaction,
the bigger the change in the velocity,” we now say “the stronger the interac-
tion, the bigger the change in the momentum.”

Momentum, a vector quantity, is usually represented by the symbol p .
We might expect that the mathematical expression for momentum would
be simply p = mV, and indeed this is almost, but not quite, correct.

Experiments on particles moving at very high speeds, close to the speed
oflight ¢ = 3x 10° m /s, show that changes in mv are not really proportional
to the strength of the interactions. As you keep applying a force to a particle
near the speed of light, the speed of the particle barely increases, and it is
not possible to increase a particle’s speed beyond the speed of light.

Through experiments it has been found that changes in the following
quantity are proportional to the amount of interaction:

DEFINITION OF MOMENTUM
p = ymb
where the proportionality factor y (lower-case Greek gamma) is defined as
!
|i| 2
J-(%)

In these equations f) represents momentum, Vv is the velocity of the

object, m is the mass of the object, |¥] is the magnitude of the ob-
ject’s velocity (the speed), and cis the speed of light. Momentum
has units of kg - m/s. To calculate momentum in these units, you
must specify mass in kg and velocity in meters per second.
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¥ m/s ¥l /¢ Y

0 0 1.0000
3 1x10° 1.0000
300 1x10°° 1.0000
3x10° 1x102 | 1000
3)(107 0.1 1.0050
1.5x10° 0.5 1.1547
9 997x10° 0.999 22.3663
9 9997x10° 0.9999 70.7124
3 1 infinite!

3x10 (and
impossi-

ble)

Figure 1.28 Values of y calculated for
some speeds. Y is shown to four decimal
places, which is more accuracy than we

will usually need in this course.

Chapter 1: Interactions

This is the “relativistic” definition of momentum. Albert Einstein in 1905 in
his special theory of relativity predicted that this would be the appropriate
definition for momentum at high speeds, a prediction that has been abun-
dantly verified in a wide range of experiments.

Example

Suppose that a proton (mass 1. 7x10 " kg) is traveling with a velocity of
(2><10 1x107 —3><10 > m/s. What is the momentum of the proton?

= J2x107)? + (1x107)2 + (=3x107)° = 8.7x10 =

= (1.007)(1.7x10 *kg)(2x10, 1x10’, —3><107>“;1

= (3.4x107%, 1.7x107%, —5.1x10‘2°>1igs'—m

1.8.2 Approximate formula for momentum

In the example above, we found that y = 1.007. Since in that calculation
we used only two significant figures, we could have used the approximation
that y = 1.0 without affecting our answer. Let’s examine the expression for
Y to see if we can come up with a guideline for when it is reasonable to use
the approximate expression

f) =1 mv approximate expression for momentum

Looking at the expression for y
1

SN 2

©

c
we see that it depends only on the ratio of the speed of the object to the
speed of light (the object’s mass doesn’t appear in this expression).

It u is a very small number, then 1 - O‘j) ~1-0~1,soy=1.

’Y:

Some values of (|¥|/¢) and y are displayed in Figure 1.28. From this table
you can see that even at the very high speed where [¥| /¢=0.1, which means
that [v] = SXIO m/s, the relativistic factor vy is only slightly different from
1. For large-scale objects such as a space rocket, whose speed is typically only
about 1><104 m/s, we can ignore the factor y, and momentum is to a good
approximation ﬁ ~ mv . It is only for high-speed cosmic rays or particles pro-
duced in high-speed particle accelerators that we need to use the full rela-
tivistic definition for momentum, p = ymv.

From this table you can also get a sense of why it is not possible to exceed
the speed of light. As you make a particle go faster and faster, approaching
the speed of light, additional increases in the speed become increasingly dif-
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ficult, because a tiny increase in speed means a huge increase in momen-
tum, requiring huge amounts of interaction. In fact, for the speed to equal
the speed of light, the momentum would have to increase to be infinite!
There is a speed limit in the Universe, leO m/s.

In some texts the quantity ym is referred to as the “effective mass” of a
fast moving particle, since this quantity gets larger as the particle goes faster.
To keep terminology clear, the quantity m is then called the “rest mass” of
the particle—the mass of the particle when its speed is zero.

We will repeatedly emphasize the role of momentum throughout this
course because of its fundamental importance not only in classical
(prequantum) mechanics but also in relativity and quantum mechanics.
The use of momentum clarifies the physics analysis of certain complex pro-
cesses such as collisions, including collisions at speeds approaching the
speed of light.

1.8.3 Direction of momentum

Like velocity, momentum is a vector quantity, so it has a magnitude and a
direction.

? A leaf is blown by a gust of wind, and at a particular instant is
traveling straight upward, in the +y direction. What is the direction of
the leaf’s momentum?

The mathematical expression for momentum can be looked at as the prod-
uct of a scalar part times a vector part. Since the mass m must be a positive
number, and the factor gamma (y) must be a positive number, this scalar
factor cannot change the direction of the vector (Figure 1.29). Therefore
the direction of the leaf’s momentum is the same as the direction of its ve-
locity: straight up (the +y direction).

Ex. 1.38 A good sprinter can run 100 meters in 10 seconds. What
is the magnitude of the momentum of a sprinter whose mass is 65
kg and who is running at a speed of 10 m/s?

Ex. 1.39 A baseball has a mass of about 155 g. What is the
magnitude of the momentum of a baseball thrown at a speed of 100
miles per hour? (Note that you need to convert mass to kilograms
and speed to meters/second. See the inside back cover of the
textbook for conversion factors.)

Ex. 1.40 What is the magnitude (in kg-m/s) of the momentum
of a 1000 kg airplane traveling at a speed of 500 miles per hour?
(Note that you need to convert speed to meters per second.)

Ex. 1.41 What is the magnltude of the momentum of an electron
traveling at a speed of 9x10° meters per second? (Masses of
particles are given on the inside back cover of this textbook.)

Ex. 1.42 Show that when the speed is within one percent of the
speed of light (|[v] = 0.99¢), the ratio of the correct relativistic
momentum to the approximate nonrelativistic momentum m[J| is
quite large. Such speeds are attained in particle accelerators.

Ex. 1.43 If a particle has momentum p = (4, -5, 2) kg-m/s, what
is the magnitude |p| of its momentum?
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vector

/
b =(rm) &)

Figure 1.29 The expression for momen-
tum is the product of a scalar times a vec-
tor. The scalar factor is positive, so the
direction of an object’s momentum is the
same as the direction of its velocity.

scalar

o
1]
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Figure 1.30 Calculation of Ap.

w‘UL
=~

B

Figure 1.31 A portion of the trajectory of a
ball moving through air, subject to gravity
and air resistance. The arrows represent
the momentum of the ball at the locations
indicated by letters.

B

Figure 1.32 Graphical calculation of Ap.
The result is also shown superimposed on
the ball’s path, midway between the initial
and final locations.
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1.8.4 Change of momentum

In the next chapter we will introduce “the momentum principle” which
quantitatively relates change in momentum Af) to the strength and dura-
tion of an interaction. In order to be able to use the momentum principle
we need to know how to calculate changes in momentum.

Momentum is a vector quantity, so just as was the case with velocity, there
are two aspects of momentum that can change: magnitude and direction. A
mathematical description of change of momentum must include either a
change in the magnitude of the momentum, or a change in the direction of
the momentum, or both.

Change of the vector momentum

The change in the momentum AP during a time interval is a vector:
AP = p;—p;- This vector expression captures both changes in magnitude
and changes in direction. Figure 1.30 is a graphical illustration of a change
from an initial momentum P; to a final momentum p;. Place the initial and
final momentum vectors tail to tail, then draw a vector from initial to final.
This is the vector representing Ap = p,—p,. This is the same procedure
you used to calculate relative position vectors by subtraction, or displace-
ment vectors by subtraction. The rule for subtracting vectors is always the
same: Place the vectors tail to tail, then draw from the tip of the initial vector
to the tip of the final vector. This resultant vector is “final minus initial”.

Example

Figure 1.31 shows a portion of the trajectory of a ball in air, subject to gravity
and air resistance. When the ball is at location B, its momentum is
f)B = (3.03,2.83,0) kg - m/s. When it is at location C, its momentum is
P = (2.55,0.97,0) kg - m /s . Find the change in the ball’s momentum be-
tween these locations, and show it on the diagram.

AP = Pe—Pp = (2.55,0.97,0) kg - m/s— (3.03,2.83,0) kg - m /s
(~0.48,-1.86, 0) kg - m /s

Both the x and y components of the ball’s momentum decreased, so Ap
has negative x and y components. This is consistent with the graphical sub-
traction shown in Figure 1.32.

Change in magnitude of momentum

If an object’s speed changes (that is, the magnitude of its velocity changes),
the magnitude of the object’s momentum also changes. However, note that
the change of the magnitude of momentum is not in general equal to the
magnitude of change of momentum.

Example

Suppose you are driving a 1000 kilogram car at 20 m/s in the +x direction.
After making a 180 degree turn, you drive the car at 20 m/s in the —x direc-
tion. (20 m/s is about 45 miles per hour or 72 km per hour.)

(a) What is the change of magnitude of the momentum of the car A|p|?

These speeds are very small compared to the speed of light, so we can use
the approximate nonrelativistic formula for momentum.

Alp| = |f’2|_|f)1| z|m‘72|—|m‘71| = |m||‘>’2|_|m||‘>’l|
Alpl = (1000 kg)(20 m/s) - (1000 kg)(20 m/s)
Alp| = 0 kg:m/s
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(b) What is the magnitude of the change of momentum of the car |Af)| ?

AP = Po—pPi = 1000 kg (20,0, 0) m/s— 1000 kg (~20, 0, 0) m/s

(4x10",0,0) kg - m/s
4><104 kg -m/s

A
So [Ap| # Alp .

Change of direction of momentum

There are various ways to specify a change in the direction of motion. For
example, if you use compass directions, you could say that an airplane
changed its direction from 30° east of North to 45° east of North: a 15°
clockwise change. One can imagine various other schemes, involving other
kinds of coordinate systems. The standard way to deal with this is to use vec-
tors.

Ex. 1.44 A tennis ball of mass 57 g travels with velocity
(50, 0, 0) m/s toward a wall. After bouncing off the wall, the tennis
ball is observed to be traveling with velocity (—48, 0, 0) m/s.
(a) Draw a diagram showing the initial and final momentum of the
tennis ball.
(b) What is the change in the momentum of the tennis ball?
(c) What is the change in the magnitude of the tennis ball’s mo- 5 —- _

mentum? b -~ B ~. .

4
Ex. 1.45 The planet Mars has a mass of 6.4x10% kg, and travels in . I .
a nearly circular orbit around the Sun, as shown in Figure 1.33. I' \\ L
When itis atlocation A, the velocity of Mars is (0, 0,—2.5x 104) m/s. 1 !
When it reaches location B, the planet’s velocity is |’ ©
(=2.5x10", 0, 0 m/s. ' 4 /AP
(a) What is Ap, the change in the momentum of Mars between lo- ‘\ Sun 1
cations A and B? \ ,l
(b) On a copy of the diagram in Figure 1.33, draw two arrows rep- C.\ L/
resenting the momentum of Mars at locations C and D, paying at- D.\ - P
tention to both the length and direction of each arrow. Seo_Lo--T

(c) What is the direction of the change in the momentum of Mars

between locations Cand D? Draw the vector |Ap| on your diagram.
Figure 1.33 The nearly circular orbit of
Ex. 1.46 A 50 kg child is riding on a carousel (merry-go-round) at Mars around the Sun, viewed from above

a constant speed of 5 m/s. What is the magnitude of the change in the orbital plane. Not to scale: the sizes of
the child’s momentum [Ap| in going all the way around (360°)? In the Sun and Mars are exaggerated.

going halfway around (180°)? Draw a diagram showing the initial

vector momentum and the final vector momentum, then subtract,

then find the magnitude.

1.8.5 Average rate of change of momentum

The rate of change of the vector position is such an important quantity that
it has a special name: “velocity”. In Section 1.7 we discussed how to find both
the average rate of change of position (average velocity) and the instanta-
neous rate of change of position (instantaneous velocity) of an object.

The average rate of change of momentum and the instantaneous rate of
change of momentum are also extremely important quantities. In some sit-
uations, we will only be able to find an average rate of change of momen-
tum:
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Path of a particle

Figure 1.34 Curving path of a particle.
The particle’s momentum is shown at
location A. At location A the particle’s
path has a radius of curvature R. The
“kissing circle” matches the tangent and
radius of curvature of the path.
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AVERAGE RATE OF CHANGE OF MOMENTUM

AD _ BrDs
At -y

This quantity is a vector, and points in the direction of Af) .

Example

If the momentum of a ball changes from (1,2,0)kg-m/s to
(0.5,0,0.5) kg - m/s in half a second, the average rate of change of mo-
mentum of the ball is

({(0.5,0,0.5) = (1,2,0)) kg-m/s _ kg-m
- - <_1:_45 1>
05s s2

1.8.6 Rate of change of momentum along a curving path

When a particle moves along a curving path, such as that shown in Figure
1.34, the direction (and perhaps the magnitude) of its momentum is con-
tinuously changing. Using geometry and algebra, we can derive an algebraic
expression for the rate of change of momentum of a particle at any location
on a curving trajectory, by doing the following:

¢ Pick a short interval bracketing location A

e Graphically find Ap over this interval

¢ Inscribe a “kissing” circle inside the curve

e Use similar triangles to relate Ap to the radius of the circle

We will find that the rate of change of momentum at a location depends on:
¢ the momentum of the particle when it is at that location
¢ the particle’s speed
¢ the radius of a circle “kissing” the inside of the curve at that location

We will show that when the particle is (momentarily) at a particular location
(such as location A in Figure 1.34),

20/ = Blip
At R

where |V| is the speed of the particle at the moment that it passes location
A, and Ris the radius of the kissing circle. Since Ris in the denominator, the
larger the radius of curvature, the smaller the rate of change of the momen-
tum. This is reasonable, because when the radius of curvature gets extreme-
ly large, the path of the particle is essentially a straight line, and the
direction of the momentum isn’t changing. On the other hand, a tight turn
(small radius of curvature R) means that the direction of the momentum is
changing very rapidly, and Ap /At is large.

Simplest case: magnitude of momentum constant

To begin, let’s assume that the magnitude of the momentum isn’t changing,
only the direction is changing. Consider motion along the curving path
shown in Figure 1.34. We want to find the rate of change of momentum of
a particle traveling along this path, at the instant when the particle is at lo-
cation A.

In Figure 1.34 a dashed circle has been drawn inside the path, tangent to
the path at location A. This dashed circle of radius Ris called the “osculato-
ry” or “kissing” circle, because it just “kisses” the curving path at ocation A,
fitting into the trajectory as smoothly as possible, with the circle and the tra-
jectory sharing the same tangent and same radius of curvature Rat location
A. We pick a short interval centered on location A, and draw arrows repre-
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senting the momentum of the particle at the beginning and end of that in-
terval, as shown in Figure 1.35.

In Figure 1.36 we find Af) by putting the initial and final momentum vec-
tors tail to tail and drawing the vector Ap = f)f— P, (final minus initial).
The important thing to notice is that the changein momentum is not in the
direction of the momentum but is perpendicular to it. Af) points to the left,
toward the center of the kissing circle. In order to make such a change in
the momentum, you would have to push toward the left.

We can use geometry to calculate the rate at which the momentum
changes due to the changing direction. In Figure 1.37 the p-triangle and the
R-triangle are similar to each other, with the same acute angles, because the
radius vectors in the R-triangle and the momentum vectors in the p-triangle
are at right angles to each other. To say it another way, you can rotate one
of the triangles through 90 degrees and the small acute angles will clearly
be the same. We’re assuming that the magnitude of the momentum isn’t
changing, only the direction, so |f)]’ = |f)l| .

For short times (small angles), the length of the short side of the R-trian-
gle is approximately equal to the arc length, which is the distance the parti-
cle goes in the short time, which is equal to [¥]At. Since the two triangles
are similar, the ratio of the side opposite the acute angle to the side adjacent
to the acute angle must be the same for both triangles:

AP _ [¥lAs
Bl R

We have used the fact that we’re assuming that the magnitude of the mo-
mentum isn’t changing, only the direction, so that we can write |p| for the
magnitude of either the initial or final momentum near location A. We are
interested in the rate of change of the momentum, so rearrange the formu-
la like this:

1Ap _ B
At
Since the time is increasing, At is always positive and therefore the same as
|A4, so we can express the magnitude of the rate of change of the momen-
tum like this:

Ap

ulhy
At R

The direction of Ap /At is the same as the direction of Ap : perpendicular
to the particle’s momentum (Figure 1.38).

Checking units
A simple check on the results of a calculation or derivation is a units check.
? Do the units on both sides of the preceding equation match?
kg - m)
k

Left hand side: i - Xg-m
s

§2
8
Right hand side: _(kg m) _ kg-m
m s §2

The units match. (If they had not matched, the equation could not be cor-
rect, and we would have to look for errors in our derivation.)
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\P/
The “kissing” circle

Path of a particle

Figure 1.35 The particle’s momentum
shown at two locations before and after
location A.

N Ap
Py *
¥ ptriangle
N — /

Figure 1.36 We find Ap = p,~p; graphi-
cally, by putting the vectors tail to tail.

N AP

Pr
v kA
[V At

ptriangle  Rtriangle
P— //

Figure 1.37 The two triangles are similar,
with the same acute angle, because the
sides of one triangle were originally per-
pendicular to the side of the other.

Path of a particle

Figure 1.38 For a particle moving at con-
stant speed along a curving path, Ap/A¢ is
perpendicular to the particle’s momen-
tum, and points to the inside of the curve.
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Ap
= A N
Py ! P AI|J|
Py
AB

Figure 1.39 If both the magnitude and the
direction of the momentum change, then
Ap has a component parallel to the
motion as well as a component perpendic-
ular to the motion.

Earth

Figure 1.40 The Moon’s orbit around the
Earth is nearly circular. Not to scale: the
sizes of the Earth and Moon are exagger-
ated.
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General case: magnitude of momentum changing

Despite the fact that the preceding derivation hinged on the assumption
that the magnitude of momentum was constant, we can extend this result to
the general case in which both direction and magnitude of momentum are
changing. In Figure 1.39 we see what happens if both the speed and direc-
tion of motion are changing. Now the initial and final momentum vectors
have different lengths (magnitudes). As a result, the momentum change
Af) has a component parallel to the motion as well as a component perpen-
dicular to the motion.

In this general case, Af) can be separated into two components: one com-
ponent perpendicular to the momentum [3\ , along the radius of the kissing
circle (this component indicates change of direction), and another compo-
nent parallel to the momentum f) , along the tangent to the curving trajec-
tory (this component indicates change of speed). If we consider only the
perpendicular component, then the result obtained above still applies.

Instantaneous rate of change of momentum

In the limit as A¢ becomes infinitesimally small we have a derivative, and we
obtain this important result:

PERPENDICULAR COMPONENT OF dp /dt
FOR MOTION ALONG A CURVING PATH

|V|| |

Perpendicular component of —}i is given by ‘ o ‘

The direction is toward the center of the kissing circle of radius R.
? Is this result valid for high speeds, when [V] = ¢?

We did not use the approximate formula for momentum, so our result
should be valid even if a particle is traveling at a high speed. Given the full
definition of momentum, we can expand the result like this:

@ _ (|Vl) 1 mRl) = (m|v| 2)
dt JT/C)Q JT/C)?

If the particle’s speed is small compared to the speed of light, we have the
following approximate result for the perpendicular component of dp /dt:

APPROXIMATE RESULT

m|v|2

Perpendicular component: ‘%{E ~ ifv<<e
t

D/ dt| =
since it is not really any more complicated to use, and it is valid at all speeds,
not just low speeds.

Example

The Moon, which has a mass of 7x10> kg, orbits the Earth once every 28
days (a lunar month), following a path which is nearly circular. The distance
from the Farth to the Moon is 4x10° m . What is the magnitude of the rate
of change of the Moon’s momentum?
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Rl = 2n(4x10 m) _ l><103rn/s
(28 days)(24 hr/day)(60 mln/hr)(60 s/min)
1Bl mii| = (7x10% kg)(1x10°m/s) = 7.3x10” kg - m /s
dp| _ Blig _ Mws 10% kg-m/s) = 1.8x10” —g—
| R (4x10° m)

The Moon’s speed is not changing, so df) /dt is perpendicular to f), as
shown in Figure 1.40.

Ex. 1.47 Which of the dashed circles in Figure 1.41 best represents
the “kissing circle” tangent to the path of the particle, with the same

radius of curvature as that of the path at the location marked by
“X”?

Ex. 1.48 Assume that the particle whose path is shown in Figure
1.41 is traveling at constant speed. At the location marked “x”, what
is the direction of dp /dt for the particle?

Ex. 1.49 A child of mass 40 kg sits on awooden horse on a carousel.
The wooden horse is 5 meters from the center of the carousel,
which completes one revolution every 90 seconds. What is the rate
of change of the momentum of the child, both magnitude and
direction?

Ex. 1.50 The orbit of the Earth around the Sun is approximately
circular, and takes one year to complete. The Earth’s mass is
6x10%* kg, and the distance from the Earth to the Sun is
1.5x10" m. What is the magnitude of the rate of change of the
Earth’s momentum? What is the direction of the rate of change of
the Earth’s momentum?

1.9 *The principle of relativity

e

Sections marked with a “*” are optional. They provide additional informa-
tion and context, but later sections of the textbook don’t depend critically
on them. This optional section deals with some deep issues about the “ref-
erence frame” from which you observe motion. Newton’s first law of motion
only applies in an “inertial reference frame,” which we will discuss here in
the context of the principle of relativity.

A great variety of experimental observations has led to the establishment
of the following principle:

THE PRINCIPLE OF RELATIVITY

Physical laws work in the same way for observers
in uniform motion as for observers at rest.

This principle is called “the principle of relativity.” (Einstein’s extensions of
this principle are known as “special relativity” and “general relativity.”) Phe-
nomena observed in a room in uniform motion (for example, on a train
moving with constant speed on a smooth straight track) obey the same phys-
ical laws in the same way as experiments done in a room that is not moving.
According to this principle, Newton’s first law of motion should be true
both for an observer moving at constant velocity and for an observer at rest.
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Figure 1.41 Which circle best represents
the kissing circle? (Exercise 1.47)
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For example, suppose you’re riding in a car moving with constant veloci-
ty, and you’re looking at a map lying on the dashboard. As far as you’re con-
cerned, the map isn’t moving, and no interactions are required to hold it
still on the dashboard. Someone standing at the side of the road sees the car
go by, sees the map moving at a high speed in a straight line, and can see
that no interactions are required to hold the map still on the dashboard.
Both you and the bystander agree that Newton’s first law of motion is
obeyed: the bystander sees the map moving with constant velocity in the ab-
sence of interactions, and you see the map not moving at all (a zero constant
velocity) in the absence of interactions.

On the other hand, if the car suddenly speeds up, it moves out from un-
der the map, which ends up in your lap. To you it looks like “the map sped
up in the backwards direction” without any interactions to cause this to hap-
pen, which looks like a violation of Newton'’s first law of motion. The prob-
lem is that you're strapped to the car, which is an accelerated reference
frame, and Newton’s first law of motion applies only to nonaccelerated ref-
erence frames, called “inertial” reference frames. Similarly, if the car sud-
denly turns to the right, moving out from under the map, the map tends to
keep going in its original direction, and to you it looks like “the map moved
to the left” without any interactions. So a change of speed or a change of di-
rection of the car (your reference frame) leads you to see the map behave
in a strange way.

The bystander, who is in an inertial (non-accelerating) reference frame,
doesn’t see any violation of Newton’s first law of motion. The bystander’s
reference frame is an inertial frame, and the map behaves in an understand-
able way, tending to keep moving with the same speed and direction when
the car changes speed or direction.

The cosmic microwave background

The principle of relativity, and Newton’s first law of motion, apply only to
observers who have a constant speed and direction (or zero speed) relative
to the “cosmic microwave background,” which provides the only backdrop
and frame of reference with an absolute, universal character. It used to be
that the basic reference frame was loosely called “the fixed stars,” but stars
and galaxies have their own individual motions within the Universe and do
not constitute an adequate reference frame with respect to which to mea-
sure motion.

The cosmic microwave background is low-intensity electromagnetic radi-
ation with wavelengths in the microwave region, which pervades the Uni-
verse, radiating in all directions. Measurements show that our galaxy is
moving through this microwave radiation with a large, essentially constant
velocity, toward a cluster of a large number of other galaxies. The way we de-
tect our motion relative to the microwave background is through the “Dop-
pler shift” of the frequencies of the microwave radiation, toward higher
frequencies in front of us and lower frequencies behind. This is essentially
the same phenomenon as that responsible for a fire engine siren sounding
ata higher frequency when it is approaching us and a lower frequency when
it is moving away from us.

The discovery of the cosmic microwave background provided major sup-
port for the “Big Bang” theory of the formation of the Universe. According
to the Big Bang theory, the early Universe must have been an extremely hot
mixture of charged particles and high-energy, short-wavelength electromag-
netic radiation (visible light, x-rays, gamma rays, etc.). Electromagnetic ra-
diation interacts strongly with charged particles, so light could not travel
very far without interacting, making the Universe essentially opaque. Also,
the Universe was so hot that electrically neutral atoms could not form with-
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out the electrons immediately being stripped away again by collisions with
other fast-moving particles.

As the Universe expanded, the temperature dropped. Eventually the tem-
perature was low enough for neutral atoms to form. The interaction of elec-
tromagnetic radiation with neutral atoms is much weaker than with
individual charged particles, so the radiation was now essentially free, disso-
ciated from the matter, and the Universe became transparent. As the Uni-
verse continued to expand (the actual space between clumps of matter got
bigger!), the wavelengths of the electromagnetic radiation got longer, until
today this fossil radiation has wavelengths in the relatively low-energy, long-
wavelength microwave portion of the electromagnetic spectrum.

Inertial frames of reference

It is an observational fact that in reference frames that are in uniform mo-
tion with respect to the cosmic microwave background, far from other ob-
jects (so that interactions are negligible), an object maintains uniform
motion. Such frames are called “inertial frames” and are reference frames
in which Newton'’s first law of motion is valid.

? Is the surface of the Earth an inertial frame?

No! The Earth is rotating on its axis, so the velocity of an object sitting on
the surface of the Earth is constantly changing direction, as is a coordinate
frame tied to the Earth (Figure 1.42). Moreover, the Earth is orbiting the
Sun, and the Solar System itself is orbiting the center of our Milky Way gal-
axy, and our galaxy is moving toward other galaxies. So the motion of an ob-
ject sitting on the Earth is actually quite complicated and definitely not
uniform with respect to the cosmic microwave background.

However, for many purposes the surface of the Earth can be considered
to be (approximately) an inertial frame. For example, it takes 6 hours for
the rotation of the Earth on its axis to make a 90° change in the direction
of the velocity of a “fixed” point. If a process of interest takes only a few min-
utes, during these few minutes a “fixed” point moves in nearly a straight line
at constant speed due to the Earth’s rotation, and velocity changes in the
process of interest are typically much larger than the very small velocity
change of the approximate inertial frame of the Earth’s surface.

Similarly, although the Earth is in orbit around the Sun, it takes 365 days
to go around once, so for a period of a few days or even weeks the Earth’s
orbital motion is nearly in a straight line at constant speed. Hence for many
purposes the Earth represents an approximately inertial frame despite its
motion around the Sun.

The special theory of relativity

Einstein’s special theory of relativity (published in 1905) built on the basic
principle of relativity but added the conjecture that the speed of a beam of
light must be the same as measured by observers in different frames of ref-
erence in uniform motion with respect to each other. In Figure 1.43, observ-
ers on each spaceship measure the speed of the light ¢ emitted by the ship
at the top to be the same (¢ = 3x10° m/s), despite the fact that they are
moving at different velocities.

This additional condition seems peculiar and has far-reaching conse-
quences. After all, the map on the dashboard of your car has different
speeds relative to different observers, depending on the motion of the ob-
server. Yet a wide range of experiments has confirmed Einstein’s conjec-
ture: all observers measure the same speed for the same beam of light,
¢ = 3><108 m/s. (The color of the light is different for the different observ-
ers, but the speed is the same.)
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Figure 1.42 Axes tied to the Earth rotate
through 90° in a quarter of a day (6 hours).

c=3%x10%m/s

c=3x108m/s

c=3%x10%m/s

Figure 1.43 Light emitted by the top space-
ship is measured to have the same speed by
observers in all three ships.
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On the other hand, if someone on the ship at the top throws a ball or a
proton or some other piece of matter, the speed of the object will be differ-
ent for observers on the three ships; it is only light whose speed is indepen-
dent of the observer.

Einstein’s theory has interesting consequences. For example, it predicts
that time will run at different rates in different frames of reference. These
predictions have been confirmed by many experiments. These unusual ef-
fects are large only at very high speeds (a sizable fraction of the speed of
light), which is why we don’t normally observe these effects in everyday life,
and why we can use nonrelativistic calculations for low-speed phenomena.
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1.10 Summary

Interactions (Section 1.2 and Section 1.4)

Interactions are indicated by
¢ change of velocity (change of direction and/or change of speed)
¢ change of identity
¢ change of shape of multiparticle system
¢ change of temperature of multiparticle system
¢ lack of change when change is expected

Newton’s first law of motion (Section 1.3)

An object moves in a straight line and at constant speed
except to the extent that it interacts with other objects.

Vectors (Section 1.5)

A 3D vectoris a quantity with magnitude and a direction, which can
be expressed as a triple (x, y, z) . Avector is indicated by an arrow: T

A scalaris a single number.
Legal mathematical operations involving vectors include:

eadding one vector to another vector
esubtracting one vector from another vector
emultiplying or dividing a vector by a scalar
efinding the magnitude of a vector

etaking the derivative of a vector

Operations that are not legal with vectors include:

®A vector cannot be added to a scalar

*A vector cannot be set equal to a scalar

*A vector cannot appear in the denominator (you can’t divide by a
vector)

The symbol A
The symbol A (delta) means “change of”: At = =1, AT = ?f— r;
A always means “final minus initial”.
Velocity and change of position (Section 1.7)
DEFINITION: AVERAGE VELOCITY
s AF I

Vovg = — =
YA -y

Velocity is a vector. T is the position of an object (a vector). ¢ is the time.
Average velocity is equal to the change in position divided by the time
elapsed. SI units of velocity are meters per second (m/s).

THE POSITION UPDATE FORMULA
?f = ?i+ \)/angt

The final position (vector) is the vector sum of the initial position plus the
product of the average velocity and the elapsed time.
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DEFINITION: INSTANTANEOUS VELOCITY

N At _ dr
v= lim— = —
Al—>0AL dt

The instantaneous velocity is the limiting value of the average velocity as the
time elapsed becomes very small.

Momentum (Section 1.8)
DEFINITION: MOMENTUM
p = ymv

1

V1= (%17 ¢)?

Momentum (a vector) is the product of the relativistic factor “gamma” (a
scalar), mass, and velocity.

where y = (lower-case Greek gamma)

1 N
——mv
V1= (317 ¢)?
APPROXIMATION: MOMENTUM AT LOW SPEEDS

P~ mv at speeds such that [¥| << ¢.

Combined into one equation: p =

Result: Rate of change of momentum along a curving path (Section 1.8.5)

PERPENDICULAR COMPONENT OF dp / dt
FOR MOTION ALONG A CURVING PATH

Perpendicular component of p given by |9P| = M|13|
dt dt R
The direction is toward the center of the kissing circle of radius R.
Useful numbers:

Radius of a typical atom: about 1 ><10710 meter.
Radius of a typical atomic nucleus: about 1x107b meter
Speed of light: 3x10° m/s

These and other useful data and conversion factors are given on the inside
back cover of the textbook.
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1.11Review questions

The purpose of review questions is to help you reflect on the most impor-
tant concepts in the chapter. Try to answer the questions without flipping
through the chapter looking for an answer, but think about what you
know already from having done the exercises throughout the chapter. If
you are stumped, look at the “Summary” on the preceding page.

If you are still stumped after looking at the chapter summary, make a
note in your notebook, as a reminder that you may need to spend some
extra time studying this particular concept.

Detecting interactions

RQ 1.1 Give two examples (other than those discussed in the text) of inter-
actions that may be detected by observing:

(a) change in velocity

(b) change in temperature

(c) change in shape

(d) change in identity

(e) lack of change when change is expected

RQ 1.2 In which of the following situations is there observational evidence
for significant interaction between two objects? How can you tell?

(a) a book rests on a table

(b) a baseball that was hit by a batter flies toward the outfield

(c) water freezes in an ice cube tray in the freezer

(d) a communications satellite orbits the earth

(e) a space probe leaves the solar system traveling at constant speed to-

ward a distant star
(f) a charged particle leaves a curving track in a particle detector

RQ 1.3 Which of the following observations give conclusive evidence of an
interaction? (Choose all that apply.)

(a) Change of velocity, either change of direction or change of speed.

(b) Change of shape or configuration without change of velocity.

(c) Change of position without change of velocity.

(d) Change of identity without change of velocity.

(e) Change of temperature without change of velocity.

Explain your choice.

RQ 1.4 Moving objects left the traces labelled A - Fin Figure 1.44. The dots
were deposited at equal time intervals (for example, one dot each second).
In each case the object starts from the square. Which trajectories show evi-
dence that the moving object was interacting with another object some-
where? If there is evidence for an interaction, what is the evidence?

RQ 1.5 A spaceship far from all other objects uses its rockets to attain a
speed of 1x10" m/s . The crew then shuts off the power. According to New-
ton’s first law, which of the following statements about the motion of the
spaceship after the power is shut off are correct? (Choose all statements that
are correct.)

(a) The spaceship will move in a straight line.

(b) The spaceship will travel on a curving path.

(c) The spaceship will enter a circular orbit.

(d) The speed of the spaceship will not change.

(e) The spaceship will gradually slow down.

(f) The spaceship will stop suddenly.
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Figure 1.44 Traces left by moving objects.
The dots mark the objects’ positions at
equal time intervals (RQ 1.4).
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RQ 1.6 Why do we use a spaceship in outer space, far from other objects, to
illustrate Newton’s first law? Why not a car or a train? (More than one of the
following statements may be correct.)

A car or train touches other objects, and interacts with them.

A car or train can’t travel fast enough.

The spaceship has negligible interactions with other objects.

A car or train interacts gravitationally with the Earth.

A spaceship can never experience a gravitational force.

RQ 1.7 You slide a coin across the floor, and observe that it travels in a
straight line, slowing down and eventually stopping. A sensitive thermome-
ter shows that the coin’s temperature increased. What can we conclude?
(Choose all statements that are correct.)

(a) Because the coin traveled in a straight line, we conclude that it did not
interact with anything.

(b) Because the coin did not change shape, we conclude that it did not
interact with anything.

(c) Because the coin slowed down, we conclude that Newton’s first law
does not apply to objects in everyday life, such as coins.

(d) Because the coin’s speed changed, we conclude that it interacted with
one or more other objects.

(e) Because the coin got hot, we conclude that it interacted with one or
more other objects.

RQ 1.8 Some science museums have an exhibit called a Bernoulli blower, in
which a volleyball hangs suspended in a column of air blown upward by a
strong fan. If you saw a ball suspended in the air but didn’t know the blower
was there, why would Newton’s first law suggest that something must be
holding the ball up?

RQ 1.9 Place a ball on a book and walk with the book in uniform motion.
Note that you don’t really have to do anything to the ball to keep the ball
moving with constant velocity (relative to the ground) or to keep the ball at
rest (relative to you). Then stop suddenly, or abruptly change your direction
or speed. What does Newton'’s first law of motion predict for the motion of
the ball (assuming the interaction between the ball and the book is small)?
Does the ball behave as predicted? It may help to take the point of view of a
friend who is standing still, watching you.

Velocity

RQ 1.10 How does average velocity differ from instantaneous velocity?

RQ 1.11 Start with the definition of average velocity and derive the position
update formula from it. Show all steps in the derivation.

RQ 1.12 In the expression AT /A¢, what is the meaning of Ar? What is the
meaning of A¢?

Momentum

RQ 1.13 Which of the following statements about the velocity and momen-
tum of an object are correct?
(a) The momentum of an object is always in the same direction as its ve-
locity
(b) The momentum of an object can either be in the same direction as its
velocity or in the opposite direction
(c) The momentum of an object is perpendicular to its velocity
(d) The direction of an object’s momentum is not related to the direction
of its velocity
(e) The direction of an object’s momentum is tangent to its path
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RQ 1.14 In which of these situations is it reasonable to use the approximate
formula for the momentum of an object, instead of the full relativistically
correct formula?

(a) A car traveling on an interstate highway

(b) A commercial jet airliner flying between New York and Seattle

(¢) A neutron traveling at 2700 meters per second

(d) A proton in outer space traveling at 2x10° m/s

(e) An electron in a television tube traveling 3x10° m/s

RQ 1.15 Answer the following questions about the factor y (gamma) in the
full relativistic formula for momentum.
(a) Is y a scalar or a vector quantity?
(b) What is the minimum possible value of y?
(c) Does yreach its minimum value when an object’s speed is high or low?
(d) Is there a maximum possible value for y?
(e) Does v become large when an object’s speed is high or low?
(f) Does the approximation y~ 1 apply when an object’s speed is low or
when it is high?

Change of momentum

RQ 1.16 A tennis ball of mass m traveling with velocity (v,, 0, 0) hits a wall
and rebounds with velocity (-v,, 0, 0) .
(a) What was the change in momentum of the tennis ball?
(b) What was the change in the magnitude of the momentum of the ten-
nis ball?

RQ 1.17 The radius of a merry-go-round is 7 meters, and it takes 12 seconds
to make a complete revolution.
(a) What is the speed of an atom on the outer rim?
(b) Which statement below (i, ii, or iii) best describes the direction of the
momentum of this atom?
(¢) Which statement below (i, ii, or iii) best describes the direction of the
rate of change of the momentum of this atom?
(i) Inward, toward the center
(ii) Outward, away from the center
(iii) Tangential

RQ 1.18 Figure 1.45 shows the path of a particle. Assuming the particle’s
speed does not change as it travels along this path, at each location labeled
“x” draw an arrow showing the direction of dp /dt for the particle as it pass-
es that location.

Relativity

RQ 1.19 Which of the following observers might observe something that ap-
pears to violate Newton’s first law of motion? Explain why.

(a) a person standing still on a street corner

(b) a person riding on a roller coaster

(c) a passenger on a starship travelling at 0.75¢ toward the nearby

star Alpha Centauri
(d) an airplane pilot doing aerobatic loops
(e) a hockey player coasting across the ice

RQ 1.20 A spaceship at rest with respect to the cosmic microwave back-
ground emlts a beam of red light. A different spaceship, moving at a speed
of 2.5x10° m/s toward the first ship, detects the light. Which of the follow-

1

Figure 1.45 Path of a particle traveling at
constant speed (RQ 1.18).
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ing statements are true for observers on the second ship? (More than one
statement may be correct.)

(a) They observe that the light travels at 3x10° m/s.

(b) They see light that is not red.

(c) They observe that the light travels at 5.5x10° m/s

(d) They observe that the light travels at 2.5x10° m/s.
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1.12 Problems

Vectors

Problem 1.1 On a piece of graph paper, draw arrows representing the fol-
lowing vectors. Make sure the tip and tail of each arrow you draw are clearly
distinguishable.

(a) Placing the tail of the vector at (5, 2, 0) draw an arrow representing
the vector p = (-7, 3, 0). Label it f) .

(b) Placing the tail of the vector at (-5, 8, 0) draw an arrow representing
the vector —p . Label it —p .

Problem 1.2 The following questions refer to the vectors depicted by arrows
in Figure 1.46.

(a) What are the components of the vector a ? (Note that since the vector
lies in the xy plane, its z component is zero.)

(b) What are the components of the vector b?

(c) Ts this statement true or false? 4 = b

(d) What are the components of the Vector ¢?

(e) Ts this statement true or false: ¢ = —a ?

(f) What are the components of the vector d ?

(g) Is this statement true or false: d

Problem 1.3

(a) What are the components of the vector d in Figure 1.47?

(b)Ife = —d what are the components of e?

(c) If the tail of vector d were moved to location (-5,-2,4) m, where
would the tip of the vector be located?

(d) If the tail of vector — d were placed at location (-1, -1,-1), where
would the tip of the vector be located?

&7

Problem 1.4 Figure 1.48 shows several arrows representing vectors in the xy
plane.

(a) Which vectors have magnitudes equal to the magnitude of a?

(b) Which vectors are equal to a?

Problem 1.5 Consider a vector U = (u,, Uy u, , and another vector

P = (pubpp) If i = P, then which of the following statements must be

true? Some, all, or none of the following may be true:
(i) u, = p,(ii) u, = p, (iii) u, = p, (iv) The direction of i is the same
as the direction of p.

Vector operations

Problem 1.6 In the diagram in Figure 1.49 three vectors are represented by
arrows in the xy plane. Each square in the grid represents one meter. For
each vector:

(a) Write out the components of the vector.

(b) Calculate the magnitude of the vector.

Problem 1.7 Imagine that you have a baseball and a tennis ball at different
locations. The center of the baseball is at (3, 5, 0) m, and the center of the
tennis ball is at (-3, -1, 0) m. On a piece of graph paper, do the following:
(a) Draw dots at the locations of the center of the baseball and the center
of the tennis ball.

(b) Draw the position vector of the baseball, which is an arrow whose tail is
at the origin and whose tip is at thc location of the baseball. Label this posi-
tion vector B. Clearly show the tip and tail of each arrow.

(c) Complete this equation: B =< , , >m.
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Figure 1.46 These arrows represent the
vectors referred to in Problem 1.2.

Figure 1.47 An arrow representing a posi-
tion vector (Problem 1.3)
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Figure 1.48 Arrows representing vectors in
the xy plane (Problem 1.4).
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Figure 1.49 Arrows representing vectors in
the xy plane (Problem 1.6).
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(d) Draw the position vector of the tennis ball. Label it T’ .

(e) Complete this equation: T=<___ , ., >m.

(f) Draw the relative position vector for the tennis ball relative to the base-
ball. The tail of this vector is at the center of the baseball, and the tip of the
vector is at the center of the tennis ball. Label this relative position vector r.
(g) Complete the followmg equation by reading the coordinates of r from
your graph: r = s , >m
(h) Calculate the following dlfference T~
(i) Is the following statement true? r = T - B

(j) Write two other equations relating the vectors B, T, and r.
(k) Calculate the magnltudes of the Vectors B T and r.

—|BJ.

bm

, , >m.

(m) Does |T| - T_B|?

Problem 1.8 Which of the following are vectors?
(a) 85 (b) 0 (¢) (0.7,0.7,0.7) (d) (0,2.3,-1) (e) —3x10°
() 3-(14,0,-22)

Problem 1.9 Which of the following are Vectors?
(a) 172 (b) [H/2 (¢) (r,, ry, 1) (d) 5-

Problem 1.10 (a) What is the vector whose tail is at (9.5, 7, 0) m and whose
head is at (4,-13, 0) m? (b) What is the magnitude of this vector?

Problem 1.11 A man is standing on the roof of a building with his head at
the position (12, 30, 13) m. He sces the top of a tree, which is at the position
(=25, 35, 43) m

(a) What is the relative position vector that points from the man’s head to

the top of the tree?
(b) What is the distance from the man’s head to the top of the tree?

Problem 1.12 (a) On a piece of graph paper, draw the vector f = (-2,4,0),

putting the tail of the vector at (=3, 0, 0) . Label the vector f.

(b) Calculate the vector 2f, and draw this vector on the graph, putting its
tail at (-3, -3, 0), so you can compare it to the original vector. Label the
vector 2f. . .

(c) How does the magnitude of 2f compare to the magnitude of f?

(d) How does the direction of 2f compare to the direction of f?

(e) Calculate the vector /2, and draw this vector on the graph, putting its
tail at (-3, -6, 0) , so you can compare it to the other vectors. Label the vec-
tor £/2. . .

(f) How does the magnitude of /2 compare to the magnitude of f?

(g) How does the direction of /2 compare to the direction of f?

(h) Does multiplying a vector by a scalar change the magnitude of the vec-
tor?

(i) The vector a(b has a magnitude three times as great as that of %, and its
direction is opposite to the direction of f. What is the value of the scalar fac-
tor a?

Problem 1.13 (a) On a piece of graph paper, draw the vector
g = (4,7, 0) m. Put the tail of the vector at the origin.

(b) Calculate the magnitude of g

(c) Calculate g, the unit vector pointing in the direction of §

(d) On the graph draw g. Put the tail of the vector at (1, 0,0) so you can
compare g and g g.

(e) Calculate the product of the magnitude | §’ times the unit vector g:

(Igh(@)
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Problem 1.14 A proton is located at (3x10 ", -3x10 ", 8x10 "%y m
(a) What is r, the vector from the origin to the location of the proton?

(b)

~ . . . . A
(c) Whatis r, the unit vector in the direction of r?

Problem 1.15 Which of the following statements about the vectors depicted
by arrows in Figure 1.50 are correct?
@3=t-t(b)Ft=1t-3 @) it+t=5 ) 3+t=1%(e)T+5=1

Problem 1.16 Which of the following are unit vectors? (Numerical values
are given only to 3 significant figures.)

(a) (0,0,-1) (b) (0.5,0.5,0) (c) (0.333,0.333,0.333) (d) (0.9,0,0.1)
(e) (0,3,0) (f) (1,-1,1) (g) (0.577,0.577,0.577) (h) (0.949, 0,—0.316)

Problem 1.17 Two vectors, f and g, are equal: f= g . Which of the follow-
ing statements are true?

f= g (b)g . =fi (Of =2 (d) the directions of f and g may be differ-
ent (e) the magnitudes of f and g may be different

Problem 1.18 A proton is located at %P = (2, 6,-3) m.An electron is locat-
edat ¥, = (4,12,-6) m . Which of the following statements are true?

(a) 2t, = T, (b) 2t, = 1, (0) 2t = |t

Problem 1.19 A proton is located at (x,, Vp zp) . An electron is located at
(%, 9,2y . What is the vector pointing from the electron to the proton?

What is the vector pointing from the proton to the electron?

Problem 1.20 The vector 2 = (0.03,-1.4,26.0) and the scalar f = -3.0
Whatis fa?

Problem 1.21 The vector g = (2,-7,3) and the scalar # = —2. What is
h+3?

(a) (0,-9,1) (b) (4,-5,5) (c) (4,9,5) (d) This is a meaningless expres-

sion.

Problem 1.22 Write each of these vectors as the product of the magnitude
of the vector and the appropriate unit vector:
(a) (60 0, 95g (b)  (0,-679,0) (c) (3.5x10°,0,-3.5x10°) (d)
(4x10°, -6x10", 3x10 )
Problem 1.23 A = (3x10°,-4x10°, -5x10°) and

= (=3x10", 4x10”, 5x10”) . Calculate the following: (a) A +B (b)

A+B| () A (@) B () Al +]B]
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Figure 1.50 Arrows representing three vec-
tors (Problem 1.15).
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A

Figure 1.51 Trajectory of a ball traveling
through air, affected by gravity and air

resistance (Problem 1.32).

X

loc. t (s) position (m)
A 0.0 (0, 0, 0)

B 1.0 (22.3,26.1, 0)
Cc 2.0 (40.1, 38.1, 0)

Figure 1.52 Table showing position of ball

in Figure 1.51, at various times.
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Problems on velocity and momentum

Problem 1.24 A baseball has a mass of 0.155 kg. A professional pitcher
throws a baseball 90 miles per hour, which is 40 m/s. What is the magnitude
of the momentum of the pitched baseball?

Problem 1.25 The position of a golf ball relative to the tee changes from
<50, 20, 30> m to <53, 18, 31> m in 0.1 second. As a vector, write the velocity
of the golf ball during this short time interval.

Problem 1.26 A hockey puck with a mass of 0.4 kg has a velocity of
(38, 0,-27) m/s. What is the magnitude of its momentum,

Problem 1.27 A proton in an accelerator attains a speed of 0.88¢. What is
the magnitude of the momentum of the proton?

Problem 1. 28 The crew of a stationary spacecraft observe an asteroid whose
mass is 4x10" kg Taking the location of the spacecraft as the origin, the
asteroid is observed to be at location (- 3x10° —4><10 , 8x10° ) m at a time
18.4 seconds after lunchtime. At a time 21.4 seconds after lunchtime, the as-
teroid is observed to be at location (—1.4x10%, -6.2x10°,9.7x10°) m . As-
suming the velocity of the asteroid does not change during this time
interval, calculate the vector velocity v of the asteroid.

Problem 1.29 An electron with a speed of 0.95¢ is emitted by a supernova,
where ¢ is the speed of light. What is the magnitude of the momentum of
this electron?

Problem 1.30 A “cosmic-ray” proton hits the upper atmosphere with a speed
0.9999 ¢, where cis the speed of light. What is the magnitude of the momen-
tum of this proton?

Problem 1.31 The position of a baseball relative to home plate changes from
<15, 8, -=3> m to <20, 6, -1> m in 0.1 second. As a vector, write the average
velocity of the baseball during this time interval.

Problem 1.32 Figure 1.51 shows the trajectory of a ball traveling through the
air, affected by both gravity and air resistance. The table in Figure 1.52 gives
the position of the ball at several successive times.

(a) What is the average velocity of the ball as it travels between location A
and location B?

(b) If the ball continued to travel at the same average velocity during the
next second, where would it be at the end of that second? (That is, where
would it be at time ¢ = 2 seconds?)

(c) How does your prediction from part (b) compare to the actual posi-
tion of the ball at z = 2 seconds (location C)? If the predicted and observed
locations of the ball are different, explain why.

Problem 1.33 In a laboratory experiment, an electron passes location

(0.02, 0.04, -0.06) m , and 2 ps (1 microsecond = 1 x10 s ) later is detected

at location (0.02, 1.84,-0.86) m .

(a) What is the average velocity of the electron?

(b) If the electron continues to travel at this average velocity, where will
it be in another 5 ps?

Problem 1.34 At 6 seconds after 3:00, a butterfly is observed leaving a flower
whose location is (6, -3, 10) m relative to an origin on top of a nearby tree.
The butterfly flies until 10 seconds after 3:00, when it alights on a different
flower whose location is (6.8,-4.2,11.2) m relative to the same origin.
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What was the location of the butterfly at a time 8.5 seconds after 3:00? What
assumption did you have to make in calculating this location?

Problem 1.35 The gray line in Figure 1.53 shows a portion of the trajectory
of a ball traveling through the air. At various locations, the ball’s momen-
tum is:

f)B (3.03,2.83,0) kg -m /s

Pe = (2.55,0.97,0) kg - m /s

Pp = (2.24,-0.57,0) kg - m /s

Pr = (1.97,-1.93,0) kg- m /s

Py = (1.68,-3.04,0) kg-m /s

(a) Calculate the change in the ball’s momentum between each pair of
adjacent locations.

(b) On a copy of Figure 1.53, draw arrows representing each Ap you cal-
culated in part (a)

(c) Between which two locations is the magnitude of the change in mo-
mentum greatest?

o)
o
1l

T
=
1l

Problem 1.36 A spacecraft traveling at a velocity of (20, 90, 40) m/s is ob-

served to be atalocation (200, 300, —-500) m relative to an origin located on
a nearby asteroid. At a later time the spacecraft is observed to be at location
(-380,-2310, 660) m.
a) How long did it take the spacecraft to travel between these loca-
tions?
b) How far did the spacecraft travel?
c) What is the speed of the spacecraft?
d) What is the unit vector in the direction of the spacecraft’s veloc-
ity?
Problem 1.37 A person of mass 70 kg rides on a Ferris wheel whose radius
is 4 m. The person’s speed is constant at 0.3 m/s. The person’s location is
shown by a dot in the diagram in Figure 1.54.
(a) What is the magnitude of the rate of change of the momentum of the
person at the instant shown?.
(b) What is the direction of the rate of change of momentum of the per-
son at the instant shown?

Computational problems

These problems are intended to introduce you to using a computer to mod-
el matter, interactions, and motion. You will build on these small calcula-
tions to build models of physical systems in later chapters.

Some parts of these problems can be done with almost any tool (spread-
sheet, math package, etc.). Other parts are most easily done with a program-
ming language. We recommend the free 3D programming language
VPython (http://vpython.org). Your instructor will introduce you to an
available computational tool and assign problems, or parts of problems,
that can be addressed using the chosen tool.

Problem 1.38 Move an object across a computer screen

(a) Write a program that makes an object move from left to right across
the screen at speed v. Make v a variable, so you can change it later. Let the
time interval for each step of the computation be a variable d, so that the
position x increases by an amount v*d¢ each time.

(b) Modify a copy of your program to make the object run into a wall and
reverse its direction.

(c) Make a modification so that the object’s speed v is no longer a con-
stant but changes smoothly with time. Is the speed change clearly visible to
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Figure 1.53 The gray line shows a portion
of the path of a ball traveling through air,
affected by gravity and air resistance.
Arrows indicate its momentum at several
locations (Problem 1.35).

wo

Figure 1.54 A person (represented by a
dot) riding on a Ferris wheel (Problem
1.37).
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an observer? Try to make one version in which the speed change is clearly
noticeable, and another in which it is not noticeable.

(d) Corresponding to part (c), make a computer graph of x vs. ¢, where ¢
is the time.

(e) Corresponding to part (c), make a computer graph of vvs. ¢, where ¢
is the time.

Turn in your programs for parts (c), (d), and (e).

Problem 1.39 Move an object at an angle

(a) Write a program that makes an object move at an angle.

(b) Change the component of velocity of the object in the x direction but
not in the y direction, or vice versa. What do you observe?

(c) Start the object moving at an angle and make it bounce off at an ap-
propriate angle when it hits a wall.

Turn in your answer to part (b), and the final version of your computa-
tion, part (c).

Problem 1.40 Move an object, leave a trail

Write a program that makes an object move smoothly from left to right
across the screen at speed v, leaving a trail of dots on the screen at equal
time intervals. If the dots are too close together, leave a dot every N steps,
and adjust N to give a nice display.



1.13 Answers to exercises

1.1 (page 7)
1.2 (page 7)
1.3 (page 8)
1.4 (page 11)
1.5 (page 11)
1.6 (page 11)
1.7 (page 11)
1.8 (page 11)
1.9 (page 12)
1.10 (page 12)
1.11 (page 12)
1.12 (page 12)
1.13 (page 12)
1.14 (page 13)
1.15 (page 13)
1.16 (page 13)
1.17 (page 13)
1.18 (page 13)
1.19 (page 13)

1.20 (page 14)

1.21 (page 14)

1.22 (page 14)

1.23 (page 14)
1.24 (page 14)

1.25 (page 16)
1.26 (page 16)
1.27 (page 16)

1.28 (page 16)
1.29 (page 16)
1.30 (page 16)

1.31 (page 17)

1.32 (page 17)

a, d

a,b,c

. . . . 4
Continues to move in same direction at 1x10 m/s.

3

1
vector
b, ¢

7
scalar
no
5.10 m

no

2.15x10" m/s

(6,-9, 15y m/s

(1,-1.5,2.5) m/s

(0.04, —3.4, 60.0)

in the opposite direction

no
no

(0,1,0)
(-1,0,0)
1 1 1

B EF

)5 ¢

(0.873, 0.436, —0.218)

458(0.873, 0.436, —0.218) =

11y

NN
m
§2

(450, —300, —200)

361, 335, 577
696, no

(150, 300, —200) , (~150, —300, 200)

<_1a 0: _1> m
(2,4,0)m
(-2,-4,0) m

2.67x10° m /s

1.13: Answers to exercises
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1.33 (page 20)
1.34 (page 20)
1.35 (page 21)
1.36 (page 21)
1.87 (page 21)
1.38 (page 27)

1.39 (page 27)
1.40 (page 27)

1.41 (page 27)
1.42 (page 27)
1.43 (page 27)

1.44 (page 29)

1.45 (page 29)
1.46 (page 29)
1.47 (page 33)
1.48 (page 33)

1.49 (page 33)

1.50 (page 33)

(8,-10,12) m /s, 17.55 m /s, (0.456,-0.570, 0.684)
(25,-55,-30) m /s, 67.45 m /s, (0.371,-0.815, —0.445)
(2.1x10°, 1.4x10°, —~2.8x10°) m

05s

(=2.01x10°, 5.20x10", ~1.00x10*) m /s, 2.08x10° m /s
650 kg - m /s

6.9 kg-m/s

2.92x10° kg-m/s

2.415x10 7 kg - m /s

y = 7.09

6.71 kg - m /s

P, to the right (+x), p, to the left (~x),

(-5.59,0,0) kg-m“/s, 0.114 kg-m /s

(~1.6x10°, 0, 1.6x10°%) kg - m /s, downward to the left
0, 500 kg -m /s

The third (bottom) one (R3)

downward on the page

0.975 kg - m /s2 , toward the center

3.57x10% kg -m/s?, toward Sun



