
The Two-body Problem

The two-body problem—determining the motion of two bodies orbiting one another under their
mutual gravitational attraction—is perhaps the best-known problem in gravitational dynamics.
Here we show how it can be reduced to an equivalent one-body problem and then solved as a
special case of motion in a potential field.

The equations of motion for two bodies of masses m1 and m2, positions x1 and x2, and velocities
v1 and v2 moving under gravity are

m1a1 =
Gm1m2

r3
12

(x2 − x1) (1)

m2a2 =
Gm1m2

r3
12

(x1 − x2) , (2)

where a = ẍ and r12 = |x1 − x2|. Adding these two equations, we see immediately that m1a1 +
m2a2 = 0, so (integrating once) m1v1 + m2v2 = constant and the center of mass of the bodies
moves at constant velocity. Dividing Equation (1) by m1, Equation (2) by m2, and subtracting, we
obtain the equation of motion for the relative separation r = x2 − x1:

r̈ = −GMr

r3
12

(3)

where M = m1 +m2. Thus the relative motion in the two-body problem is identical to motion of
a test particle in the potential field of a mass M .

Motion in a central potential [φ(r) say] is planar, since angular momentum is conserved, and in
polar coordinates (r, θ) in that plane, the equations of motion are

r̈ − rθ̇2 = F (r) (4)

r2θ̇ = L = constant, (5)

where F (r) = −φ′(r) and the second expression simply states conservation of angular momentum.
We can use the angular momentum integral (5) to simplify the radial equation (4) by eliminating
the transverse motion θ̇:

r̈ =
L2

r3
+ F (r) = − dφeff

dr
, (6)

where the effective potential φeff = φ+ 1
2L

2/r2 combines the external and the centrifugal forces into
a single quantity.

We can also use Equation (5) to eliminate time as a variable in Equation (4) by writing

d

dt
=

L

r2

d

dθ
(7)

so the radial equation becomes

L2

r2

d

dθ

(
1

r2

dr

dθ

)
− L2

r3
= F (r). (8)

We now make the key substitution u = 1/r, so

dr

dθ
= − 1

u2

du

dθ
= − r2du

dθ
(9)



and the radial equation (8) becomes

d2u

dθ2
+ u = − F (1/u)

L2u2
. (10)

The first integral of this equation, obtained by multiplying by du/dθ and integrating wth respect
to θ (and noting that dφ/dr = u2dφ/du) is

1
2

(
du

dθ

)2

+ 1
2u

2 +
φ

L2
= constant. (11)

This is often called the radial energy equation. Since

du

dθ
=

1

Lu2

du

dt
= − 1

L

dr

dt
= − vr

L
, (12)

where vr the radial velocity, and since the transverse velocity is vθ = rθ̇ = L/r = Lu, it should be
clear that the constant on the right side of Equation (11) is just E/L2, where

E = 1
2v

2
r + 1

2v
2
θ + φ(r) (13)

is the energy per unit mass.
The equations become particularly simple for the so-called Kepler problem describing motion

under gravity, since

F (r) = − GM

r2
= −GMu2 (14)

and Equation (8) becomes
d2u

dθ2
+ u =

GM

L2
. (15)

The solution to Equation (15) is

u = C cos(θ − θ0) +
GM

L2
, (16)

where C and θ0 are constants. Writing

e =
CL2

GM
(17)

a =
L2

GM(1− e2)
, (18)

Equation (16) becomes
r [1 + e cos(θ − θ0)] = a(1− e2), (19)

which is the standard equation of an ellipse of semi-major axis a and eccentricity e, with the mass
M at one focus and the long axis oriented along the direction θ = θ0. For e < 1, r is bounded and
the orbit is a closed ellipse. For e ≥ 1 it is possible for r →∞ and the orbit is open—a hyperbola
(e > 1) or a parabola (e = 1). By substituting Equation (16) into the radial energy equation (11)
and using equations (17) and (18), it is easily verified that the total energy (per unit mass) of the
motion is

E = − GM

2a
. (20)



The shape of the ellipse is completely specified by the geometric parameters a and e, or, equivalently,
by the dynamical parameters E and L. Note that a hyperbolic solution with e > 1 corresponds to
a < 0 and E > 0, so the dividing line between bound and unbound motion is E = 0. We can use
Equation (20) to eliminate C from Equation (17) to find

e2 = 1 +
2EL2

G2M2
. (21)

It is not possible to write down a closed-form analytic expression for r as a function of time t,
but we can derive a parametric solution to the problem, as follows. We assume E < 0. A similar
derivation holds for the unbound case. Writing

E = 1
2v

2
r + 1

2v
2
θ −

GM

r
= 1

2v
2
r + 1

2

L2

r2
− GM

r
, (22)

we can rearrange to find

v2
r = 2

(
E +

GM

r

)
− L2

r2
(23)

= −2E

r2

(
−r2 − GM

2E
r +

L2

2E

)
. (24)

But the solutions to this quadratic in r are known, since vr = 0 at the two turning points of the orbit,
corresponding to pericenter, θ = θ0, r = rp = a(1− e), and apocenter, θ = θ0±π, r = ra = a(1 + e).
The quadratic must therefore factorize as (ra − r)(r − rp), and we have

v2
r = − 2E

r2
(ra − r)(r − rp). (25)

Since vr = dr/dt, we can say

t =

∫
dr

vr
(26)

=
1√
−2E

∫
r dr√

(ra − r)(r − rp)
. (27)

We can do the integral by using the substitution r = a(1 − e cos η). Then dr = ae sin η dη and
ra − r = ae(1 + cos η), r − rp = ae(1− cos η) so the denominator is ae sin η. The result is

t =
a√
−2E

∫
(1− e cos η) dη (28)

=
a√
−2E

(η − e sin η). (29)

Note that the definition of η means that vr < 0 for η < 0 and vr > 0 for η > 0, so this result is
correct over the entire orbit.

Writing E = −GM/2a, the leading coefficient is
√
a3/GM ≡ Ω−1, where Ω is the mean motion.

Thus we have a complete parametric solution

Ωt = η − e sin η (30)

r = a(1− e cos η). (31)



Equation (30) is called Kepler’s equation. It must be solved numerically for η given t. The parameter
η is called the eccentric anomaly. Once r is known from Equation (31), θ can be determined from
Equation (19). Finally, we note that the period of the motion is

T =
2π

Ω
= 2π

(
a3

GM

)1/2

, (32)

which is Kepler’s Third Law.


