
Dynamical Friction and the Sinking Satellite
Problem

In class we discussed how a massive body moving through a sea of much lighter particles tends to
create a “wake” behind it, and the gravity of this wake always acts to decelerate its motion. The
simplified argument presented in the text assumes small angle scattering and then integrates over
all impact parameters from bmin = b90 to bmax, the scale of the system. The result, for a body of
mass M moving with speed V ,

dV

dt
= −4πG2Mρ ln Λ

V 3
V, (1)

where Λ = bmax/bmin, as usual. This deceleration is called dynamical friction. A few notes on this
equation are in order:

1. The direction of the acceleration is always opposite to the velocity of the massive body.

2. The effect depends only on the density ρ of the background, not on the individual particle
masses. That means that the effect is the same whether the light particles are stars, black
holes, brown dwarfs, or dark matter particles. The gravitational dynamics is the same in all
cases. In practice, as we have seen, for a globular cluster or satellite galaxy moving through
the Galactic halo, dark matter dominates the density field.

3. The acceleration drops off rapidly (as V −2) as V increases.

4. This equation appears to predict that the acceleration becomes infinite as V → 0. This is not
in fact the case, and stems from the fact that we haven’t taken the motion of the background
particles properly into account. Binney and Tremaine (2008) do a more careful job of deriving
Eq. 1, taking into account a distribution of particle velocities f(v), and find

dV

dt
= −4πG2Mρ ln Λ

V 3
V

∫ V

0
4πv2f(v)dv. (2)

Note the detailed analysis reveals that only particles with v < V contribute to the decel-
eration. If the upper limit on the v integral were extended to infinity, then we would have∫∞
0 4πv2f(v)dv = 1 and we would recover Eq. 1. Note that for small V , f(v) ≈ f(0) and∫ V
0 4πv2f(v)dv ≈ 4π

3 V
3f(0), so the acceleration actually goes to zero proportional to V .

For a Maxwellian velocity distribution with velocity dispersion σ,

f(v) =
(
2πσ2

)3/2
e−v

2/2σ2
,

the integral can be evaluated: ∫ V

0
4πv2f(v)dv = erf(X)− 2X√

π
e−X

2
,

where X = V/
√

2σ and the error function is defined as erf(y) ≡
∫ y
0 e
−z2dz. It is common simply to

evaluate this expression at X = 1, which is where the factor F = 0.428 mentioned in Sparke and
Gallagher problem 7.6 (p. 286) comes from.



As with the other dynamical processes we have considered, it is convenient to define a dynamical
friction time scale tDF by

dV

dt
= − V

tDF
,

so

tDF =
V 3

1.7πG2Mρ ln Λ
,

where we have again used F = 0.428. Note the similarity of this expression to the relaxation time
for the background particles

tr =
v3

8πG2mρ ln Λ
.

However, since M � m the dynamical friction time scale is orders of magnitude smaller than the
relaxation time, and is less than the age of the Galaxy for many satellites.

We can now apply these ideas to the problem of a satellite galaxy (such as one of the Magellanic
clouds) slowly sinking toward the center of our Galaxy due to dynamical friction. Assuming a dark-
matter dominated halo with a flat rotation curve of circular velocity vc, we can write, as usual,

v2c =
GM(r)

r
,

where M(r) is the mass inside radius r:

M(r) =
v2cr

G
.

For a spherically spherical Galaxy, we have

dM

dr
= 4πr2ρ(r),

so the density profile of the halo is

ρ(r) =
v2c

4πGr2
.

Let’s idealize the calculation to the case of an initially circular orbit, and assume that the orbit
decays slowly enough that we can regard the satellite as sinking through a series of circular orbits.
At any instant, at distance r from the center, its angular momentum then is L = rvc, and the
rate of change of the angular momentum is equal to the applied torque, raDF , where aDF is the
acceleration due to dynamical friction,

aDF ≈ −0.428
4πG2Mρ(r) ln Λ

v2c

= −0.428 ln Λ
GM

r2
.

Since
dL

dt
= vc

dr

dt
,

it follows that

vc
dr

dt
= − 0.428 ln Λ

GM

r
.

This is a differential equation for r(t), the satellite’s distance from the Galactic center, which is
easily solved given the satellite’s initial distance, r(0) = R0, say. See Homework 5, problem 5.


