
Jeans Instability and Gravitational Collapse

Gravity introduces a new element into the physics of sound waves (aka stable perturbations) in a
gas. Simply put, a gas cloud’s self gravity can cause perturbations on sufficiently large scales to
become unstable. The goal here is to present a brief overview of fluid dynamics, and to give both
rigorous and non-rigorous derivations of the Jeans criterion (named after Sir James Jeans, who first
published this analysis in 1902) for gravitational instability.

We set the stage by first considering sound waves in a non-gravitating gas, establishing some
basic methodology and results. Then we include gravity, and ask how it changes the picture.

Fluid Dynamics 101

We consider a fluid in which quantities such as the number and mass densities n(x, t) and ρ(x, t),
the pressure P (x, t), the temperature T (x, t), and the velocity field v(x, t) can all sensibly be
defined at any point x. As a practical matter, this means that the fluid must be such that the
local interparticle spacing ` = n−1/3 is much less than the scale of interest λ. Many (but not all)
astrophysical systems fall into this category.

The behavior of the fluid is governed by three fundamental equations. First, the continuity
equation is a statement of conservation of mass at any point:

∂ρ

∂t
+ ∇ · (ρv) = 0. (1)

Integrating this equation over any small volume V surrounding the point x and applying the
divergence theorem to the second term, this equation just says that the rate of change of

∫
V ρdV ,

the total mass within V , is equal to
∮
S ρv · .dS, the rate at which mass flows outward across the

surface of V .
The second fundamental equation is the Euler equation, which is just the fluid equivalent of

Newton’s second law:
∂v

∂t
+ v · ∇v = − ∇P

ρ
. (2)

The right-hand side is just the pressure gradient, the force per unit volume on the fluid, divided
by the density, the mass per unit volume. The left-hand side is the acceleration of the fluid. We
can understand the latter statement by considering the rate of change of any quantity Q(x, t) that
describes the fluid. As we move with a fluid element, Q changes for two reasons. First, the value of
Q at any point x is changing if ∂Q/∂t 6= 0 there. Second, as the fluid moves, the element samples
different regions of space, which will have different values of Q if ∇Q is nonzero. Applying the
chain rule for partial differentiation, we have, writing x = (x, y, z),

Q(x+ δx, y + δy, z + δz, t+ δt)−Q(x, y, z, t) ≈ ∂Q

∂x
δx+

∂Q

∂y
δy +

∂Q

∂z
δz +

∂Q

∂t
δt,

so

dQ

dt
≡ lim

δ→0

Q(x+ δx, y + δy, z + δz, t+ δt)−Q(x, y, z, t)

δt

=
∂Q

∂x
vx +

∂Q

∂y
vy +

∂Q

∂z
vz +

∂Q

∂t

= v · ∇Q+
∂Q

∂t
,
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where v = (vx, vy, vz) = limδt→0 δx/δt. The quantity dQ/dt, the rate of change of Q moving with
the fluid, is sometimes called the convective derivative of Q. Setting Q = v, we see that the right
hand side of Equation (2) is simply dv/dt. Note that the right-hand side of Equation (2) as written
contains only the pressure force. Other forces, such as magnetic fields or internal viscous terms,
could also appear there, but we will neglect them here.

Equations (1) and (2) represent 4 equations (1 scalar, 1 vector) in 5 unknowns (ρ, P , and v).
We need another equation to find a solution. That equation is the equation of state of the fluid

P = P (ρ, S) (3)

where S is entropy. We will confine ourselves here to isentropic flows, with S = constant.
These equations have many interesting solutions, but our interest here is more limited. To start,

let’s consider a uniform fluid and look at the behavior of small perturbations to that background
solution. Specifically, the unperturbed fluid motion is steady, ∂/∂t ≡ 0, with uniform density and
pressure ρ0 and P0, and zero velocity v0 = 0. You can easily verify that this solution trivially
satisfies Equations (1) and (2).

Now let’s consider a small perturbation to this baseline solution. We write

ρ = ρ0 + ρ1

P = P0 + P1

v = v1

and substitute these into Equations (1) and (2):

∂ρ0
∂t

+
∂ρ1
∂t

+ ∇ · [(ρ0 + ρ1)v1] = 0 (4)

∂v1

∂t
+ v1 · ∇v1 = −∇(P0 + P1)

ρ0 + ρ1
. (5)

We then linearize these equations by expanding them to first order, throwing away all products
of small terms (having subscript 1). This is the basic mathematical technique employed in all
studies of the stability of nonlinear dynamical systems—find an equilibrium solution, then look at
the first-order equations describing small perturbations to that solution. (Why? Because we know
how to solve linear equations and they give us valuable insight into the physics of the system.)

In this case, discarding all products involving more than one small term, and imposing the
properties of the unperturbed solution, Equations (4) and (5) become

∂ρ1
∂t

+ ρ0∇ · v1 = 0 (6)

ρ0
∂v1

∂t
= −∇P1. (7)

Note that the tricky nonlinear v · ∇v term in the Euler equation, which is the source of a host of
complex physical phenomena in real fluids, ranging from turbulent dissipation to shock waves, has
disappeared.

The key point is that Equations (6) and (7) are soluble. Taking the partial derivative of
Equation (6) with respect to time and taking the divergence of Equation (7), and noting that
∂(∇ · v1)/∂t = ∇ · (∂v1/∂t), we can eliminate the v1 terms and find

∂2ρ1
∂t2

−∇2P1 = 0. (8)
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We now use the equation of state, Equation (3), to obtain

P1 ≡ δP =
∂P

∂ρ

∣∣∣∣
S,0

δρ =
∂P

∂ρ

∣∣∣∣
S,0

ρ1 ,

so Equation (8) becomes
∂2ρ1
∂t2

− ∂P

∂ρ

∣∣∣∣
S,0

∇2ρ1 = 0. (9)

We recognize Equation (9) as the wave equation, the solutions to which are traveling waves with
wave speed cs, where

c2s =
∂P

∂ρ

∣∣∣∣
S,0

. (10)

For an ideal gas with P = ρkT/m = Aργ , the adiabatic sound speed is

cs =
√
Aγργ−1 =

√
γP

ρ

=

√
γkT

m

= 0.91 km/s γ1/2
(

T

100 K

)1/2 ( m

mH

)−1/2
, (11)

where m is the mean molecular weight.
Linearity means that any linear combination of solutions is also a solution. In that case, since

any solution can be decomposed into a Fourier series (for a finite region) or a Fourier transform
(for an infinite domain), either of which is just a sum of plane-wave solutions of the form

ρ1 ∝ eik·x−iωt (12)

(and similarly for other quantities), we can understand the physics of the system by considering
the behavior of plane-wave modes. Here ω = 2πf is the angular frequency and k is the wave
vector, whose direction is the direction of motion of the plane wave and whose magnitude (the
wavenumber) is k = 2π/λ, where λ is the wavelength.

Substituting Equation(12) into Equation (9) we obtain the familiar relation between wavenum-
ber and frequency:

ω = cs k (13)

or
fλ = cs. (14)

Self-gravitating fluids

Now let’s consider how the above analysis changes when gravity is included. Gravity leaves the
continuity equation (1) unchanged, and introduces an additional force into the right-hand side of
the Euler equation (2), which now becomes

∂v

∂t
+ v · ∇v = − ∇P

ρ
−∇φ, (15)
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where the gravitational acceleration is a = −∇φ and the gravitational potential φ satisfies Poisson’s
equation

∇2φ = 4πGρ. (16)

In the spirit of the earlier approach, we seek a steady (∂/∂t = 0) unperturbed solution with
uniform density ρ0 and pressure P0, and zero velocity. We note in passing that this formally leads
to a contradiction for the potential: Substituting the “0” quantities into the Euler equation implies
∇φ0 = 0, so φ0 = constant, but Poisson’s equation (16) says ∇2φ > 0. This contradiction is
sometimes called the Jeans swindle. Binney & Tremaine (p. 402) discuss some arguments to get
around it in practice; see also the article by Kiessling (2003, Adv.Appl.Math. 31, 132; arXiv:astro-
ph/9910247v1).

In any case, this technical problem with the unperturbed state is not regarded as a serious flaw
in the perturbation analysis. We might imagine that other forces, such as rotation or magnetism,
are also at play in the initial state, allowing a self-consistent solution to exist. For example, consider
a homogeneous self-gravitating fluid of density ρ contained within a rotating cylinder of radius R.
The cylinder and the fluid rotate at angular speed Ω about the axis of the cylinder. It is readily
shown from Equations (15) and (16) that the fluid can be in true equilibrium, with no pressure
gradient (i.e. the gravitational and centrifugal forces balance), if Ω2 = 2πGρ.

Ignoring the details of the Jeans swindle and writing

ρ = ρ0 + ρ1

P = P0 + P1

v = v1

φ = φ0 + φ1,

substituting into Equations (1), (15), and (16), and again using Equation (10) to eliminate P1, we
obtain the linearized equations

∂ρ1
∂t

+ ρ0∇ · v1 = 0 (17)

ρ0
∂v1

∂t
= −c2s∇ρ1 −∇φ1. (18)

∇2φ1 = 4πGρ1 (19)

Combining, as before, the time derivative of Equation (17) with the divergence of Equation (18)
and employing Equation (19) to eliminate ∇2φ1, we arrive at

∂2ρ1
∂t2

− c2s∇2ρ1 = − 4πGρ0ρ1, (20)

which is identical to Equation (9) apart from the additional term on the right-hand side.
Again looking for plane-wave solutions, we substitute Equation (12) into Equation (20) to obtain

the new relation between wavenumber and frequency:

ω2 = c2s k
2 − 4πGρ0 . (21)

The difference between Equations (13) and (21) is profound. In the former case, ω2 is positive
(and so ω is real) for any k. In the latter, since the second term on the right is negative, it is
possible for ω2 to be negative for some k. What does this mean? Setting ω2 = −α2, we have
ω = ±iα and eiωt = e∓αt. In other words, the oscillatory behavior found for real ω is replaced
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by exponential growth for imaginary ω—the disturbance is unstable. Any wavenumber k leading
to ω2 < 0 represents a perturbation whose amplitude grows exponentially in time. An overdense
region becomes denser and denser, leading to gravitational collapse.

From Equation (21), it is clear that all plane-wave perturbations having

k < kJ ≡
√

4πGρ0
cs

(22)

are unstable. The critical wavenumber kJ is called the Jeans wavenumber. In terms of wavelength
λ = 2π/k, this means that all perturbations having

λ > λJ ≡ cs

√
π

Gρ0
(23)

are unstable. The critical wavelength λJ is the Jeans length. All scales larger than λJ are
gravitationally unstable.

It is common to recast the above criteria in terms of the total mass involved. The mass contained
within a spherical volume having a diameter equal to the Jeans length is called the Jeans mass,
MJ , where

MJ ≡
4π

3
ρ0 ( 1

2
λJ)3 =

π5/2

6

c3s

G3/2ρ
1/2
0

(24)

Some Simpler Arguments

Armed with the exact solution, we can explore some simpler, “back of the envelope” arguments to
understand the result.

First, as discussed in Binney & Tremaine, let’s imagine compressing a spherical region of radius
R in a homogeneous gas cloud. If R → (1 − α)R, where α is small and positive, and the mass
M remains constant, then ρ0 ∝ M/R3 → (1 + 3α)ρ0. From Equation (10), the pressure change is
δP = c2sδρ = 3αc3sρ0 and so—to order of magnitude at least—the pressure gradient between the
center of the region and the edge is ∼ δP/R = 3αc3sρ0/R and the (outward) pressure force per unit
mass is

ap ≈
δP

ρ0R
≈ 3αc2s

R
. (25)

As the region is compressed, the gravitational acceleration at its surface, GM/R2, also increases.
The extra (inward) gravitational acceleration due to the compression is

ag ≈
2GMα

R2
=

8πGρ0Rα

3
. (26)

where we have used the fact that M = 4
3πR

3ρ0. Comparing Equations (25) and (26), we see that
the gravitational force dominates (and continues to dominate) if ap < ag, or

R2 >
9

8π

c2s
Gρ0

. (27)

Apart from the numerical coefficient, we see that the critical value of R is just the Jeans length
(Equation 23).

Following Sparke & Gallagher (p. 355) we can reach the same conclusion by considering the
thermal and potential energies of the region. The total gravitational potential energy of a homo-
geneous sphere of radius R and mass M = 4π

3 R
3ρ0 is easily shown to be U = −3GM2/5R ∝ R5,
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while the thermal energy (for an ideal gas) is K = 3
2MkT/m = (3/γ)12Mc2s ∝ R3, from Equation

(11). Comparing the two, we see that the total energy U + K becomes negative (i.e. the region’s
gravity dominates its thermal energy) for

3

2γ
Mc2s <

3

5

GM2

R
so

c2s <
2γ

5

GM

R
=

8πγ

15
Gρ0R

2

or

R2 >
15

8πγ

c2s
Gρ0

, (28)

again essentially the same result as Equations (23) and (27).
Finally, we note that the instability criterion (Equation 23) can be rewritten (again neglecting

the numerical factors) as

R

cs
>∼ (Gρ0)

−1/2. (29)

The right-hand side is the free-fall time for the clump—the time scale for it to collapse under gravity
if pressure were negligible—while the left-hand side is the time taken for a sound wave to cross the
system. The Jeans criterion can thus be interpreted as meaning that sound cannot traverse the
region (and hence pressure cannot operate) in time to prevent the collapse.

All of the above examples confirm that the Jeans instability is the result of competition between
thermal (pressure/sound speed) forces and gravitational forces. In each case, however the gravity
is quantified, gravitational collapse ensues when gravity dominates over the thermal term.

Consequences of the Jeans Instability

Let’s evaluate the Jeans length and mass, Equations (23) and (24), for parameters of astrophysical
interest. Plugging in numbers typical of dense molecular cores (with particle mass m = 3.3× 10−24

g), we obtain

λJ = 1.0 pc

(
T

10 K

)1/2 ( n

103 cm−3

)−1/2
(30)

MJ = 26M�

(
T

10 K

)3/2 ( n

103 cm−3

)−1/2
, (31)

where cs = 260 m/s for T = 10 K and γ = 5/3, although given the effectiveness of cooling in
maintaining constant temperature, a better approximation might be the isothermal γ = 1, as
assumed in S&G, in which case cs ≈ 200 m/s. Thus any dense molecular core containing more
than a few tens of solar masses of gas is unstable, and will collapse in roughly a free-fall time

tff = (Gρ)−1/2 = 2.1 Myr

(
n

103 cm−3

)−1/2
. (32)

As the unstable region collapses its density rises, but the atomic and molecular processes cooling
it remain efficient so long as the cloud is optically thin to the cooling radiation, and the temperature
remains roughly constant. As a result, the Jean’s mass steadily decreases as the collapse proceeds,
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and the collapsing cloud fragments into lower and lower mass pieces, each collapsing on its own
free-fall time scale. Our initial collapsing cloud is on its way to becoming a star cluster.

The process ends when the fragments become so dense that they are optically thick to the
radiation cooling them, so the radiation can no longer escape and the temperature begins to rise,
stabilizing the collapse and forming a protostar. Experts and simulations disagree on precisely when
this point is reached, and on the subsequent evolution of the protostars, but this is the subject of
active research. At stake is our understanding of the stellar mass function and the physical state
of young star clusters.
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