
PHYS 231 Lecture Notes – Week 7

Reading from Maoz (2nd edition):

• Sections 4.1–4.5

Again, a lot of the material presented in class this week is well covered in Maoz, and we simply
reference the book, with additional comments and derivations as needed. References to slides on
the web page are in the format “slidesx.y/nn,” where x is week, y is lecture, and nn is slide number.

7.1 High-Mass Stars

See Maoz §4.3.1
High-mass stars don’t have degeneracy problems that limit their ability to burn heavier elements.
As described in the text, they carbon and oxygen into neon, magnesium, silicon, and all the way
up to iron. Fusion occurs principally by alpha capture (because of the lower coulomb barrier), bur
C-C and other relatively low-mass reactions also occur. The process accelerates greatly as heavier
and heavier elements are produced. The core of the star develops a layered structure, with shells
of lighter elements surrounding a non-burning and growing nickel-iron core (see slides7.2/15,16).

The star now has a new problem. Up to now, this scenario would have led to a new round
of fusion in the core and a temporary restoration of stability, but not in this case. Elements in
the so-called iron group (with A ≈ 56) have the largest binding energy per nucleon of all elements
(see slides7.2/19). Simply put, fusing lighter elements (H, He, C, etc.) will increase the total
binding energy, creating more tightly bound elements and releasing energy. Similarly, fission of
heavy elements (U, Pu, etc.) also leads to more tightly bound nuclei and again releases energy.
But the iron group elements are at the peak of the curve. They cannot split into lighter elements
or fuse into heavier ones. Iron won’t burn, and as it builds up in the core the star is close to the
end.

As the degenerate core contracts and heats up, several processes occur:

1. The core is degenerate, despite temperatures approaching 1010 K, and its mass approaches
the Chandrasekhar mass.

2. Photodisintegration splits nuclei apart, ultimately reducing them to protons and neutrons.
Recall that, from slides7.2/19) the energy required to spilt a nucleus into lighter ones is a few
MeV; for T = 1010 K, kT ≈ 1 MeV. These reactions remove a huge amount of energy (and
pressure) from the radiation field.

3. Neutronization converts protons to neutrons, removing electrons and their degeneracy pres-
sure, and creating neutrinos, which escape, removing even more energy and pressure from
the core. Electron capture is much more common than neutron decay, and the result is that
most nucleons are in the form of neutrons, with

np = ne ≈ 1
200nn.

7.2 Neutron Stars

See Maoz §4.3.2
With its pressure support greatly diminished, the star collapses. The collapse is similar to the
idealized pressureless collapse we did back in Homework 1. The core collapses in a free-fall time
tff ∼ (Gρ)−1/2 ∼ 0.1 s. The only process that can halt this near-relativistic collapse of a ∼ 1M�



ball of neutrons is neutron degeneracy pressure, which becomes effective at roughly nuclear densities.
The core by this stage is a neutron star.

We can calculate the radius of a neutron star using the same formula as previously for a white
dwarf, except that me is replaced by mn. Since the scaling is

R ∝ 1

m

(
Z

A

)5/3

M−1/3,

where m is the mass of the degenerate particle), we see that replacing me with mn (about a factor
of 1800 larger) and Z/A = 0.5 with Z/A = 1, the radius of a neutron star is about 500 times smaller
than that of a white dwarf of the same mass:

Rns ≈ 14 km

(
M

M�

)−1/3
.

The mean density of a 1.4M� neutron star is approximately 2 × 1017 kg/m3—the density of an
atomic nucleus!

In line with our earlier study of white dwarfs, we can ask what the maximum mass of a neutron
star. The earlier calculation of the Chandrasekhar mass is still valid (now with Z/A = 1), giving
Mch = 5.6 M�. However, as discussed in the text, a couple of important factors both tend to
reduce this estimate. First, the neutron star is in a regime where general relativity is important
in determining its structure—the star’s total gravitational energy is about 20 percent of its total
rest-mass energy Mc2. One important fact about general relativity is that pressure contributes to
the gravitational field, reducing its effectiveness in counteracting gravity. As a result, taking this
into effect, the maximum mass decreases, to about 5M�. Second, the equation of state of matter at
nuclear densities is not well known, but again it is thought that the changes relative to the idealized
equation of state used earlier also tend to reduce the maximum mass, perhaps to ∼ 2− 3M�.

7.3 Type II Supernovae

See Maoz §4.3.3
The collapsing stellar core has a lot of energy when it “bounces” at neutron star (nuclear) densities,
and much of that energy is transferred into a violent shock wave running outward from the surface of
the newborn neutron star through the rest of the star. Theoretical models still have significant areas
of uncertainty in explaining exactly how this happens, but most researchers agree that, ultimately,
the energy from the core propagates through the star and blows it apart in a core-collapse supernova.

Some energetics. The total gravitational energy of the collapsing core by the time it has reached
nuclear density is

Egr ∼
GM2

R
∼ 3× 1046 J.

The total kinetic energy in the form of ejected material is observed to be 3 × 1044 J. The total
luminous energy is about 1 percent of this, ∼ 3× 1042 J. Together, these are a small fraction of
the total available energy, most of which is actually released in the form of neutrinos. Nevertheless,
even the electromagnetic energy is impressive—emitted over roughly a month (the typical duration
of a visible supernova), it amounts to a mean luminosity of about a billion Suns, enough to make
a single supernova temporarily burn as bright as its parent galaxy (slides8.1/05). Supernova 1987a
(slides8.1/06), which occurred in the Large Magellanic Cloud, a satellite galaxy of the Milky Way,
is the only supernova from which neutrinos have definitively been observed. The 20 neutrinos



observed from that event were consistent with the energies just described and provided detailed
and otherwise unavailable insight into conditions in the core bounce responsible for the explosion.

The details of how the energy emerges from the core are still the subject of intense research.
At one time, researchers thought that a powerful spherical shock wave would simply sweep through
the star, expelling all overlying material and leaving a neutron star behind. However, they quickly
discovered that the combination of neutrino losses from the dense material just behind the outgoing
shock and the weight of the overlying layers which, having lost pressure support from below, also
begin to fall inward, meant that the shock stalled at a radius of a few hundred km, and never made
it to the surface.

Conditions in the core itself are so extreme at these moments that the core is opaque not just
to photons but also to neutrinos. The temperature exceeds 1010 K and the density is significantly
above nuclear. Neutrinos are produced in abundance by reactions such as

γ + γ → e− + e+ → ν + ν̄,

where ν can be any of the three neutrino species, but most commonly is νe. Using the above mass
density and relative numbers of particles, a photon’s mean free path for Thomson scattering (cross
section 6.7×10−29 m2) is ∼ 2×1014 m, while neutrinos, whose cross section for an interaction with
a neutron at these energies (several MeV) is roughly 10−46 m2, have mean free paths of just tens
of meters. Thus to diffuse out of the roughly 10-km core, neutrinos must scatter approximately
105 − 106 times, taking tens of milliseconds—a long time in these circumstances—to escape. It
is thought that these neutrinos eventually reenergize the stalled shock, boosting its energy to the
point where can accelerate outward through the star.

One process now recognized as important is that the spherical stalled shock is unstable, and
the core becomes convective. It is likely that this convective motion, driven by neutrinos, can
transport energy out to the stalled shock and restart the explosion (see the 3-D simulations on the
course web page). The asymmetric motion associated with convection also means that the energy
probably also escapes asymmetrically, meaning that there is a net momentum flux of neutrinos in
some direction, causing the neutron star core to recoil in the other direction. These recoils have
been observed in many neutron stars, which can have space velocities of hundreds of km/s, and
were a puzzle until the inherently asymmetric nature of the explosion was understood.

7.4 Observations of Supernovae

See Maoz §4.3.3
Astronomers have long been aware of two types of supernova, which are distinguished principally
by the presence or absence of hydrogen lines in their spectra. Supernovae without hydrogen lines
are called Type I, those with hydrogen lines are Type II (see slides8.1/10). They may also be dis-
tinguished by their light curves (slides8.1/09): Type I supernovae shoe a characteristic exponential
decline after the initial peak, while Type II supernovae have a characteristic plateau or even a
secondary peak a few months after the initial burst.

Without going into any further detail, Type II supernovae are the core collapse supernovae we
have just been discussing. They occur in stars with lots of hydrogen in their envelopes, so they
have hydrogen in their spectra, and the secondary “bump” in the light curve is consistent with
expectations as the hot gas from the explosion expands and cools.

What about Type I supernovae? Those are thought to occur when a white dwarf is pushed
over the Chandrasekhar mass, starts to collapse, and undergoes degenerate carbon fusion (see the
second simulation on the course web page). The star may be pushed over the limit by accretion
from a companion in a binary, or two white dwarfs may collide (for example, as their orbit decays



by gravitational radiation emission, see HW5). As we saw earlier nuclear burning an a degenerate
gas is unstable, and in this case the entire star explodes once the burning starts. There is some
debate about whether the process leaves a remnant behind. Most sources seem to think not, but
a vocal minority claim that a neutron star may result. The light curves of Type I supernovae are
consistent with the radioactive decay of 56Ni and 56Co produced during the detonation.

Curiously, despite the fact that they stem from very different stellar evolutionary processes and
physical environments—Type I supernovae come from the products of low-mass stars in binary
systems, while Type II supernovae are produced only by the most massive stars—both types of
supernovae have similar peak luminosities, and occur with about the same frequency. About one
of each is expected every hundred or so years in a galaxy like the Milky Way.

The heaviest elements (more massive than the iron group) are produced by neutron capture after
the supernova explosion has begun. Both types of supernova produce huge fluxes of neutrons, which,
having no coulomb barrier, easily combine with nuclei to form heavier elements. Depending on the
intensity of the neutron flux, neutrons are jammed into nuclei, forcing them to higher and higher A
at constant Z, and farther and farther away from stability (which is roughly characterized by Z ≈
A/2), until the decay timescale of an unstable nucleus is shorter than the time for the next neutron
to arrive. The nucleus then undergoes one or more beta decays, turning neutrons into protons
and moving back toward stability, and the process continues for as long as the intense neutron
flux persists. Calculations of this process (called the r-process) in supernovae produce elemental
abundances that are in striking agreement with the observed cosmic abundances (slides8.1/12).

7.5 Hypernovae and Gamma-Ray Bursts

See Maoz §4.3.3
Gamma-ray bursts (GRBs) were first observed in the 1960s by U.S. military satellites tasked with
verifying the nuclear test ban treaty. Systematic study began in the 1990s with the launch of the
Compton Gamma Ray Observatory (CGRO), which observed bursts approximately once per day,
distributed uniformly across the sky (slides8.1/18). Initially, distances were not known, so the
luminosities of the bursts could not be determined. However, as techniques improved, it became
possible for CGRO and other instruments to notify other satellites and ground-based instruments,
which could observe a burst as it cooled through the X-ray and visible regimes (the so-called after-
glow). These observations identified counterparts to many bursts and allowed their spectra to be
measured, leading to the first distance measurements. Almost uniformly, GRBs are at cosmological
distances—hundreds or thousands of megaparsecs away—meaning that they are extremely bright.

The bursts come in two types—short and long (slides8.1/19). Short bursts last only a fraction
of a second, while long bursts may last tens or even hundreds of seconds. Long bursts appear to be
associated with star-forming regions. Leading models (slides8.1/20) attribute the short bursts to
neutron star mergers, driven by gravitational radiation, that cause the combined system to exceed
the Chandrasekhar mass and collapse to a black hole. Long bursts are thought to be the result of a
massive supernova (a hypernova) in which material not blasted into space falls back on the central
neutron star forcing it over the Chandrasekhar limit and again creating a black hole. In each case,
the black hole is surrounded by an accretion disk of material orbiting it that ultimately emits the
radiation we see.

Models of the energy emission agree that in order to be so bright, both types of bursts must
involve beams of energy emerging from the central source. The jet from the accretion disk satisfies
this requirement. Thus a burst’s energy is only emitted over a small fraction of the sky, allowing the
total energy observed to be consistent with the neutron-star and hypernova models of the energy
production.



7.6 Pulsars

See Maoz §4.4

7.7 Black Hole Formation

We saw last time that, in a Type II supernova, the core collapses to nuclear densities, and “bounces,”
creating a shock wave that (eventually) propagates outward through the star, blowing it out into
space. The details remain unclear, but the outcome (the supernova) is not

However, not all of the mass of the star is expelled. Some of it remains behind and falls back
onto the newborn neutron star. Since the material is rotating, it forms an accretion disk, possibly
leading to a gamma-ray burst as the matter works its way inward onto the central object. In many
cases, the total accreted mass will push the neutron star over its maximum mass, causing it to
collapse into something even more extreme—a black hole. It is tempting to conclude that all stellar
black hole formation is accompanied by a gamma ray burst, but few researchers would (yet) go
quite that far.

However it occurs, it seems clear that the neutron star can be pushed over the edge and must
again collapse. Let’s explore some consequences of that possibility.

7.8 Black Holes—a Newtonian View

Although black holes are decidedly non-Newtonian objects, let’s begin by looking at then with
Newtonian eyes.

Escape Speed
Imagine a test particle moving in the gravitation field of a point mass M . As discussed previously,
if the particle is at distance r from the mass, its energy (per unit mass) is E = 1

2v
2 − GM/r, so

the escape speed, corresponding to E = 0, is given by

v2esc =
2GM

r
.

We can then ask under what circumstances will the escape speed equal the speed of light—obviously
an important value, since, if light can’t escape, then nothing else can too. We find that this is the
case when

r ≡ rs =
2GM

c2
= 3 km

(
M

M�

)
,

a radius called the Schwarzschild radius. As we will see, our flawed Newtonian reasoning in fact
leads to the correct expression.

We need Einstein’s General Relativity to go much further, but first let’s just note another
important Newtonian result.

Tidal Acceleration
The acceleration at distance r from the mass is

a = − GM

r2
.

Imagine you are falling into the black hole, feet first. You’ll be in free fall, so your actual acceleration
isn’t something you’ll notice. You’ll be weightless. However, you may be acutely aware of the
differential acceleration between your head and your feet. Your feet are closer to the black hole,
so the acceleration there is greater than at your head. The difference between the two tends to



stretch you out in the radial direction. It is called a tidal acceleration, since this differential force
due to the Moon and the Sun is responsible for also tides on Earth.

We can easily calculate the tidal force by differentiating the above expression for the acceleration.
To first order,

∆a =
da

dr
∆r

=
2GM

r3
∆r,

where ∆r here is your height h. Let’s take an extreme stance and calculate the tidal acceleration
just as you reach the Schwarzschild radius by plugging in r = rs. The result is

∆as =
c6h

4G2M2
= 1.1× 109 g h(m)

(
M

M�

)−2
.

Since the human body can’t withstand differential stresses exceeding 10 − 20 g, this is obviously
bad news for any adventurous astronaut. However, note that the tidal acceleration ∆a decreases
as the square of the mass. For a sufficiently massive black hole (other than the huge scary looking
object looming below your feet), you might not even notice the tidal acceleration as you reached
the Schwarzschild radius (see Homework 5).

In Homework 6 you will see that the tidal field also has a transverse component that squeezes
infalling matter laterally almost as strongly as it is stretched radially. Hence the term “spaghetti-
fication.”

7.9 Gravitational Redshift

A photon loses energy as it moves out of a gravitational potential well according to a very simple
rule. If the frequency deep in the well is ν and the frequency higher up, at higher potential ∆φ (> 0),
is ν ′, then

ν ′

ν
= 1− ∆φ

c2
< 1.

This reduction in the frequency of a photon as it climbs out of a gravitation well is called gravita-
tional redshift. It doesn’t matter whether the gravitational field is uniform (∆φ = gh) or due to a
point mass (∆φ = GM(1/r − 1/r′)), or anything else.

The gravitational redshift has something more fundamental to tell us. If we imagine that our
rising photon defines a clock (think, number of crests passing us per second), so the “tick” is
∆t ∝ 1/ν, then (if again the prime refers to the measurement higher in the potential well)

∆t

∆t′
= 1− ∆φ

c2
< 1.

Thus, the upper observer sees the lower observer’s clock run slow. This isn’t just some sleight of
hand due to the peculiar behavior of photons. Clocks really do run slower in a deep gravitational
potential well. And if clocks run slow and the speed of light is constant, then our standard rulers
also must change with depth in the well. Something strange happens to spacetime in a gravitational
field.



7.10 The Equivalence Principle

Einstein’s key conceptual breakthrough in his journey to General Relativity had a very Newtonian
origin. When we write down Newton’s second law, we say

F = ma,

and when we write down Newton’s law of gravitation for the force at distance r due to some object
of mass M , we say

Fgrav = − GMm

r2
.

But there is no reason at all why the two m’s in these equations should be the same. It is not
obvious that the inertial mass, which determines a body’s acceleration in the second law, and the
gravitational mass, which determines the same body’s coupling to the gravitational field of another
object, should be the same.

In fact, repeated experiments over several centuries have failed to find any difference between
these two masses, so we have to conclude that they are in fact the same. But that has to be
another postulate of Newtonian gravity. Within Newton’s theory, there’s no fundamental reason
why it should be so. Quite a coincidence!

If the inertial and gravitational masses are the same, then it follows that the acceleration of an
object in a gravitational field is

agrav = Fgrav/m = − GM

r2
,

which is independent of m. More generally, the acceleration of a test particle in a gravitational
potential φ is −∇φ, where φ is related to the density ρ of gravitating matter by Poisson’s equation

∇2φ = 4πGρ.

Again, the acceleration is independent of the mass of the particle.
Einstein recognized that the equality of these two masses had fundamental significance. Instead

of them being equal to experimental uncertainty, he proposed the equivalence principle, which states
that they are in fact exactly equal. In that case, gravity is no longer a force. It is an acceleration
that affects all objects equally—a property of spacetime. The curvature of spacetime follows when
we incorporate this global acceleration into the framework of special relativity.

Special relativity deals with the relative motions of frames of reference moving with respect
to one another. It tells us that clocks run at different rates in different frames, and measuring
rods have different lengths. Applying these ideas to motion under gravity, where nearby observers
are accelerating and the properties of clocks and rods are changing continuously with location, it
is a short step to concluding that what Newton called gravity is really how we perceive a curved
spacetime.

An alternative statement of the equivalence principle is found in Einstein’s famous “elevator”
thought experiment. Imagine you are in an elevator with no windows and no way of communicating
with the outside (everyone’s nightmare!). You are weightless, with no acceleration, like astronauts
in space. Suddenly you feel a force between your feet and the floor of the elevator. Has some large
gravitating mass appeared under your feet? Or has the elevator acquired a rocket engine that is
accelerating you in the opposite direction? It’s hard to tell without looking outside.

Einstein broadened the equivalence principle to assert that no local (i.e. inside a small region of
space) physical experiment can distinguish between a gravitational field and an accelerating frame



of reference. If the elevator were large enough, you might be able to measure tidal effects, due
to the variation of the gravitational field over the extent of the elevator, but setting that aside,
the assertion is that gravity and acceleration are indistinguishable. That is the heart of General
Relativity.

The elevator experiment has an interesting corollary. Newton’s theory didn’t say much about
light and gravity, but if a light beam crosses the elevator (of width w) as it is accelerating upward
with acceleration g, then in the time it takes to cross the elevator, t = w/c, the light must move
downward a distance ∆y = −1

2gt
2 = −1

2w
2/c2. The light beam in the accelerating beam appears

curved. Therefore the same must be true in a gravitating field. Light is deflected by gravity.

7.11 The Metric

See Maoz §4.5
General relativity is a geometric theory of gravity. It relates gravity to the curvature of spacetime
via the Einstein equation

Gµν =
8πG

c4
Tµν ,

where G is a 4×4 tensor, the Einstein tensor, describing the curvature of spacetime and T is another
4×4 tensor, the stress-energy tensor, describing the distribution of matter and energy. Don’t worry
too much about what a tensor is. It’s a generalization of a vector, and we aren’t going to have to
deal with the details in this course. Just think of it as a 4 × 4 matrix in a 4-D spacetime. The
left hand side of the Einstein equation is entirely to do with the geometry of spacetime. The right
side is entirely about matter and energy in that spacetime. Particles move on geodesics (curves of
minimum length) in spacetime—straight lines in a Euclidean space, or great circles on the surface
of a sphere. The connection between matter and spacetime was succinctly summarized by relativist
John Archibald Wheeler:

Spacetime tells matter how to move;
matter tells spacetime how to curve.

The geometric side of the Einstein equation consists of derivatives of the metric tensor gµν , which
defines the basic geometric properties of spacetime. The notion of a metric may sound abstract,
but it is something you have seen many times before. It is simply a rule for calculating the distance
between two neighboring points in a space. For example, in a two-dimensional Euclidean space,
the squared distance (ds2) between points (x, y) and (x + dx, y + dy) is given by the theorem of
Pythagoras:

ds2 = dx2 + dy2.

In three dimensions, the result is

ds2 = dx2 + dy2 + dz2.

In spherical polar coordinates r, θ, φ, the same statement becomes

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2,

and so on. The metric tensor is nothing more than the coefficients of the “dx2” coordinate pieces.
The theory of differential geometry relates the metric to the geometrical properties of the space.
For example, if we took the previous expression and confined it to the surface of a sphere, with r =
constant, or dr = 0, we would obtain

ds2 = r2dθ2 + r2 sin2 θdφ2.



Application of differential geometry to just this metric would immediately reveal that the two-
dimensional space under study was curved, and that its curvature was the same everywhere—a
sphere.

The Minkowski metric in special relativity incorporates time into a spatially flat space:

ds2 = − c2dt2 + dx2 + dy2 + dz2.

In General Relativity, we generalize this further and write dx0 = dt, dx1 = dx, dx2 = dy, x3 = dz
and

ds2 =

3∑
µ,ν=0

gµν dxµdxν .

The indices conventionally range from 0 to 3, where 0 is time. Thinking of gµν as a matrix, we
can see that all the previous metrics are diagonal, which is very common but not required. As a
matrix, the Minkowski metric is

gµν = ηµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 .

In general, gµν is not diagonal, although it is always symmetric.

7.12 The Schwarzschild Metric

See Maoz §4.5
Einstein published his theory of General Relativity in 1915. In 1916, Karl Schwarzschild published
a solution for the metric due to a point mass—the equivalent of the Newtonian 1-body problem.
The Schwarzschild metric is

ds2 = −
(

1− 2GM

rc2

)
c2 dt2 +

(
1− 2GM

rc2

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2.

Here, r, θ, and φ are spherical polar coordinates, and t is time as measured by an observer at
infinity (we called it t′ earlier). Note that 2GM/rc2 = rs/r. The interval ds can also be written as
ds2 = −c2dτ2, where τ is the proper time of a particle, that is, time measured by a clock moving
with the particle.

For a clock at rest, dr = dθ = dφ = 0, so

dτ =

(
1− 2GM

rc2

)1/2

dt,

so, expanding for GM/rc2 � 1,

dτ

dt
≈ 1− GM

rc2
= 1− ∆φ

c2
,

as before. Note that, in this terminology, dτ was ∆t previously, and dt was ∆t′.
The gravitational redshift is

ν(r)

ν(∞)
=

dt

dτ
=

(
1− 2GM

rc2

)−1/2
.



In our earlier terminology, the observed frequency is ν ′ = ν(∞), so

ν ′

ν
=

(
1− 2GM

rc2

)1/2

≈ 1− GM

rc2
= 1− ∆φ

c2
,

again as before. Note that the observed ν ′ → 0 as r → rs. Light emitted from the Schwarzschild
radius is infinitely redshifted.

7.13 Light Rays

According to relativity, light rays move along null geodesics, with ds2 = 0. For example, in a simple
1-D Minkowski space,

ds2 = − c2dt2 + dx2,

so if ds = 0 we have
dx2 = c2dt2,

or
dx

dt
= ± c,

and
x = x0 ± ct,

describing light rays in a flat space.
In the Schwarzschild metric, we set ds = 0 for a light ray and assume radial motion, so dθ =

dφ = 0, to find the radial coordinate speed of light

dr

dt
= ± c

(
1− 2GM

rc2

)
= ± c

(
1− rs

r

)
.

Note that for r � rs, dr/dt = ±c, as expected. However, dr/dt→ 0 as r → rs. The Schwarzschild
radius represents an event horizon from which light (or any information) can’t escape.

Now let’s consider infalling matter with speed high enough that we can regard it as relativistic,
and hence described by the above equation:

dr

dt
= − c

(
1− rs

r

)
.

If the matter starts at radius r0 at time t = 0, this differential equation is easily solved (Homework
6.2) to find

ct = (r0 − r)− rs ln
r − rs
r0 − rs

= −rs ln(r − r − s) + constant

for r ∼ rs. Hence, as the matter approaches the event horizon, r = rs,

r − rs ∼ e−ct/rs .

Not only is radiation infinitely redshifted (as seen from infinity) by the time it reaches the event
horizon, it takes an infinite amount of time (as seen from infinity) to get there. However, although
we haven’t shown it here, from the point of view of the infalling matter, the event horizon is reached
and crossed in an (all too finite) amount of proper time.



7.14 Hawking Radiation

Although particles and radiation moving in the Schwarzschild metric cannot escape from r ≤ rs, in
1974 Stephen Hawking found a novel semi-classical mechanism that effectively allows a black hole
to radiate energy into space. The Schwarzschild metric is a classical vacuum solution to the field
equations, and the classical vacuum is empty, but the quantum vacuum is a very different thing.
It constantly creates quantum fluctuations, consisting of virtual particle-antiparticle pairs. These
violate conservation of energy, but that is allowed by the uncertainty principle ∆E∆ ≥ h/4π, so
long as the particles recombine and the books are balanced in a sufficiently short period of time.

Hawking realized that, if this process happens just outside the event horizon of a black hole, it
is possible for one of the virtual particles to cross the event horizon and be lost forever, allowing
the other to escape to infinity (slides8.2/07). The result is that the black hole radiates matter and
energy into space. What’s more, Hawking showed that the radiation has a blackbody spectrum,
with temperature

T =
hc3

16π2GMk
= 6.2× 10−8K

(
M

M�

)−1
.

Because of Hawking radiation, a black hole slowly radiates its energy away into space like any
other object of radius rs:

d

dt
(Mc2) = 4πr2sσT

4 ∝ M−2.

This equation is easily solved to show that the mass of the black hole goes to zero (the black hole
evaporates) after time

tevap = 2× 1067 yr

(
M

M�

)3

.

This is a very long time, except for low-mass quantum black holes of masses less than ∼ 10−19M�,
which might have formed in the very early universe, and would be exploding today. None has yet
been observed.

7.15 Observational Evidence for Black Holes

Several lines of reasoning have been used to argue for the existence (and observations) of black
holes.

1. The X-ray source Cygnus X-1 (slides9.1/01) appears to be associated with a B-type star
called HDE 226868. Stellar evolutionary models suggest that HDE 226868 has a mass of
around 30M�. The X-ray emission is thought to come from an accretion disk (Maoz §4.6)
around a companion compact object. The two orbit one another with a 5.6 day period. The
calculation of the compact object mass is similar to HW1.4, except that here the inclination is
uncertain. Best estimates indicate that the compact object has mass ∼ 15M�—too massive
to be anything else but a black hole. Note that the argument “it’s too massive to be anything
else” comes up a lot in this topic. About a dozen known X-ray binaries have properties that
suggest they contain a black hole.

2. X-ray emission from several globular star clusters also suggest that they may contain one or
more black holes of stellar origin.

3. Studies of the orbits of stars in some globular star clusters suggest that the clusters may harbor
intermediate-mass black holes of masses 1000−20000M�, at their centers (slides9.1/02). The



observations have been controversial, but in some cases the massive black holes can’t be ruled
out. They may have formed by collisions of massive stars early in the cluster’s lifetime, or
when a large stellar black hole collided with and accreted multiple other stars in the cluster.

4. Many galactic nuclei, including our own, are thought to contain supermassive black holes.
Slides9.1/04-07 show observations of the orbits of about 20 so-called S stars orbiting near the
center of the Milky Way. They have been intensively studied for more than 2 decades, and
the orbital elements of many of the stars have been determined. One (S2) is well on its way
around its second orbit since it was discovered in 1992. The orbits are consistent with all the
stars orbiting the same massive compact object (called Sgr A*), of mass 4× 106M�.

5. Finally, the recent LIGO observation of gravitational radiation also represents strong evidence
for binaries consisting of two black holes. Such radiation, even from very violent events, are
extremely weak. When they pass, they cause a tiny change in the distance between two points
in space — a fractional shift of just 10−20 for two 10M� black holes merging in a galaxy 10
Mpc away. Yet remarkably, using interferometric techniques, that shift can be measured.
The Laser Interferometer Gravitational-Wave Observatory (LIGO) uses an interferometer
with 4-km long arms, each traversed thousands of times by laser beams, to increase the total
distance to the point where the change can be detected. The LIGO instruments are located in
Hanford, Washington, and in Livingston, Louisiana. Subsequently, they have been joined by
the Italian VIRGO instrument, and numerous additional instruments are under construction.

The first gravity-wave observation, GW150914, was made on September 15, 2015. It revealed
a merger between black holes of masses 29M� and 36M�. The waves (slides8.2/11) observed
by the two LIGO detectors agree uncannily well with the waveform predicted for this event
on the basis of numerical simulations (slides8.2/12). It should be noted that numerical sim-
ulations of these events are extremely important, as they allow the LIGO/VIRGO team to
interpret the observational data and extract important properties from the signal, such as the
individual black hole masses, their spins, and the mass of the merger product. In the case of
GW150914, the mass of the product was 62M� — three solar masses worth of energy were
emitted in the form of gravitational radiation!

Since then, 9 additional black-hole mergers have been detected, and 1 neutron-star-neutron
star merger (GW170817). Most of the black holes have masses significantly above the range
previously predicted for the result of stellar evolution, a puzzle whose resolution remains
controversial in the community. The GW170817 event was observed in both gravitational
and electromagnetic radiation, the first example of a new field of astrophysics called multi-
messenger astronomy. With ongoing improvements in sensitivity, observers soon expect to
see hundreds of merger events per year. As with the arrival of all new observational windows,
we can expect our knowledge of the universe to increase in important and unexpected ways
as a result of these new observations.


